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Université de Bourgogne Franche-Comté
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Abstract—This paper address the problem of using prog-
nostic information in the decision-making process of a single
multi-purpose machine. The prognostics and health management
method is compared to condition-based maintenance combined
with a genetic algorithm to determine the joint schedule of main-
tenance and production. The paper presents a methodology to
select the adequate strategy while considering several factors that
influence the functioning of the machine. The results show that
operational and conditions variability influence the choice of the
suitable methods. In the presented case, we show configurations
where prognostic information is useless or useful.

Keywords—Production and Maintenance Scheduling, Predic-
tive Maintenance, Condition-Based Maintenance, Prognostic In-
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I. INTRODUCTION

Maintenance optimization has been extensively studied in
the literature. One can find several reviews for the maintenance
policies [1], [2] and for the maintenance optimization tech-
niques [3], [4]. Some works investigated the joint optimization
of spare part inventory and maintenance planning. One can
refer to the review paper done by Van Horenbeek et al. on
this subject [5].

Production planning has been in its turn extensively studied.
Consider several methods for production scheduling [6] use
exact methods [7], heuristics [8], and meta-heuristics [9].

However, the two services: production and maintenance in
the industrial context, are highly inter-dependent. Some works
have studied the optimization of this joint problem [10]–[13].
With the emergence of new methodologies like condition-
based maintenance and prognostics and health management,
it has become difficult to choose what method should be
applied in each scenario. Almost any work in condition-based
maintenance or prognostics and health management context
proposes to compare its approach to other classic maintenance
approaches most commonly systematic periodic maintenance.
The authors in the works of Camci [14] or Langeron et al. [15],
prove that the use of prognostics and health management is
more beneficial than other policies. Therefore, one can wonder

if this statement is true no matter what type of component or
machine.

Very few works have compared their results to the dif-
ferent maintenance policies to select the suitable one. For
example, Van Horenbeek and Pintelon in [16] proposed a
prognostic-based predictive maintenance policy, the results of
their method are compared to several maintenance policies
such as condition-based maintenance, and classic age-based
policies. They also studied the influence of some parameters
like the dependencies between the components and the prog-
nostic horizon on the policies’ performances. Hence, providing
readers with a methodology to select a suitable maintenance
policy. However, the authors have only done this study for
a particular machine configuration. In other words, one can
conclude on the choice of the optimal policy only if a similar
machine configuration is present. Therefore, the question of
which policy is more suitable for other configurations remains
unanswered.

Moreover, the work of Van Horenbeek and Pintelon, like
many other works, has not included the production scheduling
and how it can influence the performance of the maintenance
policy. The works on CBM or PHM maintenance scheduling
implicitly assume that the operating conditions of the machines
and their future loads are constant such as the works of Camci
[14], Shi and Zeng [17], and Langeron et al. [15].

In this paper, we propose to solve the joint problem of
production and maintenance scheduling on a single multi-
purpose machine using two meta-heuristics based on PHM and
CBM methodologies. The proposed methods’ performances
are analyzed on a multiple components system. We also pro-
pose a methodology to select the appropriate method according
to the system properties and the problem characteristics.
Therefore, several machine configurations are considered (i.e.,
the degradation speed of components, the operational profiles,
and some production problem characteristics). These test cases
allow us to conclude when it is better to use one method
instead of the other.

The rest of this paper is organized as follows. In section 2,



the joint problem of maintenance and production scheduling
is defined. The used methodologies to solve the problem are
described in section 3 along with the comparison methodology.
A numerical example and the results are presented in section
4. Finally, this work is concluded and some future works are
presented in section 5.

II. PROBLEM STATEMENT

This work deals with the joint problem of production
scheduling and predictive maintenance planning for a single
multi-purpose machine. The production scheduling problem
focuses on building a timetable for production jobs with a
suitable profile. However, few constraints need to be con-
sidered while creating this schedule (e.g., order deadline
and due date and maintenance inspection). Before scheduling
order, a prognostic algorithm assesses the machine’s ability to
achieve the task. The decision-making algorithm considers this
information while solving the scheduling problem. Predictive
maintenance is scheduled to find a compromise between early
maintaining the equipment, risking its failure, and missing
opportunities due to machine unavailability.

A. The Machine Model

Let us considered a multi-purpose single machine (e.g.,
computer numerical control (CNC) machines). CNC machines
are known for their ability to operate on different types of
products with different configurations (cutting speed, feed rate,
and various tools). In this context, we assume that the machine
can produce N types of products with J possible profiles. The
machine is assumed to be a serial multi-component system i.e.
if one of its components fails the whole system fails. Let us
denote L the number of components. Each component l is
subject to degradation that is influenced by the product type
n and the production profile j. The degradation evolution of
component l is a function of the product type n, the production
profile j used, and the quantity to produce x. For simulation
purposes, we assume that the degradation Hl(x, j, n) of a
component is described by an exponential function (1).

Hl(x, j, n) = al(e
(bl∗Sj∗sn∗x) − 1) (1)

Where al and bl are two parameters that define the shape
of the exponential function for a component l. Sj is the
coefficient that reflects the influence of production profile
j. sn reflects the severity of the producing product n. The
RUL of component l is defined as the time left during which
component l can still be used before its degradation level
reached a failure threshold, denoted Thl.

B. Production Scheduling Problem

During each period i, K(i) production orders Oi,k have to
be processed. Each order k is characterized by a product type
nk, a quantity of products Qk, a release data rk, a due date
dk, and a deadline Dk. The production problem consists of
finding the best schedule σ∗i of the Oi,k for the ith period and
the profile used for this job. Each order k has a duration of
processing noted pk,j under each profile j, and a completion

date ck,j . For any scheduled job, if its completion date ck,j
exceeds its due date then a penalty will be paid, and the penalty
value is fixed whatever the duration of the delay. Any order
that exceeds its deadline is considered as a lost opportunity.
The scheduled jobs have a production cost Cp(k, j) (2) and
generate a gain from selling the products Gp(k) (3).

Cp(k, j) = Qk ∗ Cnk,j + Uk ∗Qk ∗ LPnk
(2)

Gp(k) = Qk ∗ Pnk
(3)

With Cnk,j is the cost of producing one unit of product
nk with profile j, Uk = 1 if the job k is late, LPnk

is the
tardiness penalty for product type nk, and Pnk

is the sale price
of product type nk. Any produced schedule should satisfy
some constraints:
• No preemption between jobs is allowed,
• the machine can only produce one job at the time,
• the sum of processing time of all scheduled jobs should

not exceed the period duration (i.e., the decision horizon)

C. Maintenance Problem

During the operating time of the machine, its components
are subject to wear and tear. When a component degradation
level reaches a failure threshold, the machine is no longer able
to fulfill the required service. To avoid failure and to maxi-
mize the machine’s availability and reliability, maintenance
interventions are scheduled. We assume that the maintenance
quality is perfect, meaning that if one component is scheduled
for maintenance it regains an “as good as new” condition
after maintenance. Each component l of the machine has a
replacement cost noted Ml. When a component is scheduled
for maintenance, a maintenance cost is generated for this
component. This maintenance cost is defined in (4) as the
sum of the replacement cost and a penalty if it is maintained
early. This penalty depends on the difference between the
current degradation level and the failure threshold. However
if the component degradation level exceeds the threshold
(Hl ≥ Thl), the component l fails CMl = 1 involving a
corrective maintenance activity with a cost PCM .

Cm(l) =Ml + Prul ∗max(Thl −Hl, 0) + PCM ∗CMl (4)

As the machine has several components, the cost of a
maintenance action of replacing a set of components noted
PM is defined in (5). The maintenance activity does not have
a direct effect on the estimated gain. Therefore, the gain of a
maintenance decision Gm is assumed to be equal to zero.

Cm =
∑
l∈PM

Ml+Prul∗max(Thl−Hl, 0)+PCM ∗CMl (5)

D. Joint Problem

The objective behind this application is to find a suitable
compromise between the production and the maintenance
activities. This joint problem aims to establish a settlement



between two services maintenance and production. The sim-
ulation horizon SH will be divided into smaller decision
horizon called periods. At each period i, the joint schedule
σi of maintenance and production activity is built out of the
local decisions of production and maintenance. The objective
function can be described

max
∑
i∈SH

Bi = max
∑
i∈SH

Gi − Ci (6)

With Bi the benefits of the ith step and Ci and Gi are
respectively the cost and the gain of the ith step as described
in (7) and (8).

Ci =
∑

(k,j)∈σi

Cp(k, j) +
∑

l∈PM〉

Cm(l) + Lop ∗ Idli (7)

Gi =
∑

(k,j)∈σi

Gp(k) (8)

With: Lop is a penalty on the time interval Idli during which
the machine is capable of producing but it is idle for the lack
of a production order. Idli is defined as in (9), with DHi,
Prodi and Mainti are respectively the decision horizon (i.e.,
the available time for production), the time where the machine
is used to produce and the time spent in maintenance in the
ith step.

Idli = DHi − Prodi −Mainti (9)

III. RESOLUTION

A. Prognostic-based method

Unlike in the classic prognostic-based decision-making pro-
cess in which the decision is built independently from the
machine’s ability to achieve the task and only based on a single
estimated RUL, we propose to build the production schedule
iteratively and based on short-term prognostic. Therefore, at
each instant t, the decision builder algorithm considers the list
of available orders, combines them with the possible produc-
tion profiles, and sends this list to the short-term prognostic
algorithm. The prognostic algorithm estimates the degradation
evolution of the different components under each of these
decisions and creates the list of feasible decisions (i.e., the
final degradation level does not exceed the failure threshold).
This list is feed once again to the decision algorithm, which
evaluates and selects the appropriate one. This cycle is called
a decision construction step. It is repeated until the scheduled
time reaches the decision horizon.

Therefore, we obtain an iterative process of building the
schedule by considering a dynamic prognostic process. We
qualify this decision process as a closed-loop decision build-
ing. Figure 1 presents this dynamic of building. Figure 2
presents the sequential diagram of this process.

The construction loop of prognostic-based decisions is
implemented in a modified ant colony optimization (ACO)
algorithm [18]. The modification incorporates the short-term
prognostics and some technicalities about the decision building
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process. The obtained algorithm is described in previous work
[19]. We will refer to this method as PHM+.

The proposed PHM+ method is compared to a classic
condition-based maintenance combined with a genetic algo-
rithm to schedule production activities.

B. Condition-based maintenance method

To solve the joint problem, we combined condition-based
maintenance with a genetic algorithm. At the start of each
period, if the period corresponds to the inspection date, then
an inspection of the components degradation level takes place.
Components in which the degradation level exceeds the CBM
threshold are scheduled for maintenance at the start of the
period. Then, the remaining time is scheduled for production
using the genetic algorithm (GA). In this paper, this method
is referred to as CBM-GA.

To implement GA, several components should be consid-
ered:
• the genetic representation of the solution,
• the fitness function,
• the method to generate initial population,
• the genetic operators (mutation and crossover), and



• the survival rules.

Even though GA does not guarantee the global optimum
solution, it is a commonly used method in cases of combi-
natorial, high instances or non-linear optimization problems
[20]. The required components of the GA implementation are
presented in this subsection.

1) Solution representation: The algorithm search for a good
combination of orders and the profile to produce them. Then,
we propose a coding consisting of a 2D matrix composed of
two lines of integers. The first line contains the sequence of
orders, while the second line contains the production profile
to be used. Then each allele is composed of the order index
k and a production profile j.

2) Fitness function: Individuals in the GA are evaluated
to measure their fitness toward an objective function. Here,
the fitness evaluation uses the benefit function defined by (6).
The evaluation is obtained through simulating the outcome
of the chromosome (i.e., we simulate the application of the
individual’s schedule to the machine and we evaluate the
outcome cost).

3) Initial population: GA requires an initial generation (or
set) of valid solutions. Here, a solution needs to verify some
constraints to be considered as valid. These constraints consist
of having a schedule with a duration that does not exceed the
duration of a period and in which each order has a completion
time lower than its deadline (see 10 and 11). The individuals
of the initial population are built randomly by combining
orders and production profiles then scheduling them in random
order. Invalid individuals are modified to guarantee that the
constraints are respected.∑

(k,j)∈σ
pk,j ≤ DHi ∀ i ∈ SH (10)

ck,j ≤ Dk ∀ (k, j) ∈ σ (11)

4) Genetic operators: The proposed GA uses two genetic
operators: mutations and crossover. For the mutation, we
proposed two operators: (i) a single point mutation operator in
which a randomly selected allele is mutated by exchanging the
current order with another order from the list of unscheduled
available orders, and (ii) random two-point mutation operator
in which two alleles are selected and are exchanged. In this
algorithm, we used a classic order crossover (also noted OX
crossover).

5) Survival rules: New generations are created from the
previous generation survivors and genetic operators’ offspring.
Here, a novel generation is built by; (i) XSurvival% of the
best chromosomes from previous generation, (ii) XMutation%
of the mutation’s offspring , and (iii) XCrossover% of the
crossover’s offspring. The offspring selection is based on a
roulette wheel process using the fitness value for defining
the selection probability. Since the objective is to maximize
the fitness function, the probability of each individual can be
defined as in (12).

Prob(Indivi) =
fitness(Indivi)∑

Indiv∈Offspring fitness(Indiv)
(12)

C. Comparison protocol

To study the selection of the adequate method, we need
to compare the two methodologies in several test cases that
take into consideration different factors. In this application,
the considered factors are:

• The degradation’s speed of the component, three cate-
gories are considered: (i) rapidly deteriorating, (ii) nor-
mally deteriorating, and (iii) slowly deteriorating. The
speed of the deterioration is determined by the compo-
nent’s coefficients al and bl. These components are used
to create four machines as presented in Table I.

• The initial condition of the components. Four sets of
initial conditions are considered: (i) all components are
new, (ii) components are at the first half of their life
with random degradation level, (iii) a mix of components
degradation levels one new, one used, and on at the end of
its life, and (iv) all components have the same degradation
level and they are at the second half of their life. These
initial conditions are presented in Table II.

• Three categories of production orders were considered.
The categories are defined according to the quantity of
the demanded product; small tasks where Q ∈ [10, 50],
medium tasks where Q ∈ [30, 100] and large tasks where
Q ∈ [100, 200].

• Product type: to capture the influence of the product type,
we considered two cases: (i) 5 sets of production orders
that contain three different types of products, and (ii) 5
sets of orders that have the same unique type of product.

• Production profile: to capture the influence of the pro-
duction speed, we defined two cases: (i) the machine can
only produce with one speed, and (ii) the machine can be
used with three different profiles (i.e. three speeds; low,
normal, and high).

TABLE I
MACHINES CONFIGURATIONS

Machines Components
l=1 l=2 l=3

M1 rapid slow rapid
M2 slow normal rapid
M3 rapid rapid rapid
M4 slow slow slow

TABLE II
INITIAL CONDITIONS CONFIGURATIONS

Initial
Condition

Degradation Level
D1 D2 D3

IC1 0 0 0
IC2 0.3 0.4 0.24
IC3 0.8 0.4 0
IC4 0.6 0.6 0.6



For each machine, we consider 4 initial conditions for
3 categories of production orders each presents 10 sets of
production orders (5 with a single product, and 5 with multiple
products). This leads to a total of 120 test cases for each
machine when using a single speed and 120 test cases when
using three speeds.

IV. RESULTS AND DISCUSSION

Tables III and IV present the obtained results respectively
for the single-speed case and the multiple profiles. Each row
of these tables presents for a specific machine the mean of
benefits over 20 test cases (i.e., 5 production orders sets and 4
initial conditions). All the values in these tables are expressed
in k u.m. (thousand units of currency). One can easily note
that the benefits are more important for the slow deteriorating
machine (M4) compared to the rapidly deteriorating machine
(M3). The rapid the degradation of the component gets, the
more frequently it undergoes maintenance and the higher the
maintenance cost gets which causes the benefits to getting
lower.

TABLE III
RESULTS OF THE SINGLE-SPEED TESTS

Machine CBM-GA PHM+ Difference

Small
Tasks

Single
Product

M1 27.1 35.9 8.8
M2 27.7 37.2 9.5
M3 12.1 28.3 16.2
M4 31.8 34.8 3

Multiple
Products

M1 18.6 31.1 12.5
M2 24.5 32.6 8.1
M3 10 25.2 15.2
M4 28 30.8 2.8

Medium
Tasks

Single
Product

M1 27.8 32.4 4.6
M2 28.2 30.6 2.4
M3 14.6 25.5 10.9
M4 31.5 28.9 -2.6

Multiple
Products

M1 20.6 27.4 6.8
M2 26 28.4 2.4
M3 9.8 22.8 13
M4 28.7 25 -3.7

Large
Tasks

Single
Product

M1 27.3 26 -1.3
M2 27.1 26.1 -1
M3 14.8 20.3 5.5
M4 30.9 23.7 -7.2

Multiple
Products

M1 23.2 21.5 -1.7
M2 26.8 22.5 -4.3
M3 9.7 17.5 7.8
M4 30.3 19.3 -11

In table III, one can note that the difference between
PHM+ and CBM is always positive for the small tasks. In
other words, it is more beneficial to use PHM+ in this case.
By comparing the values of the difference between different
machines, one can notice that the benefits of using PHM+
reach its maximum for the machine M3 which is composed
of only rapidly deteriorating component. Furthermore, the
benefit of using PHM+ has a minimum value for the machine
with the slowest deteriorating components. Machines with
slow deteriorating components are easier to control from a
health management perspective. Although the variation of
future decisions influences the evolution of the degradation,
the machine’s states do not present a big variation between

TABLE IV
RESULTS OF TESTS ON MULTIPLE PROFILES

Machine CBM-GA PHM+ Difference

Small
Tasks

Single
Product

M1 27.1 40.5 13.4
M2 27.7 40.9 13.2
M3 12.1 26.1 14
M4 31.8 45.4 13.6

Multiple
Products

M1 18.6 33.5 14.9
M2 24.5 36.2 11.7
M3 10 26.9 16.9
M4 28 40.5 12.5

Medium
Tasks

Single
Product

M1 27.8 38.6 10.8
M2 28.2 41 12.8
M3 14.6 30.5 15.9
M4 31.5 44.9 13.4

Multiple
Products

M1 20.6 33.1 12.5
M2 26 35.7 9.7
M3 9.8 27.2 17.4
M4 28.7 40 11.3

Large
Tasks

Single
Product

M1 27.3 35.5 8.2
M2 27.1 38.2 11.1
M3 14.8 28.2 13.4
M4 30.9 43.1 12.2

Multiple
Products

M1 23.2 31.2 8
M2 26.8 33.7 6.9
M3 9.7 25.3 15.6
M4 30.3 38.7 8.4

two inspection dates. Therefore, the use of PHM+ does not
produce a big difference.

When the tasks get larger, the machine is spending more
time producing the same product with the same operational
conditions. Thus, the variation of future decisions is reduced.
One can notice that the reduction of future decisions’ variation
reduces significantly the benefits of the PHM+ on one hand.
On the other hand, the benefits of CBM are almost stable.
Therefore, the difference between the two methods decreases.

The decrease in the PHM+ benefits is more important for
slow degrading machines. In the case of medium tasks, one
can note that the difference is negative meaning that it is
more beneficial to use CBM. The values of the PHM+ benefits
continue to decrease when orders get larger. For large tasks,
one can notice that only machine M3 has a positive difference.
In cases in which the machines have different components’
degradation dynamic or only slow deteriorating components,
the CBM method has the biggest benefits.

One can conclude that when the machine’s overall degra-
dation dynamic becomes slow, the PHM+ benefits decrease.
Thus, for slow degradation machines, it is more beneficial
to use CBM. Furthermore, When the variation of the future
loads decreases the PHM+ benefits decrease and the CBM
becomes more practical than PHM+. These observations allow
us to conclude on the use of PHM+ or CBM with the genetic
algorithm in the case of a single-speed machine. The obtained
classification is presented in Figure 3.

Table IV presents the difference in benefits between using
PHM+ and CBM for a single machine composed of three
subsystems capable of functioning with several production
profiles. The table presents the results for a single product
type and multiple products.

One can notice that for these test cases the benefits of using
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PHM+ are more important than using CBM even for large
tasks. When using several production profiles, the variability
in the degradation evolution is higher. This variability cannot
be detected with CBM, in this case.

However, one note that the degradation dynamic has the
same effect as in the case of a single-speed machine. The dif-
ference between the two methods is maximized for machines
with rapidly deteriorating components. One can also note that
the smaller the tasks get the higher the difference between
the two methods. Therefore, the variability of the production
orders has the same effect as the production profiles.

To conclude, the higher the variability in the machine’s
operational conditions the more beneficial it is to use PHM+.
The operational conditions are varied using:
• different product types,
• different production orders, and
• different production profiles.

One can also conclude that the machine parameters especially
the degradation dynamic of its components influences the
method selected for the joint optimization problem.

V. CONCLUSION

In this paper, we studied the importance of using prognos-
tic information and techniques to solve the joint production
and maintenance optimization for a single multi-components
machine.

We also studied the influence of the machine characteristics
and the variability of its operational conditions on the choice
of the appropriate maintenance strategy.

The obtained results suggest that for slow deteriorating
machines with low operational variability one can settle for
condition-based maintenance strategy. While for high oper-
ational variability and/or rapid deteriorating machines, it is
more beneficial to use prognostics and health management
strategies.

In this work, we supposed that the inspection cost is
negligible and we did not consider them into the objective
function. It would be interesting for future work to include
the inspection cost. One can also include the costs of the
deployment of different maintenance strategies.

Another possible future work is to study the utility of using
PHM for a more complex system (e.g. for multi-component
systems with different inter-component dependencies).
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