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Prognostics and health management (PHM) has, recently, gained a lot of attention in the rail transportation context.
However, most works in this field focus on the prognostic process. However, prognostics is not the end of PHM
in itself, its results have to be used to better manage the life cycle of systems. PHM decision phase is applied to
plan action in both operational and maintenance ways based on the current condition and the estimated RUL. One
important parameter of this phase is the length of the scheduling horizon. In this paper, we propose a methodology
to set the suitable values of this main parameter. In this paper, we also study the influence of some rolling stocks
application parameters on the value of the decision horizon. As a result, we obtain a range of values for the decision
horizon that optimizes the maintenance and service policies.
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1. Introduction
Prognostics and health management (PHM) is an
emergent technology that aims to study and ana-
lyze the behavior of a system, predict its end of
life, estimate its remaining useful life (RUL), and
manage its health states. PHM can be summarized
into three phases: (i) observation, (ii) analysis, and
(iii) decision support. Recently, this methodology
became the focus of many works in the railway
context. Several works have proposed an adapta-
tion of the PHM framework to the railway systems
applications, one can cite for example works of
Galar et al. (2013) and Brahimi et al. (2016). Most
of the works in this domain have focused on the
observation and analysis phases. by proposing
and comparing sensors configuration Camci et al.
(2016), or by acquiring, processing, and analyz-
ing the sensors data Cao et al. (2018). One can
find several works studying railway assets health
assessment and prognostics Guclu et al. (2010);
Eker et al. (2011); Mishra et al. (2017). However,
fewer works have focused on post-prognostics
decision-making. These works can be divided into
two categories based on the considered system:
(i) stationary systems like rail infrastructure, rail
switch, and traction power supply and (ii) moving
systems like trams, metros, and trains.

Prognostics-based decisions for stationary sys-
tems have focused mainly on defining the main-
tenance dates. Villarejo et al. (2016) devel-
oped a hybrid PHM framework to optimize main-

tenance planning of rail infrastructure. Letot
et al. (2016) used the estimated future degradation
level to schedule tamping interventions on rail
tracks. Durazo-Cardenas et al. (2018) conceived a
maintenance decision support system for railways
based on big data fusion and systems engineering.
Camci (2014) developed a genetic algorithm and
a particle swarm optimization algorithm to deter-
mine a maintenance schedule that minimizes the
expected failure, maintenance, and the travel costs
for rail switches. Verbert et al. (2017) designed
a two-level maintenance strategy optimization for
railway networks (i.e., tracks and switches). Trac-
tion railway power supply is another system that
has been studied in a PHM context. Lin et al.
(2016) used a partially observable Markov deci-
sion process to plan maintenance interventions for
a traction power supply based on its remaining
useful life. In the same context, Feng et al. (2017)
developed a framework that combines PHM and
active maintenance to optimize maintenance ac-
tivities.

Although one can find several works that opti-
mize the operations Turner et al. (2016) and the
maintenance Yun et al. (2013) of rolling stocks,
the prognostics information are not yet included
in these works. To our knowledge, only the pa-
per of Herr et al. (2017) presented a method to
optimize jointly task assignment and the mainte-
nance scheduling of trains given a predefined train
timetable and the equipment’s RUL.
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However, most of the works on post-prognostic
decision-making in general and on the railway
system, in particular, have focused on solving
the maintenance and/or the operational problems
and have deliberately omitted some of the PHM
framework parameters. One important parameter
of the decision-making process is how far ahead
can we plan maintenance and/or operations, also
known as the decision horizon. This parameter
is responsible for defining the frequency at which
one updates the schedule of actions. Several char-
acteristics of the considered problem can influence
the definition of this duration. The focus of this
paper is to study the optimal decision horizon
duration. Artificial intelligent techniques are used
to solve this kind of problem under different con-
ditions. We propose to study the influence of the
problem size, the number of sub-systems, and the
components characteristic on the decision horizon
duration.

This paper is structured as follows; in section 2
a definition of maintenance and operation joint
problem is proposed. The section 3 presents a
description of the used genetic algorithm. In
section 4, a case study is proposed and the ob-
tained results are discussed. This work is finally
concluded and some future perspectives are given
in section 5.

2. Problem Statement
In this paper, the problem of jointly assigning
tasks from predefined time-schedule to trains and
scheduling maintenance activities is considered.
The problem consist in assigning a set P of pe-
riodically defined tasks to a set M of trains, with
Card(P) = P , Card(M) = M , and P < M .
The objective is to minimize the total cost, which
includes assignment costs and maintenance costs.
Each task (or mission) p is defined as a sequence
of trips in which the start and the finish points
are in the same depot. Thus, a mission p is
characterized by the distance dp to be covered by
the train, and a coefficient of severity sp. The
severity coefficient can represent different aspects
of the task, (e.g. the environment, the line char-
acteristics, ...). This severity coefficient is used to
differentiate the influence of different tasks on the
degradation of the train’s components.

2.1. Train Model

In this application, a train m is defined as a series
of K predictive components and L preventive
components i.e. if one component fails the whole
system fails. The predictive components are sub-
ject to condition monitoring, health assessment
and prognostics to assess their current condition
and estimate their remaining useful life. Thus,
for any given train m, a predictive component k
is characterized by its type and its health state

variable Hm,k ∈ [0, 1] for (1 ≤ k ≤ K). Where
Hm,k = 0 indicates that the component k is as
good as new and if Hm,k = 1 indicates that the
component is completely deteriorated and failed.
In this work, the degradation of the components is
assumed to monotonously increases over time as
an accumulation of small positive independent in-
crements. Stochastic processes have been wildly
used in literature to model degradation process
van Noortwijk (2009).Therefore, {Hm,k(t), t ≥
0} is assumed to be a homogeneous Gamma Pro-
cess Γ(νk(t), μk) with shape parameter νk(t) =
αk ∗ t and scale parameter μk and has following
properties:

• Hm,k(t
′ = 0) = 0

• Hm,k(t) has independent increments
• For t > 0 and h > 0 during which

the tram m is serving a trip p with a
severity sp, Hm,k(t+ h)−Hm,k(t) fol-
lows a gamma distribution Γ(νk(t+h)−
νk(t), sp × μk) with shape parameter
(νk(t+ h)− νk(t)) and scale parameter
sp × μk

We denote Δk ∈ [0, 1[ the failure threshold
of component k. This threshold is defined for
security measure to avoid actual failure of the
component and thus avoid putting passengers in
risk.

The preventive components are subject to sys-
temic periodic replacement based on the traveled
mileage since the last maintenance. Therefore,
the preventive components are characterized by
the mean time to failure (MTBF) expressed in
miles that depends on the type of the component
l. Let us note θm,l(t) for K ≤ l ≤ K + L and
1 ≤ m ≤M the mileage traveled by component l
of unit m from its last replacement up until instant
t and Θl = f(MTBFl) the mean time to failure
of this component.

2.2. Task Assignment Problem

The task assignment problem aims to find a suit-
able train m for each mission p of a predefined
timetable. This assignment is built while consider-
ing the health state of the vehicles and their ability
to fulfill missions.

We consider the problem of vehicle scheduling
over a rolling decision horizon noted DH with
duration DH = I × Δ T with Δ T is the
time unit (a day for instance) and I is the number
of time units. For each time unit, denoted i with
1 ≤ i ≤ I the set P of missions should be
fulfilled by the set of trainsM.

A machine learning-based prognostic algorithm
provides the degradation rate noted δp,k ∈ [0, 1[
that describes the amount of additional degrada-
tion of component k caused by fulfilling a mission
p. We generated some simulated degradation evo-
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lution under different conditions. This simulated
data is used to train the machine learning algo-
rithm that provides the prediction of the δp,k. This
degradation rate varies from one component to an-
other and from one mission to another. Assigning
mission p to a train m during period i should guar-
antee that the degradation level of every predictive
component k of the train m after achieving the
mission is lower than the failure threshold (see
Eq. (1)).

Hm,k(i)+ δp,k < Δk, i = 1..I, k = 1..K (1)

Moreover, the assignment of a mission should
also take into consideration the mileage traveled
of preventive components. Therefore, assigning
mission p to train m should also guarantee that the
mileage covered by any preventive component l
after achieving the mission is lower than its MTBF
(see Eq. (2)).

θm,l(i) + dp < Θl

i = 1..I, l = K + 1..K + L
(2)

In addition, we assume that a given mission p
could be assigned to at most one train m during a
period i (see Eq. (3)). And that a train m could be
assigned to at most one mission p during a period i
(see Eq. (4)). Therefore, let us denote the variable
βp,m(i) ∈ {0, 1}. When mission p is assigned to
train m, we have βp,m(i) = 1. Otherwise, it is
equal to zero.

M∑

m=1

βp,m(i) ≤ 1 i = 1..I, p = 1..P (3)

P∑

p=1

βp,m(i) ≤ 1 i = 1..I,m = 1..M (4)

Furthermore, we assume that all trains are iden-
tical. Meaning, that assigning any mission p to
train m or train m′ has the same cost. Therefore,
we excluded the cost of the mission assignment of
this work. Eq. (3) implies that for a certain period
i a mission p could be not assigned to any train.
Thus, this mission will be missed during period
i which will consequently cause a penalty cost
noted Clost,p. It is assumed that all missions have
the same priority, thus they have the same missing
penalty Clost,p = Clost∀p ∈ {1, ..., P}. We
define the assignment cost over a period i, noted
CO(i) as the sum of missed missions penalties
(see Eq. (5)).

CO(i) = Clost ×
P∑

p=1

(1−
M∑

m=1

βp,m(i))

i = 1..I

(5)

2.3. Maintenance Problem

Let us denote
σm,x(i) ∈ {0, 1} with x ∈ {1, ...,K + L} the
variable that describes if component x, whether
it is a predictive or a preventive one, of train
m is scheduled for maintenance during period i.
σm,x(i) = 1 when the component is scheduled
for maintenance and it is equal to zero otherwise.
Consequently, we note ωm(i) ∈ {0, 1} the vari-
able that describes if a given train m is scheduled
for maintenance during period i. If train m is
scheduled for maintenance during period i then
ωm(i) = 1 otherwise ωm(i) = 0 (see Eq. (6)).

ωm(i) = min(1,
K+L∑

x=1

σm,x(i)) i = 1..I (6)

Let us also denote CRx the replacement cost of
component x for x ∈ {1, ...,K + L}. Any com-
ponent x, whether it is predictive x ∈ {1, ...,K}
or preventive x ∈ {K, ...,K + L}, has a
maintenance cost composed of two terms. The
first term is the replacement cost. The second
term is a penalty on the early maintenance of the
component. This penalty has a different formula
depends on the type of the component, i.e., for
predictive components, the penalty is computed
by multiplying a penalty coefficient LPk by the
difference between the current state of the com-
ponent Hm,k(i) and the components end of life
threshold Δk, while for preventive components it
is obtained by multiplying a penalty coefficient
LPl by the remaining miles to Θl. Eq. (7) and (8)
present the maintenance cost of any predictive
component k respectively any preventive compo-
nent l of a given train m during a given period i
with m ∈ M and i ∈ {1, ..., I}.

Cm,k(i) = σm,k(i)× [CRk

+(Δk −Hm,k(i))× LPk]
(7)

Cm,l(i) = σm,l(i)× [CRl

+(Θl − θm,l(i))× LPl]
(8)

The objective behind using PHM technology is
to maximize the usage of an asset while avoiding
its failure. In other words, we aim at using the
components while minimizing their wasted RUL.
However, this can cause the system to fail due to
the uncertainties of the RUL predictions. There-
fore, we denote fm(i) ∈ {0, 1} the variable
that describes if train m failed during period i.
If train m failed during period i (i.e., fm(i) =
1), its failure causes disturbance of the timetable
schedule (e.g., a delay for all scheduled missions
on the same line, and efforts to move the failed
rolling unit to a spare track, ...). Consequently,
an extra cost is generated due to the failure and
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its corrective maintenance. This corrective main-
tenance cost noted Ccorr is assumed to be much
more expensive than the cost of missing a mission
(i.e., Ccorr >> Clost).

Let us denote CM (i,m) the maintenance cost
of a given train m during period i with m ∈ M
and i ∈ {1, ..., I} (see Eq. (9)).

CM (i,m) =
K∑

x=1

Cm,k +
K+L∑

x=K

Cm,l

+fm(i)× Ccorr

(9)

Furthermore, maintenance resources are as-
sumed to be limited. In other words, the main-
tenance workshop can only support a maximum
number of trains per period (noted MLT ) due to
the limited number of tracks and the maintenance
workshop due to the available workforce can only
maintain a limited number of components per pe-
riod (noted MLC) (see Eq. (10) and (11)).

M∑

m=1

ωm(i) ≤MLT i = 1..I (10)

M∑

m=1

K+L∑

x=1

σm,x(i) ≤MLC i = 1..I (11)

2.4. The Joint Problem

The objective of the joint problem is to find a
suitable match between trains and missions while
minimizing the total cost including maintenance
cost and missing task cost over the duration of
a simulation horizon noted SH . This simulation
horizon is covered by N steps of decision-making
over the rolling horizon DH . The number of
steps, noted N , is defined in a way that verifies
SH = N × I ×ΔT .

The minimization of the cost over the simula-
tion horizon can be approximated by minimizing
the cost of each of the N steps over the decision
horizon. Thus the objective function of this prob-
lem can be written as in Eq. (12).

min
I∑

i=1

[CO(i) +
M∑

m=1

CM (i,m)] (12)

Moreover, any train m ∈M, during any period
i, can either be in maintenance (ωm(i) = 1),
assigned to a task p (βp,m(i) = 1), or at rest
(i.e., no mission is assigned to it). Let us denote
πm(i) ∈ {0, 1} capture if rail vehicle m is at rest
during period i (i.e., πm(i) = 1 if m is neither
in maintenance nor in operation). Therefore, the
state of any train m ∈M during a period i can be

limited with constraint (see Eq. (13)).

πm(i) + ωm(i) +
P∑

p=1

βp,m(i) = 1

i = 1..I

(13)

If a solution of this problem proposes a joint
schedule that satisfies all constraints defined in
Eq. (4), (3), (13), (10), and (11), it is considered
as a valid solution. Valid solution can be applied
to the system but with a high risk of failure to the
railway vehicle during their operations. Moreover,
if this solution, also, satisfies Eq. (1) and (2), it
is feasible in a way that the failure risk is almost
eliminated.

3. Genetic Algorithm
In optimization problems, the aim is to find the
best of all feasible solutions in the solution space.
Each point in the search space represents one
possible solution. Every possible solution is char-
acterized by its fitness (or cost) for the problem.
Genetic algorithm (GA) is a well used, mature
artificial intelligent method based on heuristic
rules to produce improved approximations of the
objective function over a predefined number of
iterations. Even though GA does not guarantee the
global optimum solution, it is a commonly used
method in cases of combinatorial, high instances
or non-linear optimization problems. The objec-
tive of this paper is not to describe universally the
proposed GA. Then, readers can refer to Davis
(1991) for more details about GA. The overall
GA is described in Algorithm 1. One should note
that parents selection in case of crossover is done
according to the roulette wheel method.

4. Results
In this section, first, a case study is presented to
show the importance of studying the duration of
the decision horizon. The obtained results are
explained. Then, the influence of problem size
(number of trains, components, and the compo-
nents’ characteristics) is investigated. Finally, the
effects of train configuration are explored.

4.1. Case Study

The use of the proposed genetic algorithm is il-
lustrated on a numerical example in which the
algorithm should optimize maintenance and op-
erational scheduling for a set of M = 18 trains.
Periods, in this application, are defined as days.
During each period (day) i, there are P = 15 mis-
sions to assign. These missions are divided into
three types according to their respective severity
presented in Table 1. Each Train m is composed
of K = 13 predictive components and L = 4
preventive components. Trains are configured as
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Algorithm 1 GA for Train Task Assignment and
Maintenance Planning

1: Create Initial Generation
2: Input Generation← Initial Generation
3: while generation < Generation Limit do
4: Evaluate all individuals of the

Input Generation
5: Sort Input Generation
6: Select XSurv% of the Input Generation
7: for Individual ∈ Input Generation do
8: Generate randomly a and b ∈ [0, 1[
9: if a < Mutation Probability then

10: Do Mutation
11: end if
12: if b < Crossover Probability then
13: Do Order Crossover (OX)
14: end if
15: end for
16: Evaluate the Mutation Results
17: Sort Mutation Results
18: Select XMut% of the Mutation Results
19: Evaluate the Crossover Results
20: Sort Crossover Results
21: Select XCros% of the Crossover Results
22: Input Generation← Output Generation
23: generation++
24: end while

presented in Table 6. Details about the com-
ponents types and characteristics can be found
in Tables 3 and 4 for predictive and preventive
components. For this configuration, the maximum
number of components to maintain per period is
set to 4 (MLC = 4) and the maximum number of
trains to maintain per period is set to 2 (MLT =
2). All costs are expressed in terms of u.m. (i.e.,
unit of currency).

The objective is to search for the best DH value
or range of values that minimizes the overall cost
as described in the objective function (Eq. (12)).
Considering a simulation horizon of 300 days, the
possible DH values are obtained in a way that
SH = N ×DH with N ∈ N and N > 1. The
numerical values of other variables are presented
in Table 2.

The GA is executed 10 times to include dif-
ferent initial conditions of the components and to
add some uncertainties presented by the random
evolution of the component’s health state. The
obtained results are then used to produce the box
plot presented in Figure 1. One can notice, in this
figure, that the DH influences the total cost of the
joint schedule. The minimal value of the total
cost is obtained for a decision horizon duration
around 10-days to 25-days. For these same values
of the decision horizon, the variation of the total
cost is minimal from one execution to another.
This proves that there is a need to search for the
DH value that optimizes the objective function.

Figure 2 presents the mean number of missed
missions for this numerical example. One can
note that for a DH between 10 and 25 days the
missed missions are minimized.

Table 1. Characteristics of the Missions

Type Severity (sp) Length (mi)

1 0.85 110

2 1 130

3 1.3 170

Table 2. The Values of the Numeric Application

Name Significance Value

SH Simulation Horizon 300 Days

LP Penalty on a lost mile 2 u.m

Clost Cost of Missing a Mission 10 ku.m

Ccorr Cost of Mission Failure 100 ku.m

Table 3. Predictive Components Characteristics

Type αk μk Δk CRk

TA 0,00077 0.00178 0.95 150

TB 0,00087 0.002 0.95 100

T ′
A 0,00346 0.002 0.95 100

T ′
B 0,0031 0.00178 0.95 150

TC 0,01246 0.00166 0.95 75

TD 0,00798 0.00208 0.95 100

T ′
D 0,01663 0.00208 0.95 100

Table 4. Rolling Stocks Preventive Com-

ponents Characteristics

Component Type Θl(mi) CRl

TE 187 250 100

TF 155 250 100

TG 63 000 100

T ′
G 31 250 100

TH 15 625 100

T ′
H 7 500 100

4.2. Different Problem Sizes

In this section, the problem sizes are varied (num-
ber of trains M and the number of missions P )
to see the effects of the problem characteristics
over the decision horizon duration. Proportions
between the number of trains, the number of mis-
sions per period, and the maintenance constraints
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Fig. 1. Box plot of total cost variation for the GA.

Fig. 2. Evolution of the mean number of missed missions.

are kept the same. These variables and the ob-
tained mean total cost over the multiple executions
for each test case are grouped in Table 8. These
results are shown in Figure 3. One can notice
that the mean cost over the executions of each
of the test cases is minimal for the same range
of decision horizon duration. Therefore, one can
conclude that the decision horizon duration influ-
ences the total cost over a simulation horizon and
that when using a genetic algorithm, the number
of trains and missions (i.e., the size of the prob-
lem) does not influence the optimal duration of the
decision horizon.

Table 6. Components Configuration

K=13 L=4

Type Number Type Number

T ′
A 1

T ′
G 1

T ′
B 2

TC 2
TH 3

TD 8

Table 8. Configurations of Differ-

ent Problem Sizes

M 18 25 45 90

P 15 21 38 75

MLT 2 3 5 10

MLC 4 6 10 20

Fig. 3. Mean Total Cost Variation Under Different Problem

Sizes

4.3. Different Trains Configuration

In this section, the configuration of the train is
altered in the number of components per type
and the characteristics of the components. The
objective of this study is to see if the dynamics of
the degradation of the components influence the
duration of the decision horizon. In this section,
all trains are composed of K = 13 predictive
components and L = 4 preventive components.
The dynamics of the component’s degradation
(mean traveled miles before the component’s end
of life) are varied through the variation of either
the gamma process parameters (αk, μk) for pre-
dictive components or the MTBF for preventive
components. Three categories of components are
considered: (i) rapidly deteriorating (TC , TD,
T ′
D, TH , and T ′

H ), (ii) normally deteriorating(T ′
A,
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T ′
B , TG, and T ′

G), and (iii) slowly deteriorating
(TA, TB , TE , and TF ). One can refer to Ta-
bles 3 and 4 for more information about these
components characteristics.

For this purpose, four configurations of trains
are considered:

• Config 1: each train is composed of
only rapidly deteriorating components
(TC , TD, T ′

D, TH , and T ′
H ).

• Config 2: this is the configuration used
in the numeric example. In this case,
each train is composed of a variety of
normally deteriorating components and
rapidly deteriorating components.

• Config 3: each train is composed of
only slowly deteriorating components
(TA, TB , TE , and TF ).

• Config 4: trains in this configuration
are composed of components that have
two times more slower degradation than
those of Config 3.

Figure 4 presents the mean total cost over dif-
ferent executions for each train configuration. One
can note that the degradation dynamics of the
components has a big influence on the total cost.
For very slow degradation components, the cost
is in the order of 75ku.m.. While for rapidly
deteriorating trains, the cost is in the order of
10 000ku.m.. This is explained that rapidly de-
teriorating components will be more frequently
changed over the decision horizon compared to
components that deteriorate slowly. Moreover,
rapid deterioration of components will cause the
failure of several trains in action and the avoid-
ance of failure will cause more frequent mainte-
nance activities. Since the maintenance resources
are limited, this causes the system to have a
lot of trains unavailable to achieve missions and
waiting for maintenance. One can also notice
that for medium and slow degradation dynamics
(Config2 - Config4) the decision horizon value
is almost in the same interval (10−25days). How-
ever, this duration is different in the case of rapid
degradation in which the more higher the decision
horizon gets the lower the total cost is. This is
explained by the fact that the genetic algorithm
finds a way to schedule the maintenance of the
predictive components in a systematic cyclic way.
In this case, the cost generated by missing several
missions is more expensive than the penalty of
early maintenance. Thus, allowing the train to
be maintained at the first opportunity regardless
of the penalty that can be caused by this date of
maintenance to guarantee its availability for the
next period.

5. Conclusion
In this paper, we have investigated the effects of
modifying the duration of the decision horizon

Fig. 4. Mean Total Cost Variation Under Different Trains

Configurations

on the solution total cost. The results of this
test show that for a planning horizon of duration
between 10 and 25 days the total cost is mini-
mized. These decision horizons are reasonable in
terms of operational planning for trains that could
be done over 1 to 2 weeks. These results are
obtained in a numerical case study. Afterward,
we varied the problem size through the number
of trains, the number of missions per period and
the maintenance constraints to capture the effects
of these parameters on the solution and the deci-
sion horizon. We found that the decision horizon
is optimal for the same duration independently
from the problem size. Finally, we captured the
effects of components’ degradation dynamics on
the results and the decision horizon. On the one
hand, results show that the slower the degradation
of components evolve the lower the total cost
gets which is explained by the lower maintenance
interventions and better trains availability. On the
other hand, for rapid degradation dynamics, the
optimal total cost is obtained for long decision
horizons, while for other cases the decision hori-
zon is optimal for the same previously obtained
values.
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Further investigations would be continued con-
cerning these results. For instance, the effects of
the slow deteriorating components could be more
explored to find from which value of degradation
speed the decision horizon duration is shifted.
Moreover, one can explore the effects of other
problem parameters such as the proportion of
trains and missions, or the different cost parame-
ters on the total cost and the optimal decision hori-
zon.Finally, we assumed that all the components
of the train are critical, in a way if one component
fails the train fails. However, in real-life applica-
tions, some train components are not critical to the
train operation. The proposed problem could be
fine-tuned to model such a constraint to become
more realistic.
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