
Formulation and validation of the shift cell technique
for acoustic applications of poro-elastic materials

described by the Biot theory

Dario Magliacanoa,b,∗, Sepide Ashanic,e, Morvan Ouissea, Elke Deckersd,e,
Giuseppe Petroneb, Wim Desmetc,e, Sergio De Rosab

aFEMTO-ST Institute / Dep. of Applied Mechanics, Univ. Bourgogne Franche-Comté,
CNRS/UFC/ENSMM/UTBM, Besançon, 25000, France

bDep. of Industrial Engineering, Università di Napoli "Federico II", Corso Umberto I
40, Napoli, 80138, Italy

cKU Leuven, Department of Mechanical Engineering, Division LMSD, Celestijnenlaan
300, 2420 Heverlee, Belgium

dKU Leuven, Campus Diepenbeek, Department of Mechanical Engineering,
Wetenschapspark 27, 3590 Diepenbeek, Belgium

eDMMS Lab, Flanders Make, 2420 Heverlee, Belgium

Abstract

The inclusion of vibroacoustic treatments at early stage of product develop-
ment through the use of poro-elastic media with periodic inclusions, which
exhibit proper dynamic filtering effects, is a powerful strategy for the achieve-
ment of lightweight sound packages and represents a convenient solution for
manufacturing aspects. This can have different applications in transporta-
tion (aerospace, automotive, railway), energy and civil engineering fields,
where weight, space and vibroacoustic comfort are still critical challenges.
This paper develops the shift cell operator approach as a numerical tool to
investigate the dispersion characteristics of periodic poro-elastic media. It
belongs to the class of the k(ω) (wave number as a function of the angular
frequency) methods and leads to a quadratic eigenvalue problem, even when
considering frequency-dependent materials, contrarily to the ω(k) approach
that would lead to a non-linear eigenvalue problem for frequency-dependent
materials.
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The full formulation is detailed and the approach is successfully validate for
a homogeneous poro-elastic material and a more complex periodic system
containing periodic perfectly rigid circular inclusions.

Keywords: vibroacoustics, Biot theory of poro-elasticity, shift cell, FEM,
dispersion diagram

1. Introduction

Fast urbanization and transport development cause serious noise-induced
health risks, such as annoyance, sleep disturbance, or even ischemic heart
disease [1]. Therefore, nowadays, environment noise control is becoming a
subject of great interest. Generally, common sound absorbing materials could5

be divided into two categories: resonant [2] and poro-elastic materials. Reso-
nant materials for sound absorption mainly involve Helmholtz resonators [3]
and/or perforated panels [4]. These materials show good performances at
low frequencies, but they often have the disadvantage of narrow frequency
stop-bands [5]. Poro-elastic materials for acoustic applications are composed10

of channels, cracks or cavities that allow the sound waves entering the ma-
terials. Sound energy is dissipated by thermal and viscous losses; these en-
ergy consumption principles assure sound absorption over broader frequency
ranges [6, 7]. Poro-elastic materials suffer from a lack of performance at low
frequencies compared to their efficiency at higher ones [8]. This difficulty is15

usually overcome by multi-layering [9]; however, the efficiency of such devices
relies on the allowable thickness [10, 11].
An efficient way to enhance the low frequency performances of sound pack-
ages consists in embedding periodic inclusions in a poro-elastic layer [12, 13],
in order to create wave interferences or resonance effects that may be ad-20

vantageous for the dynamics of the system. In this context of increasingly
complex material systems, numerical tools to properly design sound packages
are more and more useful. Several theoretical models are available to esti-
mate the physical behavior of poro-elastic materials, and the most complex
of them require the definition of more than ten parameters. For example, one25

of the most accurate models is the Biot theory of poro-elasticity [14], which
takes into account both the mechanical and the acoustical behaviors of the
material [15]. Furthermore, the measurement of all the necessary parame-
ters, which usually constitutes the first step in the definition of a model, is
already a specific issue in the case of poro-elastic.30
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In addition, numerical simulations, usually carried out through the Finite
Element Method (FEM), are often problematic, in terms of computational
times and convergence. On the other hand, analytical models constitute a
powerful instrument to quickly catch physics and general trends of the prob-
lem, but they are partially limited by restrictive approximating hypothe-35

ses and come short considering non-trivial geometries. In this context, the
present work investigates the application of the shift cell approach to poro-
elastic media; this allows to obtain dispersion characteristics of frequency-
dependent damped materials through the resolution of a quadratic eigenvalue
problem, whose accuracy only depends on the FEM meshing. This technique40

has already been successfully applied to describe the mechanical behavior of
periodic structures embedding visco-elastic materials [16, 17], piezoelectric
materials [18] and foams modeled as equivalent fluids [19]. The main novelty
of the present work consists in the formulation and application of the shift cell
technique to Biot-modeled poro-elastic media. Materials modeled in this way45

account for wave propagation and interaction in both fluid and solid phases,
thus leading to the fact that diphasic models are the most comprehensive
ones in order to describe the vibroacoustics of porous media. However, com-
pared to equivaled fluid models, they require more parameters to be used (a
set for each of the two phases), and therefore the process of extension of the50

shift cell technique is definetly not trivial and requires a specific dissertation,
which is herein provided for the first time in literature.
This paper is organized as it follows. Section 2 recalls the fundamentals
of Biot theory and introduces the shift cell operator formulation for Biot-
modeled foams. Section 2.2.2 defines a weak formulation of the problem,55

and Section Appendix B describes its FE implementation. In Section 3 two
validations of the method are shown. At last, Section 4 provides conclusions
and future perspectives.

2. Shift cell operator technique for Biot-modeled foams

2.1. Biot theory60

Although for many porous materials the frame can be considered almost
rigid for a wide range of acoustical frequencies, thus allowing the use of mod-
els with motionless skeleton assumption [20, 21], this is not generally true:
for example, for a poro-elastic material attached to a vibrating structure and
for many other similar situations, frame vibrations are induced by those of65

the elastic structure.
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The wave propagation through a poro-elastic media can be analyzed only
considering a solid-fluid coupled behavior; such description is provided by
the Biot theory of sound propagation in poro-elastic media [14]. In this con-
text, two compressional waves and a shear wave propagate. The parameters70

that characterize a poro-elastic material are: φ is the open porosity; σ is the
static flow resistivity; α∞ is the tortuosity; Λ is the viscous characteristic
length; ηvisc is the viscosity; q0 = ηvisc

σ
is the static viscous permeability;

νvisc = ηvisc
ρ0

; νtherm = νvisc
Pr

; Pr is the Prandtl number. Furthermore, addi-
tional quantities are defined in Appendix A [22]. Zienkiewicz et al. proposed75

a simplified u− p formulation [23], where u is the solid phase displacement
and p is the pressure of the fluid phase.
In particular, by neglecting the second time derivatives of the relative fluid
displacement from the original Biot u − U formulation [15], the u − p for-
mulation [22, 24] is deduced in order to reduce the primary variables in the80

context of finite element analysis; indeed, if one considers a 3D model, in-
stead of the 3+3 nodal variables that are in the u − U formulation, in the
case of the u − p one there are only 3+1 nodals variables. In addition, the
solid displacement u and the pore fluid pressure p are always the most in-
teresting quantities. In an infinite homogeneous isotropic poro-elastic media,85

three waves propagate (two compressional waves and one shear wave):

kshear = ω

√
ρ̃11ρ̃22 − ρ̃12

2

Nρ̃22

, (1)

kfast,slow =

√
A1

2
±
√
A2

1

4
− A2,with (2)

A1 = ω2 ρ̃11R− 2ρ̃12Q+ ρ̃22P

RP −Q2
, A2 = ω4 ρ̃11ρ̃22 − ρ̃12

2

RP −Q2
. (3)

The symbols introduced in Eq. 1-3 are defined in Appendix A. The two
phases present in a poro-elastic material behave in a different manner, respect90

to the pure elastic case (where the onyl compressional wave is fluid-born):
the main difference is the existence of a second (solid-born) compressional
wave, which is highly attenuated in the low frequency range. Each of the
waves propagates both in the solid and in the fluid phases of the poro-elastic
medium [25].95
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2.2. Shift cell operator technique
2.2.1. Introduction

Herein, the shift cell operator technique applied to Biot-modeled foams
is presented, providing details on its implementation [26]. The shift cell
approach provides a reformulation of classical Floquet-Bloch periodic con-100

ditions [27], and its major advantage is that it allows the introduction of
a generic frequency dependence of visco-elastic material behavior [16]; this
is fundamental, if one looks for the computation of the dispersion curves of
a porous material, modeled as an equivalent fluid or with the Biot theory.
Indeed, even if the usage of Floquet-Bloch (F-B) periodic conditions actually105

allows it, a very powerful non-linear solver is required in that case.
The shift cell operator [16, 19], instead, leads to a quadratic eigenvalue prob-
lem even in the presence of frequency-dependences and/or damping. The
main mathematical difference with respect to the classical F-B approach is
that, in the case of the shift cell operator, the phase shift of the boundary110

conditions and the exponential amplitude decrease, related to wave propaga-
tion, are integrated into the partial derivative operator. As a consequence,
the periodicity is included in the overall behavior of the structure, while sim-
ple continuity conditions are imposed at the edges of the unit cell.
Considering a poro-elastic layer modeled through Biot’s theory [14], the cou-115

pled starting system is constituted by the equation of motion of the solid
part and the classical Helmholtz equation, respectively:

∇ · σ̂(u) + ω2ρ̃u+ γ̃∇p = 0

∆p+ ω2 ˜ρ22
R
p− ω2 ˜ρ22

φ2
γ̃∇ · u = 0

, (4)

where u = (u, v, w) is the solid phase displacement vector and p = p(x, ω)
is the acoustic pressure [28]. The following quantities are defined [22]: ω is
the angular frequency; σ̂(u) = Cε(u) is the stress tensor of the frame in vac-120

uum, whose generic element can be written as σij = (µ1− Q2

R
)δijεkk + 2µ2εij,

where δij is the Kronecker delta and εkk = tr(ε) = εux + εvy + εwz; C is
the Hooke elasticity tensor with C11 = µ1 − Q2

R
+ 2µ2 and C12 = µ1 − Q2

R
;

ε(u) = 1
2
(∇u + ∇uT ) is the symmetric strain tensor; µ1 = 2ν

1−2ν
N and

µ2 = N are respectively the first and second Lamé parameters.125

For each physical property of the system, the periodicity is described by
α(x− rn)− α(x) = 0, where α is a generic physical property, n is a vector
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of integers normal to the face considered, r = (r1; r2; r3) is a matrix contain-
ing the three vectors defining the cell periodicity directions and lengths, and
Ω is the domain of interest. This applies everywhere except on the disconti-130

nuity surfaces, where appropriate boundary conditions apply [19].
By further developing the latter equation and applying the Bloch theo-
rem [29], which extends Floquet’s theory to 3D systems, one obtains:

(∇+ jk) · C 1

2
((∇+ jk)u+ (∇+ jk)uT )+

+ ω2ρ̃u+ γ̃(∇+ jk)p = 0

(∇+ jk)T · (∇+ jk)p+ ω2 ρ̃22

R
p− ω2 ρ̃22

φ2
γ̃(∇+ jk) · u = 0

, (5)

with the wave vector k defined as:

k = kθ = k

θxθy
θz

 = k

cos θ cosφ
cos θ sinφ

sin θ

 (6)

and k = −jλ, where λ is an eigenvalue of the problem.135

2.2.2. Weak formulation
The solution approach follows a common weak formulation of a differen-

tial problem in a discrete coordinate scheme. A (u, p) formulation, in its
classical form, can be found in literature [24]:

140 

∫
Ω

σ̂(u) : ε(δu)dΩ− ω2

∫
Ω

ρ̃u · δudΩ+

−
∫

Ω

(γ̃ + φ(1 +
Q

R
))∇p · δudΩ−

∫
Ω

φ(1 +
Q

R
)p∇ · δudΩ+

−
∫

Γ

(σT (u, p) · n) · δudΓ = 0∫
Ω

φ2

ω2ρ̃22

∇p ·∇δpdΩ−
∫

Ω

φ2

R
pδpdΩ+

−
∫

Ω

(γ + φ(1 +
Q

R
))∇δp · udΩ−

∫
Ω

φ(1 +
Q

R
)δp∇ · udΩ+

−
∫

Γ

φ(Un − un)δpdΓ = 0

, (7)
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where δu and δp are admissible variations of the solid phase displacement
vector and the interstitial fluid pressure of the poro-elastic medium, respec-
tively. Considering that σ(u) = Cε(u) = C 1

2
(∇u+∇uT ), and introducing

the shift cell operator as explained above, one obtains:
145 

∫
Ω

(C
1

2
((∇+ jk)u+ (∇+ jk)uT )) : ((∇− jk)δu+ (∇− jk)δuT )dΩ+

− ω2

∫
Ω

ρ̃u · δudΩ−
∫

Ω

(γ̃ + φ(1 +
Q

R
))(∇+ jk)p · δudΩ+

−
∫

Ω

φ(1 +
Q

R
)p(∇− jk) · δudΩ = 0∫

Ω

φ2

ω2ρ̃22

(∇+ jk)p · (∇− jk)δpdΩ+

−
∫

Ω

φ2

R
pδpdΩ−

∫
Ω

(γ̃ + φ(1 +
Q

R
))(∇− jk)δp · udΩ+

−
∫

Ω

φ(1 +
Q

R
)δp(∇+ jk) · udΩ = 0

, (8)

where the boundary condition caused the integral on the boundary to vanish.
Therefore, one can define the following quantities:

• σ̂θ(u) = Cεθ(u), whose generic term is σ̂θij = (µ1− Q2

R
)δijεθkk+2µ2εθij;

• εθ(u) = 1
2
(θu+ θuT ).
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Therefore:150 

∫
Ω

σ̂(u) : ε(δu)dΩ + jk

∫
Ω

σ̂θ(u) : ε(δu)dΩ+

− jk
∫

Ω

σ̂(u) : εθ(δu)dΩ + k2

∫
Ω

σ̂θ(u) : εθ(δu)dΩ+

− ω2

∫
Ω

ρ̃u · δudΩ−
∫

Ω

(γ̃ + φ(1 +
Q

R
))(∇+ jk)p · δudΩ+

−
∫

Ω

φ(1 +
Q

R
)p(∇− jk) · δudΩ = 0∫

Ω

φ2

ω2ρ̃22

∇p ·∇δpdΩ + jk

∫
Ω

φ2

ω2ρ̃22

θ · p∇δpdΩ+

− jk
∫

Ω

φ2

ω2ρ̃22

θ ·∇pδpdΩ + k2

∫
Ω

φ2

ω2ρ̃22

pδpdΩ−
∫

Ω

φ2

R
pδpdΩ+

−
∫

Ω

(γ̃ + φ(1 +
Q

R
))∇δp · udΩ + jk

∫
Ω

(γ̃ + φ(1 +
Q

R
))θ · δpudΩ+

−
∫

Ω

φ(1 +
Q

R
)δp∇ · udΩ− jk

∫
Ω

φ(1 +
Q

R
)θ · δpudΩ = 0

, (9)

which can be written in a more structured form, as:

∫
Ω

σ̂(u) : ε(δu)dΩ + jk

∫
Ω

(σ̂θ(u) : ε(δu)− σ̂(u) : εθ(δu))dΩ+

+ k2

∫
Ω

σ̂θ(u) : εθ(δu)dΩ− ω2

∫
Ω

ρ̃u · δudΩ−
∫

Ω

γ̃∇p · δudΩ+

− jk
∫

Ω

γ̃θ · pδudΩ−
∫

Ω

φ(1 +
Q

R
)(∇p · δu+ p∇ · δu)dΩ = 0∫

Ω

φ2

ω2ρ̃22

∇p ·∇δpdΩ + jk

∫
Ω

φ2

ω2ρ̃22

(θ · p∇δp− θ ·∇pδp)dΩ+

+ k2

∫
Ω

φ2

ω2ρ̃22

pδpdΩ−
∫

Ω

φ2

R
pδpdΩ−

∫
Ω

γ̃∇δp · udΩ+

+ jk

∫
Ω

γ̃θ · δpudΩ−
∫

Ω

φ(1 +
Q

R
)(∇δp · u+ δp∇ · u)dΩ = 0

. (10)

Finally, one can discretize the weak formulation through the FE Method:
considering that ϕs and ϕf are the eigenvectors of the solid and fluid parts
respectively, the system of equations can be written in its matrix form:{

(Ks + jkLs + k2Hs − ω2Ms)ϕs − (Ns + jkOs + Ts)ϕf = 0

((Kf + jkLf + k2Hf − ω2Mf )ϕf − ω2(Nf − jkOf + Tf )ϕs = 0
, (11)
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with the following matrices (∝ means “proportional to”):155

• Ks ∝
∫

Ω
σ̂(u) : ε(δu)dΩ;

• Ls ∝
∫

Ω
(σ̂θ(u) : ε(δu)− σ̂(u) : εθ(δu))dΩ;

• Hs ∝
∫

Ω
σ̂θ(u) : εθ(δu)dΩ;

• Ms ∝
∫

Ω
ρ̃u · δudΩ;

• Ns ∝
∫

Ω
γ̃∇p · δudΩ;160

• Os ∝
∫

Ω
γ̃θ · pδudΩ;

• Ts ∝
∫

Ω
φ(1 + Q

R
)(∇p · δu+ p∇ · δu)dΩ;

• Kf ∝
∫

Ω
φ2

˜ρ22
∇p ·∇δpdΩ;

• Lf ∝
∫

Ω
φ2

˜ρ22
(θ · p∇δp− θ ·∇pδp)dΩ;

• Hf ∝
∫

Ω
φ2

˜ρ22
pδpdΩ;165

• Mf ∝
∫

Ω
φ2

R
pδpdΩ;

• Nf ∝
∫

Ω
γ̃∇δp · udΩ;

• Of ∝
∫

Ω
γ̃θ · δpudΩ;

• Tf ∝
∫

Ω
φ(1 + Q

R
)(∇δp · u+ δp∇ · u)dΩ.

Here, Ms,f and Ks,f are respectively the symmetric mass and symmetric170

stiffness matrices, Ls,f are skew-symmetric matrices, Hs,f are symmetric ma-

trices and Ns = NT
f , Os = OT

f and Ts = T Tf are the matrices that couple the
solid and fluid behaviors; all of them are complex and frequency-dependent.
Therefore, the coupled system can be written as it follows:[

(Ks + jkLs + k2Hs − ω2Ms) −(Nf − jkOf + Tf )

−(Ns + jkOs + Ts)
1
ω2 (Kf + jkLf + k2Hf − ω2Mf )

](
ϕs
ϕf

)
=

=

(
0
0

)
.

(12)
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The details of the FE implementation are given in Appendix B.175

3. Validation of the method

In order to validate the shift cell technique implementation for Biot-
modeled foams and for waves propagating along the x-axis, two different
comparisons are provided: one with an application of the shift cell approach
to an equivalent fluid [19], and another one with a WFEM analysis performed180

on a Biot-modeled foam [25].

3.1. Biot model with shift cell vs. JCA model with shift cell
The first considered system is a homogeneous foam with material proper-

ties shown in Table 1, represented by a cubic unit cell having a volume of 8
cm3, with periodicity in three directions and mesh composed by 10 thetrae-185

dral elements along each side of the cube. The second case is constructed by
introducing a rigid cylindrical inclusion with radius equal to 0.5 cm at the
center of the previous unit cell, as shown in Figure 1.
In Figure 2 and Figure 3, dispersion curves of two different systems with
an artificially high value of frame Young modulus (E = 1015 Pa) and nul-190

lified loss factor, such that the rigid frame assumption would be valid, are
calculated using the shift cell approach and compare the results obtained
through the Biot model with those calculated using a Johnson-Champoux-
Allard (JCA) [30, 31] equivalent fluid [19]. Therefore, the elasticity of the
skeleton is neglected and the Biot model essentially describes the behavior of195

the equivalent fluid one. The distinction between propagative and evanescent
waves is obtained, in a first approximation, through the application of the 1st

classifying criterion described by Magliacano et al. [19] for equivalent fluids.
Looking at Figure 2 and Figure 3, it can be noticed that the comparison
shows an almost perfect agreement between the results of the shift cell tech-200

nique applied on the two different foam models. The advantage of using Biot
model, for which the shift cell approach is developed herein, relies on the fact
that, as already introduced in Section 1, in some cases (for example: low-
frequency acoustic loads, or mechanical excitations) waves can propagate in
both fluid and solid phases. In those contexts, motionless skeleton models205

cannot be used and a more general diphasic model (like Biot’s one) is required
in order to describe the poro-elastic behavior of the foam [32]. Moreover, if
the frequency range of the study is under the decoupling frequency, which is
located at high frequencies for foams with high value of flow resistivity, the

10



Porosity 0.98 Density [kg/m3] 22.1
Tortuosity 1.17 Young modulus [kPa] 70+j9
Resistivity [Pa*s/m2] 3750 Shear modulus [kPa] 25+j7
Viscous char. length [mm] 0.11 Loss factor 0.265
Thermal char. length [mm] 0.742 Poisson ratio 0.39

Table 1: Properties of a PU 60 foam.

Figure 1: 3D unit cell constituted by a 2 cm cube, homogeneous (on the left) and with a
5 mm radius cylindrical hole (on the right).

equivalent fluid model prediction deviates significantly from the Biot theory;210

therefore, also in these cases it is necessary to use the latter, in order to have
an accurate overview of the wave propagation in the medium. In addition,
as it is more clear in Figure 4 and Figure 5, the shift cell approach is capable
to catch the behavior of the three types of waves propagating in a porous
material with elastic frame.215

3.2. Biot model with shift cell vs. Biot model with WFEM
In this validation case, shift cell results are compared to those obtained

by Serra et al. [25] using the Wave Finite Element Method [33] (labeled as
“reference” in Figure 4 and Figure 5). Parameters of foam and air used in
this validation case can be found in Appendix B of Serra et al. [25], and are220

reported here in Table 2 and Table 3. In the case of poro-elastic media the
rigidity of the material is very low, leading to very small wavelengths, and a
high dissipation rate occurs within the pores; despite these difficulties, in the
paper by Serra et al. [25] it is shown that the WFEM provides an efficient
tool to compute the waves propagating through poro-elastic media.225
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Figure 2: Dispersion curves validation with JCA plots; here, the Biot curves are computed
for a homogeneous PU 60 foam, with E = 1015 Pa and structural loss factor = 0.
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Figure 3: Dispersion curves validation with JCA plots; here, the Biot curves are computed
for a PU 60 foam with a perfectly rigid cylindrical inclusion, with E = 1015 Pa and
structural loss factor = 0.
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Porosity 0.96 Density [kg/m3] 30
Tortuosity 1.7 Young modulus [kPa] 733+j73
Resistivity [Pa*s/m2] 32000 Shear modulus [kPa] 264+j26
Viscous char. length [mm] 0.09 Loss factor 0.1
Thermal char. length [mm] 0.165 Poisson ratio 0.387

Table 2: Properties of the foam used in the validation with the work by Serra et al. [25].

Ambient fluid density [kg/m3] 1.21
Ambient fluid dynamic viscosity [N/(m*s)] 1.84*10-5

Standard pressure [Pa] 101325
Heat capacity ratio 1.4
Prandtl’s number 0.71

Table 3: Properties of the air used in the validation with the work by Serra et al. [25].

This validation is also performed with curves computed through the ana-
lytical model described in Section 2.1. As it is clear in Figure 4 and Figure
5, wavenumbers calculated using the shift cell approach applied to a Biot-
modeled foam completely agree with those calculated through the analytical
model; moreover, it can be seen that the slow compressional wave is highly230

attenuated.
The shift cell approach has several advantages, in terms of linearity and con-
vergence, compared to the WFEM. Indeed, as described by Serra et al. [25],
the WFEM applied to Biot-modeled foams leads to a transcendental eigen-
value problem that can be solved only by using a nonlinear solver. However,235

there are still a lot of numerical difficulties, and robust solutions have not
yet been developed [34].
In the case of WFEM, the use of 10 elements per wavelength in the three
directions is recommended as a rule of the thumb [25]. Under the hypotheses
of plane wave, the use of the shift cell approach leads directly to a quadratic240

eigenvalue problem, with no assumption on the nature of the waves, whose
accuracy only depends on the mesh chosen to discretize the system.

4. Conclusions

An efficient way to enhance the low frequency performances of sound
packages consists in embedding periodic inclusions in a poro-elastic layer, in245
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Figure 4: Dispersion curve comparison with the reference (WFEM by Serra et al. [25]),
and analytical model; real part of the wavenumber.
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Figure 5: Dispersion curve comparison with the reference (WFEM by Serra et al. [25]),
and analytical model; imaginary part of the wavenumber.
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order to create wave interferences or resonance effects that may be advan-
tageous for the dynamics of the system. This work develops the shift cell
technique as a numerical tool to investigate the dispersion characteristics of
periodic Biot-modeled poro-elastic media, providing details on its FEM im-
plementation too; this approach allows to obtain dispersion characteristics of250

frequency-dependent damped materials through the resolution of a quadratic
eigenvalue problem, whose accuracy only depends on the FEM meshing. A
first validation of the shift cell approach for Biot-modeled poro-elastic mate-
rials has been obtained through a comparison with the results obtained on
a JCA-modeled 3D unit cell, both in a homogeneous configuration and with255

a perfectly rigid cylindrical inclusion. For this purpose, the elasticity of the
foam skeleton has been neglected and therefore the Biot model essentially
described the behavior of an equivalent fluid, thus allowing the comparison
between dispersion curves obtained through the application of the shift cell
approach to Biot-modeled foams and equivalent fluids.260

An additional validation has then been carried out through a comparison
of the shift cell results with those obtained using the Wave Finite Element
Method, and those computed through an analytical model that is valid for in-
finite homogeneous isotropic poro-elastic media; in this context, compared to
the WFEM, the shift cell technique shows significant computational advan-265

tages. The outcome of this research is very promising, since the methodologi-
cal basis and its validations are given in order to trace future characterizations
and applications of periodic poro-elastic media in acoustics.

Appendix A. Quantities defined in Biot model of poro-elasticity

• A1 = ω2 ˜ρ11R−2 ˜ρ12Q+ ˜ρ22P
RP−Q2 ;270

• A2 = ω4 ˜ρ11 ˜ρ22− ˜ρ12
2

RP−Q2 ;

• ρ̃11, ρ̃12 and ρ̃22 are parameters depending on the nature and the ge-
ometry of the poro-elastic medium and the density of the fluid; in
particular: ρ̃11 = ρ1 + ρa + b

jω
, ρ̃12 = −ρa − b

jω
, ρ̃22 = φρ0 + ρa + b

jω
;

• ρ0 is the bulk density of the fluid phase;275

• ρ1 is the bulk density of the solid phase;

• ρa = φρ0(α∞ − 1) is an inertial coupling term;
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• b = σφ2G(ω) is the viscous drag;

• G(ω) =
√

1 + 4jα2
∞ηviscρ0ω
(σΛφ)2

is the relaxation function, as predicted by
JCA model [30, 31];280

• ρ̃ = (ρ̃11 − ˜ρ12
2

˜ρ22
);

• P,Q,R are elasticity coefficients to be determined by "gedanken ex-
periments" [21]; in particular [20]: P =

(1−φ)(1−φ−KB
KS

)KS+φKBKS
KF

1−φ−KB
KS

+φKS
KF

−
2
3
N ∼= (1 + ν

1−2ν
)2N + 1−φ2

φ
KF , Q =

(1−φ−KB
KS

)φKS

1−φ−KB
KS

+φKS
KF

∼= (1 − φ)KF ,

R = φ2KS

1−φ−KB
KS

+φKS
KF

∼= φKF ;285

• N = |N |(1 + jη) = Y
2(1+ν)

is the complex shear modulus of the frame;

• Y = |Y |(1 + jη) is the complex Young modulus of the frame;

• η is the loss factor of the frame;

• ν is the Poisson’s ratio of the frame;

• KB = 2N(ν+1)
3(1−2ν)

is the bulk modulus of the the solid phase in vacuum;290

• KS = KB
1−φ is the bulk modulus of the solid phase;

• KF is the bulk modulus of the fluid phase, computed starting from the
equivalent one (e.g.: KF = φKJCA);

• γ̃ = φ( ˜ρ12
˜ρ22
− Q

R
);

• µi =
Pδ2i−ω2 ˜ρ11
ω2 ˜ρ12−Qδ2i

, i = 1, 2 is the ratio of the velocity of the air over the295

velocity of the frame for the two compressional waves and indicates in
what medium the waves propagate preferentially.

Appendix B. Finite element implementation

In order to numerically implement the shift cell technique for Biot-modeled
foams, the vector equation related to the motion of the solid part is split into300
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three scalar equations. The following matrices are defined accordingly:

u =

uv
w

 ,∇u =

∂u∂x ∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 ,θu =

θxu θxv θxw
θyu θyv θyw
θzu θzv θzw

 , (B.1)

ε(u) =

 ∂u
∂x

1
2
(∂u
∂y

+ ∂v
∂x

) 1
2
(∂u
∂z

+ ∂w
∂x

)
1
2
(∂u
∂y

+ ∂v
∂x

) ∂v
∂y

1
2
(∂v
∂z

+ ∂w
∂y

)
1
2
(∂u
∂z

+ ∂w
∂x

) 1
2
(∂v
∂z

+ ∂w
∂y

) ∂w
∂z

 , (B.2)

εθ(u) =

 θxu
1
2
(θyu+ θxv) 1

2
(θzu+ θxw)

1
2
(θyu+ θxv) θyv

1
2
(θzv + θyw)

1
2
(θzu+ θxw) 1

2
(θzv + θyw) θzw

 , (B.3)

σ̂(u) =

C11
∂u
∂x

+ C12(∂v
∂y

+ ∂w
∂z

) (C11 − C12)1
2
(∂u
∂y

+ ∂v
∂x

) (C11 − C12)1
2
(∂u
∂z

+ ∂w
∂x

)

(C11 − C12)1
2
(∂u
∂y

+ ∂v
∂x

) C11
∂v
∂y

+ C12(∂u
∂x

+ ∂w
∂z

) (C11 − C12)1
2
(∂v
∂z

+ ∂w
∂y

)

(C11 − C12)1
2
(∂u
∂z

+ ∂w
∂x

) (C11 − C12)1
2
(∂v
∂z

+ ∂w
∂y

) C11
∂w
∂z

+ C12(∂u
∂x

+ ∂v
∂y

)

(B.4)
305

σ̂θ(u) =

C11θxu+ C12(θyv + θzw) (C11 − C12)1
2
(θyu+ θxv) (C11 − C12)1

2
(θzu+ θxw)

(C11 − C12)1
2
(θyu+ θxv) C11θyv + C12(θxu+ θzw) (C11 − C12)1

2
(θzv + θyw)

(C11 − C12)1
2
(θzu+ θxw) (C11 − C12)1

2
(θzv + θyw) C11θzw + C12(θxu+ θyv)

(B.5)
The numerical model is based on the following matrix weak formulation,
proposed to provide an expression optimized for the FE implementation:

• Ks,u ∝
∫

Ω
((C11

∂u
∂x

+ C12(∂v
∂y

+ ∂w
∂z

))∂δu
∂x

+ (C11 − C12)1
4
((∂u
∂y

+ ∂v
∂x

)(∂δu
∂y

+
∂δv
∂x

) + (∂u
∂z

+ ∂w
∂x

)(∂δu
∂z

+ ∂δw
∂x

)))dΩ;

• Ls,u ∝
∫

Ω
((C11θxu+C12(θyv+θzw))∂δu

∂x
+(C11−C12)1

4
((θyu+θxv)(∂δu

∂y
+310

∂δv
∂x

) + (θzu+ θxw)(∂δu
∂z

+ ∂δw
∂x

))− (C11
∂u
∂x

+C12(∂v
∂y

+ ∂w
∂z

))θxδu− (C11 −
C12)1

4
((∂u
∂y

+ ∂v
∂x

)(θyδu+ θxδv) + (∂u
∂z

+ ∂w
∂x

)(θzδu+ θxδw)))dΩ;

• Hs,u ∝
∫

Ω
((C11θxu+C12(θyv+θzw))θxδu+(C11−C12)1

4
((θyu+θxv)(θyδu+

θxδv) + (θzu+ θxw)(θzδu+ θxδw)))dΩ;

• Ms,u ∝
∫

Ω
ρ̃uδudΩ;315
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• Ns,u ∝
∫

Ω
γ̃ ∂p
∂x
δudΩ;

• Os,u ∝
∫

Ω
γ̃θ1pδudΩ;

• Ts,u ∝
∫

Ω
φ(1 + Q

R
)( ∂p
∂x
δu+ p∂δu

∂x
)dΩ;

• Ks,v ∝
∫

Ω
((C11

∂v
∂y

+ C12(∂u
∂x

+ ∂w
∂z

))∂δv
∂y

+ (C11 − C12)1
4
((∂u
∂y

+ ∂v
∂x

)(∂δu
∂y

+
∂δv
∂x

) + (∂v
∂z

+ ∂w
∂y

)(∂δv
∂z

+ ∂δw
∂y

)))dΩ;320

• Ls,v ∝
∫

Ω
((C11θyv+C12(θxu+θzw))∂δv

∂y
+(C11−C12)1

4
((θyu+θxv)(∂δu

∂y
+

∂δv
∂x

) + (θzv + θyw)(∂δv
∂z

+ ∂δw
∂y

))− (C11
∂v
∂y

+ C12(∂u
∂x

+ ∂w
∂z

))θyδv − (C11 −
C12)1

4
((∂u
∂y

+ ∂v
∂x

)(θyδu+ θxδv) + (∂v
∂z

+ ∂w
∂y

)(θzδv + θyδw)))dΩ;

• Hs,v ∝
∫

Ω
((C11θyv+C12(θxu+θzw))θyδv+(C11−C12)1

4
((θyu+θxv)(θyδu+

θxδv) + (θzv + θyw)(θzδv + θyδw)))dΩ;325

• Ms,v ∝
∫

Ω
ρ̃vδvdΩ;

• Ns,v ∝
∫

Ω
γ̃ ∂p
∂y
δvdΩ;

• Os,v ∝
∫

Ω
γ̃θ2pδvdΩ;

• Ts,v ∝
∫

Ω
φ(1 + Q

R
)(∂p
∂y
δv + p∂δv

∂y
)dΩ;

• Ks,w ∝
∫

Ω
((C11

∂w
∂z

+ C12(∂u
∂x

+ ∂v
∂y

))∂δw
∂z

+ (C11 − C12)1
4
((∂v
∂z

+ ∂w
∂y

)(∂δv
∂z

+330

∂δw
∂y

) + (∂u
∂z

+ ∂w
∂x

)(∂δu
∂z

+ ∂δw
∂x

)))dΩ;

• Ls,w ∝
∫

Ω
((C11θzw+C12(θxu+θyv))∂δw

∂z
+(C11−C12)1

4
((θyw+θzv)(∂δw

∂y
+

∂δv
∂z

) + (θzu+ θxw)(∂δu
∂z

+ ∂δw
∂x

))− (C11
∂w
∂z

+C12(∂u
∂x

+ ∂v
∂y

))θzδw− (C11 −
C12)1

4
((∂w

∂y
+ ∂v

∂z
)(θyδw + θzδv) + (∂u

∂z
+ ∂w

∂x
)(θzδu+ θxδw)))dΩ;

• Hs,w ∝
∫

Ω
((C11θzw+C12(θxu+θyv))θzδw+(C11−C12)1

4
((θyw+θzv)(θyδw+335

θzδv) + (θzu+ θxw)(θzδu+ θxδw)))dΩ;

• Ms,w ∝
∫

Ω
ρ̃wδwdΩ;

• Ns,w ∝
∫

Ω
γ̃ ∂p
∂z
δwdΩ;
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• Os,w ∝
∫

Ω
γ̃θ3pδwdΩ;

• Ts,w ∝
∫

Ω
φ(1 + Q

R
)(∂p
∂z
δw + p∂δw

∂z
)dΩ;340

• Kf ∝
∫

Ω
φ2

˜ρ22
( ∂p
∂x

∂δp
∂x

+ ∂p
∂y

∂δp
∂y

+ ∂p
∂z

∂δp
∂z

)dΩ;

• Lf ∝
∫

Ω
φ2

˜ρ22
p(∂δp

∂x
θ1 + ∂δp

∂y
θ2 + ∂δp

∂z
θ3)− ( ∂p

∂x
θ1 + ∂p

∂y
θ2 + ∂p

∂z
θ3)δpdΩ;

• Hf ∝
∫

Ω
φ2

˜ρ22
pδpdΩ;

• Mf ∝
∫

Ω
φ2

R
pδpdΩ;

• Nf ∝
∫

Ω
γ̃(u∂δp

∂x
+ v ∂δp

∂y
+ w ∂δp

∂z
)dΩ;345

• Of ∝
∫

Ω
γ̃(θ1u+ θ2v + θ3w)δpdΩ;

• Tf ∝
∫

Ω
φ(1 + Q

R
)((∂δp

∂x
u+ ∂δp

∂y
v + ∂δp

∂z
w) + δp(∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
))dΩ.
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