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ABSTRACT

The correlation of phase fluctuations in any type of oscillator fundamentally defines its spectral shape. However, in nonlinear
oscillators, such as spin torque nano oscillators, the frequency spectrum can become particularly complex. This is specifically
true when not only considering thermal but also colored 1/ f flicker noise processes, which are crucial in the context of the
oscillator’s long term stability. In this study, we address the frequency spectrum of spin torque oscillators in the regime of
large-amplitude steady oscillations experimentally and as well theoretically. We particularly take both thermal and flicker noise
into account. We perform a series of measurements of the phase noise and the spectrum on spin torque vortex oscillators,
notably varying the measurement time duration. Furthermore, we develop the modelling of thermal and flicker noise in Thiele
equation based simulations. We also derive the complete phase variance in the framework of the nonlinear auto-oscillator
theory and deduce the actual frequency spectrum. We investigate its dependence on the measurement time duration and
compare with the experimental results. Long term stability is important in several of the recent applicative developments of spin
torque oscillators. This study brings some insights on how to better address this issue.

1 Introduction
Spin torque nano oscillators (STNOs) are nano-scale devices, which use spin polarized dc currents to drive a steady state
electrical rf signal. Thereby, they exploit the spin transfer torque effect to excite the magnetization dynamics of a magnetic
layer in a nanostructure. Those are converted into a dynamical change of the device resistance mapping the magnetic dynamics
through the magnetoresistive effect existing in spintronic devices. Key property of STNOs is their nonlinearity, i.e. a coupling
between the oscillator’s amplitude and phase, which is an intrinsic effect of magnetic dynamics. Therefore, STNOs provide
the unique opportunity for studying nonlinear dynamics at the nanoscale1. Furthermore, and also linked to their nonlinearity,
they are considered as promising candidates for next-generation multifunctional spintronic devices2, 3. In addition to their
nanometric size (∼ 100nm), STNOs in general benefit from a high frequency tunability and compatibility with standard CMOS
technology4. Potential applications are manifold and reach from high data transfer rate hard disk reading5 and wide-band
high-frequency communication6–10 to spin wave generation11, 12 for e.g. magnonic devices13, 14. More recently, STNOs have
also been identified as key elements in the realization of broadband microwave energy harvesting15 or frequency detection16, 17,
and of reconstructing bio-inspired networks for neuromorphic computing18, 19. All these functionalities, often realized in the
very same STNO devices, are based on basic spintronic phenomena, such as injection locking to an external rf signal20, 21,
synchronization of multiple STNOs22–25 or the spin torque diode effect16, 26–28.

Like any oscillator in nature, STNOs suffer from noise and their applicability in real practical devices must be measurable
against their stability in terms of phase (or equivalently frequency). More specific to strongly nonlinear oscillators, such as
STNOs, the amplitude noise must also be considered as it is converted into phase noise due to nonlinearity. In general, different
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mechanisms are found to govern the STNO’s noise characteristics, usually expressed by its power spectral density (PSD).
Principally, it includes thermal white noise processes, that dominate at higher offset frequencies from the carrier, and colored
1/ f flicker noise processes, which dominate at low offset frequencies, i.e. at long timescales29. So far, especially thermal
noise effects have been under consideration and were studied both experimentally30, 31 and theoretically1, 32, 33. It was found
that the oscillator’s nonlinearity strongly affects the noise PSD and the power emission frequency spectrum in the thermal
regime. However, the understanding of colored 1/ f flicker noise and its impact on the oscillation behaviour is still limited
and usually relies on a phenomenological treatment29 because of the noise’s universality34 and its potential manifold origins.
Sources of 1/ f noise might be intrinsic such as fluctuations of magnetization (for magnetic sensor devices35–37), the incidence
of defects and/or inhomogeneities in the magnetic layers or the tunnel barrier notably due to the fabrication process38. Note
that in addition to intrinsic origins, external fluctuations of the driving dc current or the applied magnetic field might also play a
role. In experiments, the existence of 1/ f noise at low offset frequencies has been reported in the different types of spin torque
nano oscillators based on the dynamics of a uniform magnetic mode30, 39, of the gyrotropic motion of a vortex core29, 31 or in
nano-contact STNOs38. From the theoretical side, we have shown in a phenomenological model how the existence of both
thermal noise and flicker noise is affecting the noise properties (phase and amplitude power spectral densities, PSDs) in the low
offset frequency regime, and notably how the oscillator’s nonlinearities play an important role29.

In the present work, we investigate both theoretically and experimentally in spin transfer nano-oscillators (STNOs) how the
presence of these different sources of noise, i.e. thermal and especially 1/ f flicker noise, strongly impact the main oscillations’
characteristics, in particular their spectral shape. More specifically, we study how the oscillation’s spectral shape depends on
the measurement duration and distinguish the correlation times of the different noise sources. We demonstrate how the spectral
shape changes from a Lorentz shape at short measurement durations associated to white noise correlation, and to a Voigt –
or even Gaussian – shape at longer durations with colored 1/ f correlation. In complement to these experimental results, we
develop a simulation scheme including both a basic flicker noise process and thermal fluctuations. Finally, we furthermore
present a theoretical model (see section 4) in which the variance functions of the phase fluctuations are derived allowing to
predict the shape of the frequency spectrum of STVOs.

2 Methods
2.1 Experiments
The experimental measurements presented in this work have been performed on vortex based spin transfer oscillators (STVOs).
This type of STNOs exploit the gyrotropic motion of a magnetic vortex in a circular shaped nanodisk and convert its dynamics,
which is sustained by spin transfer torque, into an electric rf signal due to the magnetoresistive effect40.

The studied samples consist of a pinned layer made of a conventional synthetic antiferromagnetic stack (SAF), a MgO
tunnel barrier and a FeB free layer in a magnetic vortex configuration. The magnetoresistive ratio related to the tunnel
magnetoresistance effect (TMR) lies around 100% at room temperature. The SAF is composed of PtMn(15)/Co71Fe29(2.5)/
Ru(0.86)/CoFeB(1.6)/Co70Fe30(0.8) and the total layer stack is SAF/MgO(1)/FeB(4)/MgO(1)/Ta/Ru, with the nanometer layer
thickness in brackets. The circular tunnel junctions have an actual diameter of 2R = 375nm. The presented experimental
results have been recorded with an applied out-of-plane field of µ0H⊥ = 495mT and a dc current of Idc = 5.5mA. More details
on the measurement techniques can be found in Ref.29.

2.2 Simulation
We perform numerical simulations of the differential Thiele equation which describes the dynamics of the vortex core41, 42:

G× dX
dt
− D̂(X)

dX
dt
− ∂W (X , ISTO(t))

∂X
+FST T (X , ISTO(t)) = 0 .

X denotes the vortex core position, G the gyrovector, D̂ the damping, W the potential energy of the vortex, FST T the spin-transfer
force, and ISTO the applied dc current.

In this work, our objective is to include in the simulations both thermal and 1/ f flicker noise. To do so, the contribution of
the thermal noise is introduced through a fluctuating field varying the vortex core position43. It follows a normal distribution
with a zero mean value and a fluctuation amplitude given by Γ:

Γ =
2kBT D0

R2G
, (1)

where kB is the Boltzmann constant, T corresponds to the temperature (set to 300 K in our simulations), D0 is the linear (in
the gyration amplitude) term of the damping force D̂, R is the nano-dot radius and G is the amplitude of the gyroforce G. The
values of the parameters used in the explicit expression of the Thiele equation to simulate the vortex dynamics are given in the
Supplementary Material44.
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Figure 1. Modelled 1/ f flicker noise PSD for the simulation, λ = 2.5 ·10−4. Fluctuations are added to the simulated dc
current.

As for the simulation of the flicker noise contribution, we introduce a random variable r1/ f (t) that has a 1/ f 1 flicker noise
PSD as presented in fig. 1 (see Supplementary Material44 for a more detailed description how this variable is constructed). This
random process variable is then added to the applied dc current Idc:

ISTO(t) = Idc +λ r1/ f (t) . (2)

where λ is a scalar factor chosen here to be 2.5 ·10−4 in order for the simulated amplitude and phase noise PSD to be close
to measured ones.

3 Experimental noise PSDs and frequency spectrum
In the central panel of Fig. 2, we present the measured noise PSD corresponding to amplitude (blue and cyan curves) and phase
(red and orange curves) fluctuations. The different noise contributions can be directly identified due to their inverse power law
behavior PSD∼ 1/ f β . At large offset frequencies f & 105 Hz , the thermal noise is dominant and the noise signature behaves
linearly with exponent β = 2 for the phase (red curve in Fig. 2) and β = 0 for the amplitude noise (blue curve in Fig. 2). Note
that this description does not apply for frequencies above the relaxation rate frequency fp (≈ 11.8MHz here) above which the
oscillator’s nonlinearities strongly affect the noise PSDs29, 31, 32.

Figure 2. Measurement of amplitude and phase noise Sδε and Sδφ , respectively, and of frequency spectra corresponding to
different measurement durations. µ0H⊥ = 495mT, I = 5.5mA. The performed fits on the noise PSD show the characteristic
1/ f β -behaviour for high (red, blue resp.) and low offset frequencies (orange, light blue resp.).
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At low offset frequency f . 105 Hz, the noise behaviors are clearly different because the flicker noise becomes the dominant
source of noise. As seen in fig. 2, the phase noise PSD can be fitted with α/ f 3 (see orange curve in Fig2) and the amplitude
noise with α/ f 1 (see cyan curve in Fig2). In addition to the measured PSDs, we also present in Fig. 2 four frequency spectra
recorded for different measurement times, i.e. Tmes

∧=2/ f = 136.6µs, 456.6µs, 8.2ms and 2.05s along with different fits on
the measured spectra. We find that for short measurement times (typically < 1ms), the power emission spectra can be fitted
with an excellent agreement by Lorentzian curves. On the contrary, for longer measurement periods, the fits using Gaussian
curves become more accurate with an excellent agreement for 2.05s. In summary, we find a Lorentzian spectral shape in the
regime of dominant thermal noise with the phase noise PSD Sδφ ∼ 1/ f 2, and a Gaussian dominated shape in the regime of
dominant flicker phase noise with Sδφ ∼ 1/ f 3. Note that in the intermediate measurement time, the spectrum is described by a
convolution of Lorentzian and Gaussian shapes, which is a Voigt curve shape, as exemplified for the 8.2ms measurement time
in fig. 2.
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Figure 3. Simulation results with and without flicker noise. (a) Amplitude and phase noise PSD. (b) Corresponding frequency
spectra.

In fig. 3, we display the noise PSD (top graph) and the frequency spectrum (bottom graph) obtained from the simulation
of the vortex core dynamics (sec. 2.2) using an applied dc current of 4.5mA far enough from the critical current for auto-
oscillations ∼ 2mA (thus, for the linewidth 2 ·∆ f0� fp). To investigate the impact of 1/ f flicker noise on the spectral shape of
the STVOs, a sufficiently large simulation time scale of Tsim = 10ms is required. In fig. 3a, we present two series of simulations,
one with λ = 2.5 ·10−4 (i.e. including thermal and flicker noise) and another one with λ = 0 (i.e. including only thermal noise)
(see eq. (2)). At large offset frequencies, & 0.2MHz, the simulated curves for the two λ are equivalent as expected because the
flicker noise contribution is negligible in this regime. Below this offset frequency, the two curves separate. For λ = 0 and offsets
< fp ' 8MHz, the noise PSD exhibits a plateau for the amplitude one and a 1/ f 2 decrease for the phase one. Note that in this
case, despite the increase of phase noise due to amplitude-to-phase noise conversion associated to STNO nonlinearities1, 29–32,
the noise PSD characteristics considering only thermal noise can be treated as that of a linear oscillator. For λ = 2.5 ·10−4 and
offsets < fp ' 8MHz, the simulated PSDs show the same trends and characteristics as the experimental ones presented in fig.
2, thus validating our approach to describe the flicker noise in the vortex dynamics simulations by assuming a 1/ f 1 generating
noise process in the dynamical equations.

In fig. 3b, we depict the corresponding frequency spectrum of the oscillation power. For λ = 0, the fit using a Lorentzian
curve (red curve) shows a perfect agreement with the simulation. On the contrary, when the flicker noise is taken into account
(using λ = 2.5 ·10−4), the spectrum becomes broader and its shape changes. The best fit is now obtained using a Voigt function
(green curve), that is in fact close to be a Gaussian curve. We can thus conclude that the different noise sources contribute
differently to the spectral shape of the oscillations. A direct consequence is that the spectral shape shall depend on the actual
duration of the measurement as the flicker noise contribution becomes only significant at sufficiently large correlation times.

In fig. 4, we plot the spectral linewidths of the according contributions (Lorentz, Gauss, Voigt) provided by the Voigt fits as
a function of the duration both for the experimental spectra (top graph) and the simulated ones (bottom graph). From these
curves, we observe that the Lorentz contribution to the spectral linewidth does not change significantly with the recording time,
whereas the total linewidth represented by the Voigt FWHM increases for higher measurement time, as well as the contribution
from the Gaussian shape.
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Figure 4. Resulting fit parameters from the Voigt fits for (a) the measurement and (b) the simulation. Next to the total Voigt
linewidth, the linewidth corresponding to convoluted Lorentz and Gauß shape is shown.

4 Theoretical model
Taking into account both thermal and flicker noise processes within the framework of the general nonlinear auto-oscillator
theory1, the noise PSD of amplitude Sδε and phase noise Sδφ can be written using the following expressions we recently
described in29:

Sδε =
∆ f0

π
· 1

f 2 + f 2
p
+

1
4p0π2

(
f 2
p + f 2

) · αδε
f γ (3)

Sδφ =
∆ f0

π f 2 +
1

4p0π2 f 2 ·
αδφ

f γ +
ν2 f 2

p

f 2 Sδε , (4)

where ∆ f0 is the linear oscillation linewidth and fp is the characteristic frequency of relaxation back to the stable oscillation
power p0 after small perturbations δ p. The parameter ν = N p0/(π fp) with N = dω(p)/d p the nonlinear frequency shift
coefficient is the normalized dimensionless nonlinear frequency shift and quantifies the coupling between phase and amplitude
due to nonlinearity. The parameter αδx describes the generating flicker noise process acting differently on amplitude/phase x.
Its characteristic exponent γ has been found γ = 1.

In the following, we focus on the theoretical description of the phase noise Sδφ , that is the most important for describing the
spectral shape of the oscillation, which is one of the main objectives of this study. In eq. (4), the three terms describe different
contributions to the phase noise. The linear contributions are the ones being independent of ν , whereas the nonlinear ones are
scaling with ν2, converting amplitude Sδε into phase noise Sδφ . Moreover, all terms proportional to ∆ f0 describe the thermal
noise, and the terms proportional to αδx the flicker noise contribution. For simplicity, we choose Sδφ to be expressed in terms
of the angular frequency ω = 2π f and introduce the simplified parameters αph and αamp. Thus in the following, we evaluate
the phase noise in its simplified form:

Sδφ =
2∆ω0

ω2 +ν2 2∆ω0

ω2

ω2
p

(ω2 +ω2
p)

+
αph

ω3 +
αamp

(ω2
p +ω2)ω3 . (5)

The parameters αph and αamp can be identified with the experimental magnitudes:

αph = (2π)3αph,exp = 2παδφ/p0

αamp = (2π)3ω2
pαamp,exp = 2πω2

pν2αδε/p0 ,

where αamp,exp and αph,exp are the fitting parameters αx,exp/ f 3 on the nonlinear low offset frequency flicker phase noise
converted from amplitude noise (last term in eq. (4)) and on the linear pure phase flicker noise (2nd term in (4)) respectively29.
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From eq. (5), we can compute the variance of the oscillator’s phase fluctuations44–48 ∆φ 2:

∆φ 2

2
=

1
π

∞∫

0

(1− cos(ωt)) ·Sδφ dω . (6)

Assuming Sδε � Sδφ and a stationary ergodic process, which is gaussian distributed (via the central limit theorem), the
signal’s autocorrelation can be approximated by44:

K(t)≈ p0e−iωte−∆φ2/2 . (7)

Then applying the Wiener-Khintchine theorem, the frequency spectrum’s PSD of the signal x can be calculated through the
Fourier transform of the signal’s autocorrelation:

Sx(ω) =
∫

R

Kx(t)eiωtdt . (8)

4.1 Variance of phase fluctuations
Following the expression of eq. (6) for the computation of the fluctuation’s variance calculation, we first give the expression for
the variance of the thermal noise contributions (all terms proportional to ∆ω0 in eq. (5)):

(
∆φ 2

2

)

th
≈ 1

π
·

∞∫

ωc

(1− cos(ωt))Sδφ ,thdω

=
αl

πωc
+

αl

π
·
(

tπ
2
− t ·Si(tωc)−

cos(ωct)
ωc

) }
linear part

+
αnl

π

(
ωp +ωc arctan( ωc

ωp
)

ωcω3
p

− π
2ω3

p

) 



nonlinear part− αnl

2πω3
p

[
sinh(ωpt) ·π−ωptπ− sinh(ωpt)

(
Si(t(ωc + iωp))+Si(t(ωc− iωp))

)

+icosh(ωpt)
(

Ci(t(ωc + iωp))−Ci(t(ωc− iωp))

)
−2ωptSi(tωc)+

2ωp cos(tωc)

ωc

]

,

where we insert for the linear thermal noise part αl := 2∆ω0 and αnl := 2∆ω0ν2ω2
p . Si(x) and Ci(x) denote the sine and

cosine integral respectively, and ωc is a lower frequency cutoff. For the two flicker noise terms, we calculate:
(

∆φ 2

2

)

1/ f
=

αph

π

[
1

2ω2
c
+

t2

2

(
sin(ωct)

tωc
−Ci(tωc)−

cos(ωct
(ωct)2

)] }
pure flicker

+
αamp

π

[
−

ln(ω2
p +ω2

c )

2ω4
p

+
1

2ω2
c ω2

p
+

ln(ωc)

ω4
p

] 



nonlinear flicker
+

αamp

2πω4
p

[
isinh(ωpt) · [Si(ωct + iωpt)−Si(ωct− iωpt)]

+ cosh(ωpt) · [Ci(ωct + iωpt)+Ci(ωct− iωpt)]

−Ci(ωct)ω2
pt2−2Ci(ωct)+

ω2
pt sin(ωct)

ωc
−

ω2
p cos(ωct)

ω2
c

]

.

In all the calculation above, we have assumed a practical lower frequency cutoff ωc, which is necessary to circumvent the
integrals’ divergence at ω = 0. Note that for a comparative analysis of the timing jitter and frequency stability, the divergence
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is also often avoided by adding a filter function to eq. (6)48, invoking different variance definitions, as e.g. the Allan, modified
Allan, or Hadamard variance49. However, it is to be emphasized that in real physical systems, our assumption will remain
valid because the measurement time is usually restricted and the bandwidth is finite. In this sense, ωc reflects the measurement
duration studied in section 3. Moreover, the autocorrelation’s delay t has to be limited, too, as ωct < 2π . A reasonable
approximation for the variance function is therefore ωct� 1. Furthermore assuming ωc� ωp, we can approximate the above
expressions. For the thermal noise part, with the analytical expressions for the prefactors αl = 2∆ω0 and αnl = 2∆ω0ν2ω2

p
introduced above, this gives:

(
∆φ 2

2

)

th
= ∆ω0

[
(1+ν2)t−ν2 1− e−ωpt

ωp

]
. (9)

This representation agrees with the one given by Tiberkevich et al. in Ref.50, where also a detailed discussion of the temperature
related effects in STNOs can be found. As the phase variance varies linearly only for time intervals t� 2/ωp, the STNO’s
power spectrum is thus in general non-Lorentzian. However, if the generation linewidth ∆ω is sufficiently small, i.e. 2∆ω�ωp,
the exponential factor in (9) can be neglected at a typical decoherence time t ∼ 1/∆ω:

(
∆φ 2

2

)

th
≈ ∆ω0(1+ν2)t− ν2

2ωp
.

This leads to a linear variance and thus, a Lorentzian power spectrum with a FWHM of:

FWHM = 2∆ω = 2∆ω0(1+ν2) .

If the power fluctuations’ correlation time holds τp = 2/ωp � 1/∆ω and is therewith much longer than the oscillator’s
coherence time, eq. (9) yields:

(
∆φ 2

2

)

th
≈ ∆ω0

(
t +

ν2ωpt2

2

)
,

which is quadratic and hence leads to a Gaussian power spectrum. However, in the case of large amplitude steady state
oscillations of the STVO as investigated in this work, the condition 2∆ω � ωp is always fulfilled. For the flicker noise, we
obtain in approximation:

(
∆φ 2

2

)

1/ f
=

αph

π
t2

2

[
3
2
− ln(ωct)− γEM

]

+
αamp

2πω2
p

[
ln
(

ω2
c/ω2

p

)

2ω2
p

−
(
t2 + 2/ω2

p

)
(ln(ωct)+ γEM) +2t2

]
,

where we assume that t� 2/ωp and introduce the Euler-Mascheroni constant γEM ≈ 0.58.
In fig. 5a, we plot the variance functions for the thermal and the flicker noise contributions using the experimental

parameters of the STVO studied in section 3 exhibiting a linewidth FWHM = 2∆ f0 · (1+ν2) = 450kHz, a relaxation frequency
fp = 11.8MHz, and a nonlinearity parameter ν = 2.6. Corresponding to a standard measurement time, the frequency cutoff is
set to fc = 500Hz. The fitting parameters of the linear and nonlinear flicker noise in the sample are αph,exp = 1.15 ·109 and
αamp,exp = 2.5 ·107 respectively.

At small times t, displayed in the inset of figure 5a, we clearly see that the thermal noise contribution (black curve) is the
dominant one to the variance function. As already mentioned, this is nonlinear for very small times before it becomes almost
linear for increasing t. However, at even higher t (& 7µs in graph 5a), because the flicker noise contribution starts to dominate,
the total variance function becomes again nonlinear as the flicker variance appears to be almost quadratic.

In fig. 5b, we plot the corresponding phase noise power spectral density based on equation (4). Similar to the noise PSD
shown in section 3, we again emphasize the dominance of thermal noise at higher offset frequencies and of 1/ f flicker noise at
the lower ones ( f . 105 Hz).

4.2 Theoretical frequency power spectrum
In fig. 6, we present the calculated power spectrum using the expressions derived from the theoretical model. From the
calculated variance ∆φ 2 of the phase fluctuations, we can determine the power spectrum according to eqs. (7) and (8).

As done for the simulations, we can now compare the theoretical spectral shape in the two cases i.e. only the thermal noise
is considered or both thermal and flicker contributions are taken into account. For these calculations, we have used the same

7/11



(a)

0 2 4 6 80
1 0
2 0
3 0
4 0
5 0
6 0

∆φ
2

t  [ µs ]

 t h e r m a l
 f l i c k e r
 t o t a l

0 . 0 0 0 0 . 0 2 5 0 . 0 5 0 0 . 0 7 5
0 . 0

0 . 1

0 . 2

(b)

101 102 103 104 105 106 107 108 109

Offset Frequency [Hz]

−125

−100

−75

−50

−25

0

25

50

N
oi

se
P

S
D

[d
B

c/
H

z]

1/f 3

1/f 2

1/f 4

1/f 2

fp νfp

total phase noise, ν = 0

thermal phase noise, ν = 2.6

total phase noise, ν = 2.6

Figure 5. (a) Variance functions vs. time t. The inset shows the same functions at small times. (b) Corresponding phase noise
PSD as a function of frequency offset. The curves named ”total” include both thermal and flicker noise contributions.

(a)

2 4 8 2 4 9 2 5 0 2 5 1 2 5 2
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0
5 . 5

PS
D [

pW
/Hz

]

F r e q u e n c y  [ M H z ]

 f l i c k e r  +  t h e r m a l
         c o n t r i b u t i o n

 o n l y  t h e r m a l
         c o n t r i b u t i o n

(b)

2 4 8 2 4 9 2 5 0 2 5 1 2 5 2

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

PS
D [

pW
/Hz

]

F r e q u e n c y  [ M H z ]

 f l i c k e r  +  t h e r m a l
         c o n t r i b u t i o n

 o n l y  t h e r m a l
         c o n t r i b u t i o n

Figure 6. Calculated frequency spectra of the STNO signal with (a) fc = 105 Hz and (b) fc = 1Hz.

STVO parameters as before and only the frequency-cutoff fc is changed. In fig. 6a, we observe that for fc = 105 Hz (fig. 6a),
the spectrum is almost equivalent to the one only taking into account the thermal noise. In this case, the spectrum exhibits
a Lorentzian shape due to its quasi-linear variance function ∆φ 2. On the contrary, for fc = 1Hz (fig. 6b), corresponding to
a longer measurement time, the two spectra clearly differ. While the spectral shape associated to pure thermal noise is, as
expected, still of Lorentzian type, the power spectrum in the presence of flicker noise is more complex. As its variance function
shown in fig. 5a is nearly quadratic, we find a convolution of Lorentzian and Gaussian shapes, that is a Voigt function. This
result obtained from the theoretical model thus reproduces excellently what we have previously shown both in the experiments
and the simulations.

5 Conclusion
In this work, we measure the noise characteristics of vortex based spin torque oscillators and observe that they are dominated
by thermal noise at large offset frequencies and by flicker noise mechanisms at lower ones f . 105 Hz. In order to analyze
these results, we perform simulations of the oscillator’s noise properties by including the thermal contribution and as well,
more originally, the flicker noise processes existing in the vortex dynamics in STVOs. To this aim, we have used the differential
Thiele approach41 together with a 1/ f 1 shaped generated noise. An important outcome of the simulations is that the presence
of a simulated flicker noise clearly modifies the actual spectral shape of the output signal. Being almost purely Lorentzian
with only thermal noise, the spectral shape becomes rather Gaussian in the presence of flicker noise. This behavior is indeed
precisely the one we observed experimentally by recording power spectra using different measurement times. These results
are then corroborated to a theoretical model that we have developed applying the nonlinear auto-oscillator theory including
not only thermal but also flicker noise processes. Doing so, we succeed to derive the complete phase fluctuation’s variance
function and in consequence the theoretical shape of the frequency spectrum. In complete agreement with both experiments and
simulations, we find that because of the different noise type correlation times, the STNO’s spectral shape indeed dependends on
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the measurement duration, being Lorentzian type on short time scales and becoming Voigt type at longer ones. We believe
that these findings are especially important regarding the anticipated diverse applications of STNOs, particularly if frequency
stability is required on long time scales. Moreover, because the approach used to described the influence of thermal and flicker
noise in presence of nonlinearities is not restricted to the description of STNOs1, the predictions made on the consequences
on the spectral shape of the power spectra might also be valid for any other type of nonlinear oscillators that can be found in
Nature.
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SUPPLEMENTARY

A. Thiele simulation

The simulation of the vortex dynamics is performed
based on the differential Thiele equation1. It describes
the spin transfer torque iduced gyrotropic motion of the
vortex core well. Following the description in Refs.2,3,
we also consider higher order terms of damping and con-
finement, what allows a deterministic description of the
dynamics through the normalized oscillation radius s(t)
and phase θ(t) of the vortex core in the nanodisk:

θ̇ =
κ

G

(
1 + ζs2

)

ṡ =
D0κs

G2

(
ajIG

D0κπR2
− 1 + (ζ + ξ)s2

)
.

The different parameters are summarized in table I, in-
cluding their meaning and value chosen for the performed
simulations. Furthermore, I is the applied dc current,
and κ(1 + ζs2) the confinement stiffness with κ its linear
part and ζ its nonlinearity factor. In the table, we show
the values of the magnetostatic confinement κms with
nonlinear part κ′ms, and the Oersted field confinement
κOe with nonlinear part κ′Oe. It is κ = κms+κOeI/(πR

2)

and ζ =
κ′
ms+κ

′
OeI/(πR

2)
κms+κOeI/(πR2) .

Flicker noise generation

In order to introduce the flicker noise in the Thiele
equation framework, we model a generating noise process
of 1/f1 spectral shape, as shown in fig. 1 of the main text.
This is then converted into the characteristic amplitude
and phase noise PSD due to the dynamical nonlinear
stochastic Langevin differential equations4. We define
a random variable r1/f (t) that has a 1/f1 flicker noise
PSD and is scaled by a factor λ. This random process is

R = 187.5 nm nano-dot radius
D0 = 4.28 · 10−15 kg.rad−1.s−1 linear damping coefficient
ξ = 0.6 nonlinear damping

coefficient
G = 2.0 · 10−13 kg.rad−1.s−1 gyrovector amplitude
aj = 3.9 · 10−16 kg.m2.A−1.s−2 spin-transfer torque

efficiency
κms = 4.05 · 10−4 kg.s−2 magnetostatic

confinement

κ
′
ms = 1.01 · 10−4 kg.s−2 nonlinear magnetostatic

confinement
κOe = 1.42 · 10−15 kg.m2.A−1.s−2 Oersted field confinement

κ
′
Oe = −7.12·10−16 kg.m2.A−1.s−2 nonlinear Oersted field

confinement

Table I: Parameters used for the simulation of the
vortex dynamics in presence of thermal and flicker noise.

then added to the applied dc current Idc:

ISTO(t) = Idc + λr1/f (t) . (1)

As elaborated in the main text, λ = 2.5 · 10−4 was cho-
sen in such a way that the final amplitude and phase
noise PSD are meaningful and similar to those observed
experimentally. In order to produce the random stream
variable r1/f (t), we choose as a first step to construct a
Fourier series decomposition with Fourier amplitude co-
efficients that have a 1/f decay and uniformly distributed
random phase coefficients. By taking the inverse Fourier
transform of this constructed decomposition, we obtain
our 1/f random stream variable r1/f (t). As shown in
fig. 1 of the main text, the noise PSD of the injected dc
current ISTO(t) in the simulation follows a 1/f relation
for a broadband frequency bandwidth.
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B. Discussion of the generating noise

The flicker generating noise, which leads to the 1/fβ

power law characteristics in the amplitude and phase
noise PSDs of the STVO, itself exhibits a 1/f1 spectral
shape4. Its fundamental origin is not yet well understood,
and in the main paper we model this original generating
noise to be caused by the supplying dc source.

Figure 1: 1/f flicker noise characteristics of the
supplying Keithley 6220 dc current source.

To gain more insight into the particular origins of the
flicker noise and the influence of the current source char-
acteristics, we can compare the noise PSD of the mod-
elled generating noise (in the main paper) with the ex-
perimental noise PSD of the current source. In fig. 1,
we present the measured noise characteristics of the used
Keithley 6220 current source on the circuit with a 50 Ω re-
sistance. The shown data are measured at 8 mA. Indeed,
the noise PSD does not change much within the current
interval ]0; 10] mA. Above, the current source changes
range and the noise PSD might be different.

We see that indeed the noise PSD exhibits a 1/f spec-
tral shape. Comparing the modelled generating noise
with the measured noise PSD of the current supply, we
find that the magnitude of the modelled noise is much
higher than the one from the measurement, i.e. for in-
stance at 104 Hz ∼ −155 dB in the simulation compared
to ∼ −180 dB for the measurement. We can conclude
here that indeed different mechanisms contribute to the
characteristic 1/f flicker noise. These might be fluctu-
ations in the magnetic texture, the impact of defects
and/or inhomogeneities in the magnetic layers or the tun-
nel barrier, or also external fluctuations of the applied
magnetic field. Hence, also the noise of the dc current
supply contributes but is not the major origin for the
1/f flicker noise in spin torque oscillators. However, in
the simulation we model all these different origins of 1/f
noise to be included in the dc current fluctuations.

C. Phase variance ↔ phase noise relation

Taking the Wiener-Khintchine theorem, the autocor-
relation of the phase fluctuations δφ can be expressed
through the phase noise PSD. Taking also the definition
of the autocorrelation, we get:

Kδφ(τ) =
1

2π

∞∫

−∞

Sδφ(ω)eiωτdω = 〈δφ(t+ τ) δφ(t)〉

We define the phase difference at times t and τ :

ψ(t, τ) = φ(t+ τ)− φ(t) = δφ(t+ τ)− δφ(t)

Its variance function is:

∆φ2 = 〈ψ2〉 − 〈ψ〉2 = 〈[δφ(t+ τ)− δφ(t)]
2〉 − 0

= 〈δφ(t+ τ)2〉+ 〈δφ(t)2〉 − 2 〈δφ(t+ τ)δφ(t)〉
= 2

[
〈δφ2〉 − 〈δφ(t+ τ)δφ(t)〉

]

This means that the variance function ∆φ2 can be ex-
pressed in terms of phase noise:

∆φ2

2
= Kδφ(0)−Kδφ(τ) =

1

2π

∫

R

(
1− eiωt

)
· Sδφ(ω)dω

=
1

2π

∫

R

(1− cos(ωt)− i sin(ωt)) · Sδφdω

Because Sδφ(ω), similar to the autocorrelation func-
tion K(t), is always an even function (Cauchy principal
value), the expression can be simplified to:

∆φ2

2
=

1

π

∞∫

0

(1− cos(ωt)) · Sδφdω . (2)

D. Phase variance ↔ autocorrelation relation

Here, we discuss the autocorrelation function of the
oscillation signal c =

√
peiφ, not of the fluctuations as

done above. The signal power is p = p0 + δp and the
phase φ(t) = −ω(p0)t + φi + δφ(t). We assume the
power fluctuations little compared to the phase fluctu-
ations: δp� δφ. It is for the autocorrelation:

K(τ) = 〈
√
p0 + δp eiφ(t+τ)

√
p0 + δp e−iφ(t)〉

≈ p0 〈ei[φ(t+τ)−φ(t)]〉 ≈ p0e
−iω(p0)τ 〈ei[δφ(t+τ)−δφ(t)]〉

= p0e
−iω(p0)τ 〈eiψ(t,τ)〉

As defined already above, we used ψ(t, τ) = δφ(t+τ)−
δφ(t).

Because the fluctuations are defined by a stationary
ergodic process following a 0-centered Gaussian law, ψ
has the following probability function:

p(ψ) =
1

∆φ
√

2π
e
− ψ2

2∆φ2 .



3

Using this, it follows:

〈eiψ(t,τ)〉 =

∞∫

−∞

eiψp(ψ)dψ

=

∞∫

−∞


cos(ψ) + i sin(ψ)︸ ︷︷ ︸

antisymmetric→=0


 p(ψ)dψ

=
1

∆φ
√

2π

∞∫

−∞

cos(ψ)e−ψ
2/(2∆φ2)dψ = e−∆φ2/2 .

In the last step, the Gaussian integral was evaluated.
In total, we get the final result:

K(τ) ≈ p0e
−iω(p0)τe−∆φ2/2 .
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