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ABSTRACT

The aim of this work is to propose an indicator, based on the info-gap approach, which
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assesses the robustness of the dynamic response of the model of a structure to lack of

knowledge in the associated eigensolutions. The info-gap uncertainty model for the eigen-

solutions is constructed mode by mode based on a set of experimentally identified eigen-

solutions obtained from tests on a set of nominally identical structures. A robustness anal-

ysis is then performed which provides a useful bound to the maximum response levels that

are consistent with the defined uncertainty, thus allowing to extrapolate to a population of

untested structures. The proposed methodology is validated experimentally on a simple

structure composed of two plates clamped together on one side. Uncertainty is introduced

by adding lumped masses at random locations. A subset of these test results is used

to construct the info-gap model of the eigenproperties and the remaining data is used to

confirm that the robustness curve usefully bounds the observed maximum responses.

1 INTRODUCTION

Structural dynamic behaviors must be well understood in order to ensure the reliable and safe

operation of complex systems. When available, validated numerical models are useful for pre-

dicting vibratory levels under both tested and untested conditions. However, the complexity and

the degree of epistemic uncertainty, due to the difficulty in modeling poorly known physics, can

render the model validation process excessively time consuming and costly. Moreover, experi-

mental modal analyses are often performed in a configuration which differ significantly from real

operating conditions. For example, the configuration of GVT (Ground Vibration Testing) used to

identify normal modes on a aircraft differs from the conditions encountered during flight. Another

example is an alternator in a power plant where experimental modal analyses are performed on

a non-operating machine while it is known that thermal and nonlinear mechanical effects of the

functioning alternator modify the dynamic behavior. While in the case of the aircraft testing, oper-

ational modal analysis provides a way to obtain the eigensolutions during flight, in the case of the

alternator, this is not possible.

In this paper, the identified modal model is considered to be uncertain and is assumed to be a
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direct result of the lack of knowledge between two configurations. Broadly speaking, the present

study is directly related to the field of robustness analysis which aims is to provide decision support

tools in order to support decision under deep uncertainty. The notion of robustness can take on

many meanings as discussed in the papers by Göhler et al [23] and Zhang et al [24]. In the context

of this work, a non-probabilistic notion of robustness will be employed as defined in the framework

of the info-gap theory [1]. Knight [2] distinguished between ”risk” based on known probability dis-

tributions and ”true uncertainty” for which probability distributions are not known. In the present

work, robustness is defined as an aptitude to resist to approximations or zones of ignorance in

order to prevent undesirable impacts [3]. Robustness analyses are performed within the frame-

work of model predictions corresponding to a posteriori actions. Reliable robustness analyses

can be performed only when the uncertainty in the system can be represented as a mathematical

idealization. A well-established classification of uncertainty permits to make a clear distinction

between aleatory and epistemic uncertainty [4–6]. Aleatory uncertainty is also referred to as irre-

ducible uncertainty since it always exists by nature and can not be suppressed even when more

accurate experiments are performed. The mathematical idealization of such uncertainties is often

a probability or frequency distribution [7–10]. Epistemic uncertainty deals with lack of knowledge

about the system and/or the environment and is also referred to as reducible uncertainty since

more accurate experiments could reduce them. A wide variety of approaches have been devel-

oped to treat epistemic uncertainty, including interval [11], fuzzy [12], Dempster-Shafer [13,14] or

info-gap theory [1]. The industrial issue of interest in this study concerns a modal model of a tur-

boalternator. This model is assumed to be uncertain as it is obtained from an experimental modal

analysis under non-operating conditions. Moreover, no model is currently available to predict the

evolution of the modal basis when the alternator is in operation. In this context, the uncertainty in

the identified eigensolutions are considered to be epistemic. In this paper, an info-gap robustness

framework will be adopted to investigate the impact of this epistemic uncertainty on the response

levels of interest. As with any uncertainty propagation technique, the results depends strongly on

the info-gap model of uncertainty used to represent the lack of knowledge affecting the eigenso-

lutions. The objective of this paper is to validate experimentally, on the basis of an academic test
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case, the model of uncertainty selected for the robustness analysis. Very few studies are currently

available in the literature that investigate this question for the info-gap approach. [15] or [16, 17]

address an analogous problem of validation of a non-parametric model of uncertainty based on

real measurements.

The paper is organized as follows. Section 2 introduces the methodology to assess the robust-

ness of the dynamic response levels to uncertain eigensolutions. Section 3 proposes a numerical

illustration. Finally, section 4 proposes a way to construct and calibrate a model of uncertainty

based on a subset of test-data. Finally, the selected uncertainty model is validated using on real

experiments.

2 ROBUSTNESS OF DYNAMIC RESPONSES TO UNCERTAIN EIGENSOLUTIONS

The approach adopted here consists in synthesizing the dynamic response of a linear elas-

todynamic structure based on uncertain eigensolutions. The impact of lack on knowledge in the

eigenparameters is then investigated using an info-gap robustness analysis [1]. The info-gap

methodology is a decision theory and aims to analyze the robustness of a decision under severe

uncertainties. It has been applied in very diverse domains including economics, medicine and

business management as its formulation is very general. In the field of structural dynamics, a wide

variety of applications can be found in the literature, for example [25, 26, 28, 28], and readers can

refer to one of these references for a more thorough introduction to the info-gap methodology if

required.

The info-gap robustness analysis requires the definition of three essential components, namely,

the system model, the info-gap model of uncertainty and the performance requirements. The ro-

bustness function is based on the concept of ”satisficing” 1 performance requirements, that is to

say, insuring a given level of performance even under a given level of uncertainty.

1Satisficing is the contraction of satisfactory and sufficient.
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2.1 System model

2.1 System model

The system model establishes the functional relationship between the uncertain model param-

eters, x, the known model parameters, p, and the response features of interest, y. It is written

as

M(p,x) = y. (1)

In many structural applications,M represents a physics-based model of a structure, x the model

input parameters (eg geometric dimensions, plate thicknesses or material properties) and y the

model outputs or structural responses of interest (eg frequency responses, eigenfrequencies or

stresses). But the concept of a system model is very general and can be seen simply as a black-

box representation relating inputs and outputs via a more or less complex functional relationship

M. In the present case, M will represent the relationship between the eigenparameters x of a

mechanical structure and its frequency responses y.

In the low frequency domain, the modal behavior controls the mechanical response of a given

system. Experimental modal analyses are used to obtain the spectrum of the structure. Let(
ω0
ν , ξ

0
ν ,φ

0
ν

)
∈ R×R×Rc be an experimentally identified modal basis with ω0

ν the eigenfrequency,

ξ0
ν the modal damping factor, φ0

ν the eigenvector corresponding to the mode ν (ν ∈ {1, · · · ,m})

and c the number of sensors. The incomplete identified modal basis can be used to evaluate the

dynamic response levels y at the frequency ω subjected to a dynamic load F ∈ Rc at the sensors

degrees of freedom (dofs):

y =

∣∣∣∣∣
m∑
ν=1

φ0
ν

(
φ0
ν

)T
F

−ω2 + 2ξ0
νωω

0
ν + (ω0

ν)2

∣∣∣∣∣ . (2)

In what follows, equation (2) is the system model.
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2.2 Info-gap model of uncertainty

2.2 Info-gap model of uncertainty

The info-gap model of uncertainty defines an unbounded family of nested sets of realizable de-

signs. The size of these sets is controlled by the horizon of uncertainty and denoted α (α ∈ R+).

The horizon of uncertainty indicates the level of uncertainty present in the model of uncertainty.

A wide variety of info-gap uncertainty models are available in the literature [1]. The choice of

the model of uncertainty must be performed with care since it is known that the info-gap robust-

ness analysis is sensitive to the model of uncertainty. In this paper, the identified modal basis is

assumed to be uncertain. Let (ων , ξν ,φν) ∈ R× R× Rc be the uncertain modal basis. The uncer-

tainty model is derived from the nominal modal basis by assuming that the uncertainty is driven by

the vector x ∈ Rp with p = 2m+m2. This column vector is defined by

ων = xνω
0
ν , ∀ν ∈ {1, · · · ,m};

ξν = xν+mξ
0
ν , ∀ν ∈ {1, · · · ,m};

φν =
m∑
k=1

x(1+ν)m+kφ
0
k, ∀ν ∈ {1, · · · ,m},

(3)

where xν is the ν-th component of x. The uncertain eigenvector is assumed to be described by the

initial eigenvectors (assumption valid for small uncertainties and decoupled pairs of eigenvectors

[18]). In addition, the particular column vector which corresponds to a zero-perturbation applied

on the modal basis is denoted x0 ∈ Rp and is defined in such way to recover the initial modal basis(
ω0
ν ,φ

0
ν , ξ

0
ν

)
with ν ∈ {1, · · · ,m}. This vector is not assumed to be uncertain contrary to the vector

x. For example, in the case where m = 3 modes are taking into account in the analysis, the initial

vector x0 ∈ Rp, with p = 15 and is defined by

x0 =

 1, 1, 1︸ ︷︷ ︸
Perturbation on ω0

ν , ν∈{1,2,3}

,

Perturbation on ξ0ν ,ν∈{1,2,3}︷ ︸︸ ︷
1, 1, 1 , 1, 0, 0, 0, 1, 0, 0, 0, 1︸ ︷︷ ︸

Perturbation on Φ0=[φ0
1φ

0
2φ

0
3]


T

. (4)
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2.3 Performance requirement

The lack of knowledge in the eigenparameters is represented by an absolute error model:

U
(
α,x0

)
= {x ∈ Rp :

∣∣x− x0
∣∣ ≤ αw}, (5)

where

α ≥ 0, the horizon of uncertainty;

w ≥ 0,a vector of weighting coefficients (w ∈ Rp).

In other words, the greater the horizon of uncertainty α, the greater the Euclidean distance be-

tween the vectors x and x0 can be. The vector of weighting coefficients, which defines the uncer-

tainty model (equation (5)), expresses the relative confidence between the different eigenparame-

ters. It can be assessed in different ways: on the basis of engineering judgment when information

is lacking or by using the empirical robustness. This point will be discussed in section 4.3.

2.3 Performance requirement

The performance requirements represent the quantity of interest upon which a decision or set

of decisions will be based. The performance requirement is sometimes called the decision-making

model since the decision is based on the specification of a critical level. In the present case, the

maximum response level of the system y at one frequency of interest ω0 (or possibly a frequency

band of interest) must be less than or equal to some critical value yc

y ≤ yc. (6)

In practice, y is built from the components of y defined by the equation (2). In what follows, the

equation (6) is the decision-making model.
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2.4 Info-gap robustness

2.4 Info-gap robustness

”Uncertainty may be either pernicious or propitious” (p. 37 in [1]). While this may seem like

a trivial observation, info-gap decision theory addresses the problem of quantifying these two

aspects of uncertainty by two ”immunity functions”: the robustness function, which expresses the

immunity to failure, and the opportuneness function, which expresses the immunity to windfall

gain. The present study only deals with robustness function. The robustness function expresses

the greatest horizon (level) of uncertainty α̂ that can be tolerated without exceeding the critical

performance requirement yc. Thus, α̂ depends intimately on yc and is formally defined by [1]

α̂(yc) = arg max
α≥0

{ max
x∈U(α,x0)

y ≤ yc}. (7)

However, for a given performance requirement, the costly non linear optimization problem (7) must

be solved in order to obtain a value of robustness. While an analytical expression of the robustness

function may be available in simple cases where the structural dynamic behavior is controlled by

few well-separate modes, a more general approach is employed here. Practically speaking, rather

than fix yc, it is easier to fix α̂. The robustness is thus discretized by a series of increasing values:

α̂ = {0, · · · , α̂i, · · · }, (8)

and, for each α̂i an optimization problem under constraints is solved:

yc(α̂i) = max
x∈U(α̂i,x0)

y. (9)

The solution is obtained by using the interior-point method which is a local optimization algorithm

from the fmincon function available in the Matlab R© Optimization ToolBox.
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The info-gap decision theory is not directly related to uncertainty quantification/propagation. The

main interest of such an approach is to study the different trade-offs involved in making decision

under lack of knowledge. One of the most important trade-off is that the robustness and the per-

formance requirement are antagonistic: if small values of yc are required then only low robustness

(immunity) to uncertainty is possible. The simplest way to explore this trade-off is obtained by the

robustness curve, which is the graphical representation of α̂ = f(yc). Nonetheless, it should be

emphasized that solving equation (9) is equivalent to solving equation (7).

3 NUMERICAL ILLUSTRATION

In this section, an illustration, based on finite element (FE) model predictions, is proposed.

The system is composed of two 700x440x5 mm3 aluminum plates clamped together on one edge

and at three stacking points (cf. Figure 6). The system is assumed to be in free-free configuration.

The FE model (cf. Figure 1) is composed of approximately 3000 nodes. A numerical modal basis

is thus obtained and a robustness analysis is performed in order to assess the maximum level of

uncertainty on the modal basis that the system can tolerate without exceeding a critical response

level. For the sake of clarity, only the first eigenfrequency is assumed to be uncertain. As shown
Common Reference Frame

GS_2D_Updated vs GS_2D_Updated

x

y

z
F (node 168)

Sensor (node 1)

Fig. 1. FE model

20 30 40 50 60 70 80 90 100 110 120
10

−6

10
−5

10
−4

10
−3

f (Hz)

y 
(m

)

 

 

Frequency of interest

Ouput of interest

Fig. 2. FRF between the node 1 (direction z) and the node 168 (direction z)
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in Figure 1, a transverse unit point force is located on node 168 (direction z) while the transverse

response displacement amplitude is observed at the node 1 (direction z). The modal basis used

to assess the response of the system is composed of five modes and is depicted in Figure 3. The

Figure 2 plots the FRF between the input/output of the system. In the present study, the output of

interest is the response displacement amplitude at the frequency of interest f = 30 Hz.
GS_2D_Updated

Dfield = NPhisol103_1

Mode 1: 33 Hz Mode 2: 50 Hz Mode 3: 62 Hz

Mode 4: 64 Hz Mode 5: 119 Hz

Fig. 3. Mode shapes used to assess the robustness of the system

The robustness curve is the black curve in Figure 4 and is obtained for an horizon of uncertainty

from 0 to 0.2 with a step αi = 0.001 . This curve is evaluated point by point using optimization

methods. At a given horizon of uncertainty αi:

1. The input parameter in the optimization problem is the eigenfrequency of the first elastic mode
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that can vary between (1− αi)f0
1 ≤ f1 ≤ (1 + αi)f

0
1 , where f0

1 is the value of the frequency for

the nominal model.

2. The objective function to be maximized is the displacement amplitude at the node 1 along the

z-direction

3. The box constraints on the realizable eigenfrequency value depend directly on the current

horizon of uncertainty

4. A local nonlinear optimization algorithm is used to maximize the objective function thus provid-

ing the largest displacement at αi.

5. αi is incremented a step and the next optimization problem is solved over the new domain.

In the present case, the robustness curve is composed of 2 zones:

α̂ ∈ [0; α̂1]: the displacement amplitude increases significantly with increasing horizons of

uncertainty. This is evidently due to the fact that the peak response at the resonance is moving

closer and closer to the frequency of interest situated at 30 Hz. The performance in this zone

is clearly vulnerable to increasing uncertainty.

α̂ ∈ [α̂1; 0.2]: the maximal displacement amplitude does not change since the horizon of un-

certainty is large enough for the first eigenfrequency to shift to f = 30 Hz. Larger horizons

of uncertainty in this simple test case will not lead to a worse case. This explains why the ro-

bustness curve is vertical for α̂ ≥ α̂1 meaning that increasing horizon of uncertainty no longer

has an impact on the worst case maximum response. As such, the performance in this zone

is seen to be robust to uncertainty.

In this simple case, it is can be concluded that if a response amplitude of y1 is acceptable

than it is shown to be robust to the uncertainty in the first eigenfrequency. Here the robustness

curve obtained by optimization methods can be validated using a more basic approach. Since

there is only one uncertain eigenparameter, namely, the first eigenfrequency, we can model this

uncertainty as an interval with the worst case found at each boundary of the interval. The sim-

ulated validation data using this approach, indicated by the red points in Figure 4, yields the

same maximum response levels at f = 30 Hz when the first eigenfrequency f1 is in the interval
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10-4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Robustness curve

Simulated test data

Initial response

Point 1

Point 2

Point 3

Fig. 4. Robustness curve

[f1 (1− α̂) ; f1 (1 + α̂)]. In this case, the robustness curve matches the simulated validation data

in [0; α̂1] plotted as the black curve. The opportuness curve (α2 on the red points), represents

the best-case lowest amplitude response level for inceasing horizon of uncertainty. However, the

most defavorable response levels are not necessarily at the boundary of the uncertainty domain.

This can be seen in the upper red curve for α3 which represents the worst case at the boundary
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of the interval. It is evident here that the worst case is still found for α̂ = α̂1, as indicated in Figure 5.

The initial response corresponds to the amplitude of the response at the frequency f = 30 Hz

when no uncertainty is taken into account (α = 0). To summarize, when the horizon of uncertainty

increases there are two possibilities. The point 2 corresponds to the best possibility since the

amplitude at f = 30 Hz is lower than the original one. The point 1 is the worst possibility when

α = α1 since the amplitude at f = 30 is larger than the original one.

This simple numerical example illustrates the approach that will be adopted in this study. However

in real life applications the uncertainty in a set of eigenparameters must be taken into account,

including eigenfrequencies, eigenvectors and modal damping factors.

20 22 24 26 28 30 32 34 36 38 40

10
−4

10
−3

f (Hz)

y
(m

)

 

 

Initial response
Point 1
Point 2
Point 3

Fig. 5. Real FRFs for checking the accuracy of the robustness curve

4 EXPERIMENTAL VALIDATION

As with stochastic approaches, the results of an info-gap robustness analysis are sensitive to

the underlying uncertainty model used in the analysis. The objective of this section is to detail the
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construction of an info-gap model of uncertainty based on a subset of test data. As an illustration,

the methodology is applied to the experimental structure shown in Figure 6, which is the structure

described in section 3. The system is instrumented with five accelerometers on the free edges of

each plate and with an impedance head at the excitation point. An experimental modal analysis

is carried out using a low level white noise excitation from 5 to 312 Hz. For the purposes of

validation, 32 experimental modal analyses are performed, each one corresponding to a different

configuration. The configurations differ from each other due to local perturbations created with

lumped masses introduced in random locations to modify the eigenparameters of the baseline

structure and the resulting modal bases have been identified. Section 4.1 demonstrates that

the uncertainties in the system are only the consequences of the addition of lumped masses in

the system. Section 4.2 aims to express the variability in the modal basis when the whole set

of configurations are considered. Furthermore, this section demonstrates that the uncertainty

resulting from added masses does not have the same impact on the variability of the different

eigenparameters. Section 4.3 describes the construction and calibration of the info-gap model of

uncertainty in order to validate it in section 4.4.

Clamp

Stack

Lumped 

Masses

Sensors

Fig. 6. Experimental set-up

Common Reference Frame
GS_2D_Updated vs GS_test

x

y

z

Fig. 7. Location of the sensors (red square) projected onto the FE model (dir z)
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4.1 Modal Identification

4.1 Modal Identification

The objective of this section is to demonstrate that the dominant uncertainties in the system

under study are only the consequences of the addition of lumped masses in the system. Hence,

the modal identification should be as rigorous as possible in order to minimize the errors during

the identification process. In the present study, the modal identification is performed in two steps:

1. Pole/residue model identification by using LSCF (Least Square Complex Frequency) method

[19]. The measured Frequency Response Functions are synthetized by

FRFidij =

N∑
ν=1

Rijν
s− λν

+
Rij∗ν
s− λ∗ν

∈ C, (10)

with

s = ω: the Laplace variable;

N : the number of identified poles;

λν = −ξνων + jων
√

1− ξ2
ν ∈ C: the ν-th identified pole2;

Rijν ∈ C: the identified residue corresponding to the mode ν between the input i and the

output j. The complex mode ψν is derived from the residue matrix Rν by Rν = ψν (ψ∗νF )

where (ψ∗νF ) is the modal factor3.

2. Normal mode approximations derived from the complex modes where the synthesis is rewrit-

ten using the normal eigenvectors φν :

FRFnmij =
N∑
ν=1

φiν

(
φjν
)T

s2 + 2ξνωνs+ ων
∈ C. (11)

As shown in Figure 8, the measured FRFs have an acceptable signal/noise ratio. Furthermore,

due to the simplicity of the tested structure, the mode complexity is very low. Figure 9 plots

2The modal damping assumption is supposed to be valid.
3Here, (ψ∗

νF ) ∈ R since a mono-excitation (punctual force) is applied on the structure.
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4.1 Modal Identification

the complex vectors in the Nyquist map and almost no phase difference between the sensors is

found. After pole/residue model identification, complex mode are normalized with regards to the
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10
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Fig. 8. Measured FRFs
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Fig. 9. Complex Mode 1 in the Nyquist map

1-norm [20]. Thus, Im (ψν) = −Re (ψν), and the normal modes are simply estimated from the

16



4.2 Variability in test data

complex ones by:

φν =
ψν√
2λν

. (12)

The quality of the normal mode model, as well as the pole/residu model, is directly related to their

ability to represent the structural dynamic behavior. One way to assess the quality is to examine

to what extent the models are able to synthesize the measured FRFs. Quantitative tools such as

the FRAC (Frequency Response Assurance Criterion) can be used to assess quantitatively this

quality. However, it should be noted that the superposition requires the mass normalized normal

modes which can only be obtained when the colocated FRFs are available. Let µν ∈ R be the

identified modal mass of the mode ν defined by

µν =

(
φiν
)2

2ων Im (Riiν )
, (13)

the mass normalized normal modes φ̄ν are thus obtained by

φ̄ν =
φν√
µν
. (14)

As observed in Figure 10, the pole/residue model as well as the mass normalized normal mode

model properly match the measured FRFs. The same approach is performed for all experiments.

4.2 Variability in test data

Experimental modal analyses are performed in order to validate the proposed approach. The

various cases are obtained by changing the added masses locations and numbers. Compared

to the nominal structure, the mean mass added is around 6% whereas the standard deviation is

around 0.6%. The variability is then evaluated on the results of 31 experimental modal bases.
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4.2 Variability in test data
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Fig. 10. Results of the modal identification for the collocated FRF and one non-collocated FRF: - measured FRFs (-), Poles/residues

model (- -), Mass-normalized normal mode synthesis (- -).

4.2.1 Variability in mode shapes, eigenfrequencies and modal damping factors

The MAC (Modal Assurance Criterion) is a standard criterion to evaluate the correlation be-

tween two vectors [21] and is used to compare the mode shapes of the initial and modified sys-

tems. Figure 11 shows the mean (left) and standard deviation (right) of the MAC between the two

systems. The number inside the MAC corresponds to the number of paired mode shapes where

it is assumed that two modes are paired when their MAC is higher than 0.7. When two modes

shapes are paired, we can compare their corresponding eigenfrequencies and modal damping

factors (cf. Table 1 and 2). It can clearly be observed that the variations corresponding to the

perturbations of mass do not have the same impact on the different eigenproperties. In terms of

frequencies, the first and fifth modes are the most affected in terms of mean, while modes 2 to 4

have almost the same mean as the nominal model. The relative standard deviation is of the same

order of magnitude (7 to 11% of the mean) for the 5 modes except mode 4 whose sensitivity is

much lower (about 2% of the mean). The variation of the mode shapes (Figure 11) is coherent

with physical arguments, that is to say, the impact on both mean value and standard deviation is

increasing with mode order. Globally, the highest variations are observed on the damping values.

For all modes except mode 5, the standard deviation on the damping factor is between 18% and

31% of the mean value. For mode 5, the standard deviation level is of the order of the mean,
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4.2 Variability in test data

indicating a very large variability. The mean damping factor of this mode is also highly impacted

by the mass changes, while for the other modes the impact on the mean damping factor is not

significant.
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Fig. 11. Variation of the 5 first mode shapes: mean (left) and standard deviation (right).

Mode Initial Freq. (Hz) Matched (over 31) Min (Hz) Max (Hz) Mean Freq. (Hz) Std. Dev. (Hz)

1 31.6 27 26.6 32.2 28.9 1.9

2 45 29 36.9 59 44.3 5.3

3 57.7 20 43.5 59.6 54.1 5.1

4 61.9 17 58 62.1 60.5 1.4

5 119.5 22 98.6 145.3 115.8 9.1

Table 1. Variation on the eigenfrequencies

4.2.2 Variability in the identified normal mode based FRFs

After having detailed the variations affecting the different eigenproperties, one can observe the

global variation affecting the normal mode based FRFs associated to the various configurations.

Figure 12 shows the envelop FRFs for the 31 configurations (the initial system is in black) for 4

sensors. The previous conclusions are obviously still valid, in particular that the first three modes
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Mode Init. Damping (%) Matched (over 31) Min (%) Max (%) Mean Damping (%) Std. Dev. (%)

1 0.25 27 0.14 0.55 0.29 0.09

2 0.27 29 0.13 0.47 0.28 0.08

3 0.33 20 0.25 0.53 0.34 0.06

4 0.25 17 0.20 0.53 0.30 0.09

5 0.11 22 0.06 2.6 0.58 0.6

Table 2. Variations on the modal damping factors

have similar properties in terms of frequency and damping dispersion, but also the fact that mode

5 is more dispersive both in frequency and damping. Moreover, the variability ranges of the first 3

modes are distinct from one to another.

4.3 Construction and calibration of the info-gap model of uncertainty based on a subset

of identified modal model

The robustness function assesses the impact of eigensolution uncertainty on the performance

requirement. It is therefore important that the model of uncertainty represents the correct ideal-

ization of the real uncertainty in the model. A well-known result of info-gap theory is that the more

informative the info-gap model of uncertainty is, the more robust the decision making process is.

This is analogous to the notion of informativeness as seen in Figure 13, where the info-gap model

of uncertainty IGMU2 is more informative than the IGMU1. As a consequence, decisions based

on the IGMU2 should be more robust than decision based on the IGMU1. For simplicity, it is as-

sumed that there are no outliers in the experimental data. It is also assumed that no finite element

model is available so that the best estimate is provided by the experimental modal model. Let X

be the whole set of experimental data and Xe a subset used only to construct and calibrate the

info-gap model of uncertainty. Obviously, the larger the set Xe is, the more informative the info-gap

model of uncertainty will be. According to the notations introduced in section 2, x is uncertain,

and is in the convex set denoted Uw
(
α,x0

)
= U

(
α,x0

)
in this section, and expressed by equation

(5). Some strategies for calibrating this uncertainty model can be found in the literature (see [22]

or chap.8 in [1]). The calibration process may concern not only the parameters of the model of
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Fig. 12. Envelop mass normalized normal mode synthesis for the 31 configuration and associated to 4 sensors.

uncertainty (center or weighting coefficient) but also the structure (envelop, absolute error model,

etc.). One quantitative way to assess the fidelity between experimental data and info-gap model

of uncertainty is the gap-function Γ
(
Uw
(
α,x0

)
,w
)

defined by

Γ
(
Uw
(
α,x0

)
,w
)

= min{α : Xe ⊆ Uw
(
α,x0

)
}. (15)

Small (resp. large) values for Γ
(
Uw
(
α,x0

)
,w
)

indicate a good (resp. low) agreement between the

model of uncertainty Uw
(
α,x0

)
and the subset of test-data Xe. Nevertheless, the main question is:
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Fig. 13. Notion of informativeness (2 uncertain parameters)

does the test data provide experimental evidence against the info-gap model? Here, confidence

in the ability of the structure of the model of uncertainty to idealize uncertainties is high. The

problem to be addressed is the fundamental choice of the weighting vector. It is obvious that the

eigenfrequencies can not be considered as more uncertain than the modal damping factors or

even than the mode shapes (section 4.2). Nevertheless, the weighting vector will be considered to

be constant as the uncertainty increases, though an α-dependent or mode-dependent weighting

vector can be defined. For the sake of clarity, we assume that the weighting vector which defines

the uncertainty in the eigenfrequencies, denoted wω, is the unit vector. The objective here is to

assess wξ and wφ based on the subset of test data. Hence, they are referred as the parameters

to be calibrated in order to reduce the discrepancy between the info-gap model of uncertainty

and the test data Xe. The cost function used to calibrate the model of uncertainty is the empirical

robustness. It is an estimate of the horizon of uncertainty within which the info-gap model captures

some fraction of the measurements (ch. 8 in [1]). In our case, the empirical robustness, α̂e (w, rc),

is defined by

α̂e (w, rc) = max{Γ (Xe,w) : Γ (Xi,w) ≤ Γ (Xe,w) if max
x∈Uw(Γ(Xi,w),x0)

s ≤ rc}. (16)
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The calibrated parameters, ŵ, are the ones that minimize the empirical robustness:

ŵ = arg min
w

α̂e (w, rc) . (17)

Figure 14 shows the repartition of the modal data before calibration: the starting values for the

weighting vectors are wξ = 1 and wφ = 1. Two test data are used to both assess and improve the

model of uncertainty (depicted in red squares in Figure 14).
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Fig. 14. Experimental data before calibration (wξ = 1 andwφ = 1)

Figure 15 shows the empirical robustness (log scale) when two test data are available. The

weighting vector that best fit the model of uncertainty is the one that minimizes the empirical

robustness. In this case, wξ ≥ 20.8 and wφ ≥ 4.3 are the minimal parameters yielding small

empirical robustness values (less than 0.17) as indicated in Figure 15. The empirical robustness

does not have a clear minimum as several pairs of values minimize the empirical robustness. In

this case, any point in the zone wξ ≥ 20.8 and wφ ≥ 4.3 can be chosen. The selected pair (wξ = 25
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and wφ = 20) is indicated by a square in Figure 15.
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Fig. 15. Empirical Robustness (log) vs (wξ, wφ) and selected values forwξ andwφ = 20.

4.4 Confrontation between the model of uncertainty and real experiments

The final objective of this paper is to illustrate that the calibrated model of uncertainty is consis-

tent with real experimental data when the robustness of dynamic response levels to an uncertain

modal model is evaluated. According to the approach described in section 2, a robustness anal-

ysis is performed to investigate the impact of lack of knowledge affecting the modal model on

dynamic response levels. The dynamic response level is evaluated at f = 30 Hz. The robustness

curve is plotted in Figure 16. Meanwhile, test data coming from the real experiments are plotted

(black circle on the Figure 16). One can observe that the robustness curve maximizes well the

response levels when uncertainty is increasing. However, the model of uncertainty tends to under-

estimate the robustness values, though a rigorous calibration of the model of uncertainty has been

performed. Several explanations for this result are possible, including for instance the topology of

the uncertainty model or the fact that the weighting factors remain constant for each mode and for

each value of the horizon of uncertainty. However, the approach adopted here consists in using

the information available, thought additional tests could be performed in order to obtain a best

model of uncertainty that represents much better the reality.
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Fig. 16. Robustness curve (black curve) and test data (black circle). Zoom on the right.

5 CONCLUSION

This paper proposes a methodology which aims at analyzing the robustness of the dynamic

response to an uncertain modal model. The objective is to provide useful bounds to the maximum

response levels based only on experimental modal data. The analysis does not require proba-

bilistic assumptions since the uncertainty is modeled by an info-gap model of uncertainty. The

uncertain modal model is constructed based on information provided by the initial modal model.

An info-gap robustness analysis is first illustrated on a simple finite element model. A series of

experimental modal analyses are then performed on a structure composed of two plates clamped

together on one side. The uncertainty is introduced in the system by adding lumped masses at

random locations. A first info-gap robustness analysis indicates that the a priori model of uncer-

tainty does not match very well with experiments and over-estimates the robustness function. The

info-gap model of uncertainty is then calibrated using a subset of test data with the purpose of

improving the fidelity to the subset data. Finally, it is shown that, after the calibration procedure,

the info-gap model of uncertainty is consistent with real test data and provides a more realistic

robustness curve.

Future work will focus on improving the model of uncertainty by performing additional tests on

different systems.
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