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Abstract—Magnetoelastic sensors for the detection of low-
frequency and low-amplitude magnetic fields are in the focus of
research for more than 30 years. In order to minimize the limit of
detection (LOD) of such sensor systems, it is of high importance
to understand and to be able to quantify the relevant noise
sources. In this contribution, cantilever-type electromechanical
and magnetoelastic resonators, respectively, are comprehensively
investigated and mathematically described not only with regard
to their phase sensitivity but especially to the extent of the
sensor-intrinsic phase noise. Both measurements and calculations
reveal that the fundamental LOD is limited by additive phase
noise due to thermal-mechanical noise of the resonator, i.e. by
thermally induced random vibrations of the cantilever, and by
thermal-electrical noise of the piezoelectric material. However,
due to losses in the magnetic material parametric flicker phase
noise arises, limiting the overall performance. In particular, it is
shown that the LOD is virtually independent of the magnetic
sensitivity but is solely determined by the magnetic losses.
Instead of the sensitivity, the magnetic losses, represented by the
material’s effective complex permeability, should be considered
as the most important parameter for the further improvement
of such sensors in the future. This implication is not only valid
for magnetoelastic cantilevers but also applies to any type of
magnetoelastic resonator.

Index Terms—Cantilever, delta-E effect, flicker phase noise,
limit of detection, magnetic field sensor, magnetic noise, magne-
toelastic sensor, phase noise, phase sensitivity, resonator, thermal
noise

I. INTRODUCTION

In 1989 Brendel et al. reported on a parasitic influence of
magnetic fields on the oscillation frequency of quartz crystal
oscillators which could be explained by magnetically induced
deformations in the partly ferromagnetic springs used to hold
the quartz plate [1], [2]. Since then, various micromechanical
sensors based on the ∆E effect (Sec. II-A) have been pre-
sented, whose mechanical properties depend on an external

P. Durdaut, R. Knöchel and M. Höft are with the Chair of Microwave
Engineering, Institute of Electrical Engineering and Information Technology,
Kiel University, 24143 Kiel, Germany.

E. Rubiola and J.-M. Friedt are with the FEMTO-ST Institute, Department
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magnetic field through interaction with a magnetostrictive
layer. Although realizations in the form of highly sensitive
magnetoelastic surface acoustic wave delay lines were also
presented [3]–[9], magnetoelastic sensors are most commonly
based on resonant structures [10]–[18], especially cantilevers
[19]–[23], with resonance frequencies in the range between
550 Hz and 226 MHz.

Besides properties like e.g. dynamic range and frequency
bandwidth, the limit of detection (LOD), frequently also
referred to as detectivity or equivalent magnetic noise floor, is
often considered as one of the most important figures of merit
of a magnetic field sensor. Similar to a signal-to-noise ratio
(SNR), the LOD is determined by both the sensor’s signal, i.e.
the sensitivity, as well as by the sensor’s noise properties. In
the existing articles reporting about magnetoelastic resonators,
the focus has mostly been on modified sensor structures and
their properties with an emphasis on enhancing the effect,
i.e. the detuning of the sensing resonator. Although articles
reported on measured values for the limit of detection in the
microtesla [10], [12], [19], nanotesla [13], [16], [18], [20],
[21], and even in the picotesla [11], [15], [22] range, the
physical causes for noise in magnetoelastic magnetic field
sensors based on the ∆E effect have not been investigated
and described yet.

In previous studies, we focused on thermal noise of magne-
toelectric cantilevers in passive mode [24], on the realization
and analysis of low-noise preamplifiers for such sensors [25],
on noise contributions of the readout electronics [26], [27] and
the suppression of the local oscillator’s phase noise in active
mode magnetoelastic sensor systems [28]. Based on this, in
this paper the influence of the sensor’s thermal noise on the
phase noise is analyzed both metrologically and analytically.
In addition, the impact of losses in the magnetic material on
the phase noise characteristics, and thus on the overall sensor
performance is shown.

This paper is organized as follows: Sec. II introduces the
sensor principle and the actual structure of the magnetoelastic
cantilever under investigation. Based on the dynamics of
resonant mechanical structures, expressions for the various
sensitivities are derived, yielding the overall phase sensitiv-
ity. In addition, both an electrical equivalent circuit of the
sensor covering for the various loss mechanisms as well a
phase detecting readout system is presented. In comparison to
previous studies the latter has been modified in order to allow
for the neutralization of the sensor’s parasitic static capacitance
responsible for asymmetric transmission characteristics and a
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reduced sensitivity. Based on the sensor’s loss mechanisms,
expressions for thermally induced phase noise are derived and
verified by measurements in Sec. III. Additional flicker phase
noise clearly related to the losses in the magnetic material are
traced back to fluctuations of the magnetization. Based on the
fluctuation-dissipation theorem analytical expressions for the
magnetically induced phase noise as well as for the resulting
limit of detection are deduced. This article finishes with a
summary of the findings in Sec. IV.

II. MAGNETOELASTIC SENSOR SYSTEM

A. ∆E effect

The Young’s modulus of any material is defined by the ratio
between stress σ and elastic strain εel that is measured in
the direction parallel to the applied stress [29]. However, for
magnetic materials the relation Esat = σ/εel is only valid for
magnetically saturated specimen [29]. In the general case, the
problem has to be treated using tensors. As a consequence of
the magnetostrictive effect, an additional magnetoelastic strain
εmel occurs in magnetic materials [30, p. 270]. According to
∆εmel = dm∆H (for positive magnetostriction) the magnetoe-
lastic strain directly changes with the magnetic field H and
proportionally to the piezomagnetic constant dm [31] if εmel

is linearized around a certain magnetic operating point Hbias.
Considering both types of elastic strain, the resulting Young’s
modulus [30, p. 270]

E(H) =
σ

εel + εmel(H)
≤ Esat (1)

depends on the magnetic field H and is always lower than the
Young’s modulus of the same material in magnetic saturation.
The magnetically induced change of the Young’s modulus in
the normalized form

∆E effect ≡ ∆E

E
=
Esat − E

E
=
εmel(H)

εel
(2)

is known as the ∆E effect [31]. In the literature values for
∆E/E as high as approximately 700 % for alloys of terbium-
dysprosium (TbDy) [31] and approximately 30 % for an alloy
of iron-cobalt-silicon-boron ((Fe90Co10)78Si12B10) [32] that
is used in this work, respectively, are reported. It should be
noted, however, that very large magnetic fields are required
to change the Young’s modulus in terbium-dysprosium by
such a large value. With regard to the use of magnetostrictive
materials for sensor applications, it is rather important how
strong E is changed by a low amplitude magnetic mea-
surement signal Bx = µ0Hx in a certain magnetic operating
point Bbias = µ0Hbias, thus requiring materials with large
piezomagnetic constants dm. An overview of piezomagnetic
coefficients of various materials can be found in [33]. For
(Fe90Co10)78Si12B10 a value of 60 nm/A is reported that is
only exceeded by (Fe90Ga19)88B12 with a value of 151 nm/A.

B. Magnetoelastic sensor

The magnetoelastic sensor used for the investigations in
this contribution as depicted in Fig. 1 is based on a poly-
silicon cantilever of 3 mm length, 1 mm width and 50 µm

3 mm

1 mm

First electrode

Second electrode 

(not used here)

Magnetic 

field 

direction

Fig. 1: Photograph of the utilized cantilever-type magnetoelas-
tic sensor with a size of 3 mm x 1 mm mounted to a carrier
PCB. The magnetic flux densities Bbias and Bx are applied
along the long mechanical axis of the cantilever.

thickness. The lower side is coated with 2 µm of soft
magnetic amorphous metal ((Fe90Co10)78Si12B10, magnetic
easy axis perpendicular to the cantilever’s long axis), and
2 µm of aluminum-nitride (AlN) piezoelectric material [34]
are deposited on the cantilever’s top. Details about the MEMS
fabrication process can be found in [22]. In addition, the sensor
offers two independent types of electrodes (see Fig. 1) that
form plate capacitors with the piezoelectric AlN being the
dielectric material. The investigations in this contribution focus
on the first bending mode for which the first electrode performs
best [35].

C. Resonance detuning and magnetic sensitivity

The resonance frequency of a composite cantilever with N
layers is given by [22]

fres =
1

2π

λ2

l2
·

√√√√√√√√
N∑

n=1
EnJn

N∑
n=1

mn

, (3)

where λ = 1.875 is the eigenvalue of the first characteristic
bending mode, l = 3 mm is the free-standing length of the
cantilever, and En is the Young’s modulus, Jn is the second
moment of area, and mn is the mass per unit length of the n-
th layer, respectively. Thus, the sensor’s resonance frequency
is proportional to the square root of the composite’s effective
Young’s modulus Eeff

fres(Bbias, Bx) ∝
√
Eeff(Bbias, Bx) (4)

that depends on an external magnetic field, i.e. on the bias flux
density Bbias and on the bias flux density of the measurement
signal to be detected Bx (both applied along the long mechan-
ical axis of the cantilever). As visible from a measurement in
Fig. 2a, the cantilever’s resonance frequency depends on the
external magnetic field and changes particularly strong around
Bbias = ±0.65 mT. The corresponding slope is known as the
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(a) Resonance frequency fres as a function of the external magnetic
bias flux density Bbias
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(b) Magnetic sensitivity Smag as a function of the external magnetic
bias flux density Bbias

Fig. 2: Detuning of the magnetoelastic cantilever’s resonance
frequency with an external magnetic flux density (a). High
magnetic sensitivities (b) are reached where the resonance fre-
quency changes particularly strong with an external magnetic
flux density, i.e. at Bbias = ±0.65 mT (vertical dashed lines).

magnetic sensitivity towards low amplitude and low frequency
magnetic measurement signals Bx

Smag(Bbias) =
∂fres

∂Bx
(5)

for which a maximum value of |Smag| = 80 Hz/mT is
reached for the sensor under investigation (Fig. 2b). That
value is often given normalized to fres in saturation (here
7445 Hz), thus leading to a normalized magnetic sensitivity of
|Smag| ≈ 1.07 %fres/mT which is a typical value for thin-
film magnetoelastic resonators [10], [11], [15], [21], [22].

In addition to the magnetic sensitivity determinable based
on the magnetic field dependent resonance frequency, the
measured characteristic in Fig. 2a reveals further insights into
the sensor’s magnetic behavior. The different results depending
on the sweep direction of the applied magnetic bias flux
density are an indication of magnetic hysteresis. This reflects
that the magnetic state of the piezomagnetic layer depends on
the history of the applied magnetic bias flux density. During a
sweep of the applied magnetic bias flux density the magnetic
domain state changes, rearranging into different domain states
at various points of the magnetization loop. These magnetic
domain states and their dependence on the magnetic history
of the applied magnetic bias flux density can be rather
complex [36] and strongly influence the magnetic reversal
process. Depending on the field amplitude and orientation
magnetic domain behavior will change. It is often accompa-
nied by nucleation, annihilation, and irreversible movement
of magnetic domain walls. Similar magnetoelectric cantilever
structures revealed magnetic Barkhausen noise contributions
[37] due to magnetic domain reorganization processes during

reversal. Especially, the variable domain structures also lead to
variations in the effective sensitivity [37] and thus magnetic
domain alterations relate to magnetic noise in such sensors
[38]. Magnetic hysteresis losses are moreover linked to energy
conversion into heat [39] and, thus, as discussed further below,
correspond to additional noise contributions.

Contrary to all measurements for this investigation per-
formed in an ultra-high magnetic field shielding mu-metal
cylinder (Aaronia AG, ZG1), the magnetic operating point of
the sensor can change due to ambient static fields outside
magnetic shielding. For the sensor under investigation the
impact of e.g. earth’s magnetic field with magnetic flux
densities between 25µT and 60µT [40, p. 43] is relatively
low. To compensate for such external fields, self-regulating
operating point stabilization approaches such as those already
developed for giant magnetoimpedance (GMI) sensors [41]
can be used. However, an operating point stabilization, i.e.
providing a very stable and adjustable magnetic bias field,
is not trivial because the required electronics also introduce
additional noise [42]. Furthermore, the piezomagnetic layer
of this sensor exhibits a uniaxial magnetic anisotropy. The
orientation of the anisotropy favors the orientation of the
magnetic field along the long axis of the cantilever. While
additionally biasing the sensor in other directions proves useful
in special cases [43], deviations of Bbias from the long axis
in this case generally deteriorates the sensitivity due to the
quadratic nature of the magnetoelastic effect. This affects the
sensor’s linearity, i.e. the dynamic range. As discussed above, a
different alignment of the magnetic field will lead to a different
magnetic domain structure and thus a different contribution to
the magnetic noise, leading to a change in LOD. These effects
are currently under investigation.

D. Mechanical behavior and electrical sensitivity
Generally, the mechanical behavior of a resonant cantilever

with the quality factor Q can be described by the unitless
frequency response of a simple damped harmonic oscillator
[44, pp. 427] [45]

G(f) =
1

1−
(

f
fres

)2

+ j f
fresQ

= |G(f)| · exp (j γ(f)) (6)

with the magnitude frequency response

|G(f)| = 1√(
1−

(
f

fres

)2
)2

+
(

f
fresQ

)2

(7)

and the phase response

γ(f) = arctan

 − f
fres

Q

(
1−

(
f

fres

)2
)
 . (8)

Eq. (8) describes the relation between phase and frequency
where the slope of γ(f) at fres yields the well-known expres-
sion

Selec =
dγ(f)

df

∣∣∣∣∣
f=fres

= − 2Q

fres
(9)
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which, in the following, is referred to as the electrical sensi-
tivity Selec of a resonant sensor in units of rad/Hz [46].

E. Dynamic frequency response and overall phase sensitivity

The higher the quality factor Q of a resonant sen-
sor, the narrower the bandwidth of the characteristic band-
pass behavior. Assuming a magnetic measurement signal
Bx(t) = B̂x cos(2πfxt), the sensor’s response to such a signal
with the frequency fx can be determined by replacing f with
fres ± fx [45] in Eq. (6)

G(fres ± fx) =
−jQ

1± fx
fres

+ j
Qf2

x

f2
res
± j 2Qfx

fres

(10)

≈ −jQ
1± j 2Qfx

fres

. (11)

Based on that result, an expression for the unitless dynamic
sensitivity Sdyn can be deduced

Sdyn(fx) =
G(fres ± fx)

G(fres)
(12)

≈ 1√
1 +

(
fx
fc

)2
· exp

(
j arctan

(
−fx

fc

))
(13)

which exhibits the characteristic of a simple first-order low-
pass filter with a cutoff frequency of fc = fres/(2Q). This
result agrees with theoretical expectations in [47] and with
measurement results in [48]. Thus, the overall phase sensitivity
of the resonant sensor in units of rad/T yields

SPM(Bbias, fx) = Smag(Bbias) · Selec · Sdyn(fx). (14)

F. Electrical equivalent circuit and loss mechanisms

According to the physical structure of the electromechanical
resonator it can be described by an electrical equivalent circuit
as depicted in the dashed box in Fig. 5 whose element’s values
can be determined utilizing a conventional impedance analyzer
[22], [24], [26]. Based on electromechanical analogies [49] the
mechanical structure’s resonant behavior is taken into account
by an electrical series resonant circuit with the impedance
Zr = Rr +Rmag + jωLr + 1/(jωCr) where ω = 2πf is the
angular frequency. Due to the magnetically induced changes
of the resonance frequency fres = 1/(2π

√
LrCr), both the

inductance Lr as well as the capacitance Cr change with
the magnetic field. In parallel to the series resonant circuit
the static capacitance due to the electrodes surrounding the
piezoelectric material is considered by an additional capacitor
with a capacitance of CME = 44 pF for the sensor under
investigation.

A piezoelectric cantilever-type magnetoelastic sensor com-
prises several loss mechanisms that, according to the
fluctuation-dissipation theorem, correspond with fluctuations,
i.e. with noise. Generally, such losses can be taken into account
in an electrical equivalent circuit in the form of dissipative
elements, i.e. by resistors.

The predominant loss mechanism of micromechanical can-
tilevers under atmospheric pressure is air damping, commonly
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(a) Loss-representing values of the resistances Rr and Rmag as a
function of the external magnetic bias flux density Bbias
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(b) Quality factor Q as a function of the external magnetic bias flux
density Bbias

Fig. 3: Losses, represented by the resistances Rr and Rmag

(a), and corresponding quality factor Q (b) as a function of
the external magnetic bias flux density Bbias measured for an
amplitude of the electrical excitation signal of V̂ex = 100 mV.
The losses are particularly high for bias flux densities that
also lead to high magnetic sensitivities Smag (illustrated by the
vertical dashed lines, compare also Fig. 2b) whereas highest
values for Q are obtained in magnetic saturation.

referred to as viscous damping. In addition, e.g. thermoelastic
friction intrinsic to the solid structure, support losses, surface
losses, and mounting losses (compare [50] for a more detailed
analysis for a cantilever like the one investigated here or
e.g. [51] for a general overview) may further attenuate the
cantilever’s deflection, also expressed by its quality factor Q.
In the electrical equivalent circuit model (dashed box in Fig. 5)
these losses are taken into account by the resistance Rr.

For the special case of a magnetoelastic cantilever, ad-
ditional losses occur as a function of its magnetic state,
i.e. as a function of the external magnetic bias flux density
Bbias which are considered as an additional resistance Rmag.
As measurement results in Fig. 3a reveal, these losses are
particularly high for bias flux densities that also lead to high
magnetic sensitivities Smag (illustrated by the vertical dashed
lines, compare also Fig. 2b). Conversely, this means that the
overall quality factor

Q(Bbias) =
1

Rr +Rmag(Bbias)

√
Lr(Bbias)

Cr(Bbias)
(15)

is also a function of the bias flux density and that Q is
lower in the vicinity of the sensor’s operating point (here
Bbias = ±0.65 mT) than in magnetic saturation (Fig. 3b).
Results of a similar series of measurements in Fig. 4, but in
dependence of the electrical excitation amplitude Vex, clearly
confirm the influence of the magnetic state on the losses and
on the quality factor, respectively. In fact, the magnetic losses
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(a) Loss-representing values of the resistances Rr and Rmag as a
function of the excitation amplitude V̂ex
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Fig. 4: Losses, represented by the resistances Rr and Rmag

(a), and corresponding quality factor Q (b) as a function of
the electrical excitation signal’s amplitude V̂ex. If the sensor
is not magnetically saturated the magnetic losses distinctly in-
crease with the excitation amplitude due to dynamic magnetic
hysteresis losses.

distinctly increase with higher excitation amplitudes in case
the magnetic material is not in saturation.

As already hypothesized in [22], these additional losses can
be explained by magnetic hysteresis losses that occur from
the periodic bending of the cantilever which, in turn, lead to
changes in the magnetization due to the inverse magnetostric-
tive effect, also referred to as Villari effect [52]. Dynamic
magnetic hysteresis losses imply irreversible mechanisms due
to domain activity that lead to energy dissipation in the
form of heat during each cycle of periodic changes of the
magnetization [53], [54]. Amongst other loss mechanisms
related to the magnetic material like e.g. eddy current losses,
the hysteresis losses are considered by the imaginary part µ′′r
of the magnetic material’s relative permeability µr = µ′r − jµ′′r
[54].

Further losses are affiliated to the sensor’s plate capacitor,
i.e. to the piezoelectric material. These dielectric losses are
considered by the loss tangent tan δME with reported val-
ues for thin-film piezoelectric materials as low as e.g. 2.5 ·
10−4 (aluminium-nitride, AlN) [55], 1.3 · 10−3 (aluminium-
scandium-nitride, AlScN) [56], and 4 · 10−3 (lead-zirconate-
titanate, PZT) [57]. The sensor under investigation exhibits
a value of tan δME = 5 · 10−3, thus resulting in a resistance
RME = (tan δME ωCME)−1 in parallel to the static capaci-
tance CME and with a value in the vicinity of the resonance
frequency of approximately 100 MΩ. With a corresponding
conductance 1/RME in the nanosiemens range its influence
is usually negligible. However, in Sec. III it will be shown
that the noise associated with these losses might degrade the
sensor’s performance under certain circumstances.

G. Readout structure

For sensor operation, i.e. for the reconstruction of a mag-
netic measurement signal Bx(t) due to an induced detuning of
the resonator an electrical readout system as depicted in Fig. 5
is utilized. The basic principle is based on a resonant excitation
of the sensor with a voltage signal vex(t) = V̂ex cos(2πfext)
with fex = fres (first bending mode) leading to a magnetically
modulated current through the sensor isensor(t) that, in turn,
is transformed into a proportional voltage signal vsensor(t)
utilizing a transimpedance amplifier and subsequent phase
demodulation. For all measurements a low-noise JFET charge
amplifier [25] with a feedback capacitance of Cf = 30 pF and
a feedback resistance of Rf = 5 GΩ is utilized whose tran-
simpedance in the vicinity of fres, i.e. far above the amplifier’s
lower cutoff frequency (2πRfCf)

−1 ≈ 1 Hz, is given by

T (f) =
Vsensor(f)

Isensor(f)
= − 1

j2πfCf
. (16)

However, as already mentioned above, this type of electrome-
chanical sensor has an additional static capacitance CME due
to its electrodes that, with regard to the electrical equivalent
circuit, appears in parallel to the series resonant circuit with
the impedance Zr leading to an overall admittance of the
electromechanical sensor of

Ysensor =
1

Zr
+

1

RME
+ jωCME. (17)

As a consequence of the additional static capacitance CME,
a parallel resonance (also referred to as antiresonance) with
a frequency fares = fres

√
1 + Cr/CME slightly above fres

[58, p. 204] appears which distorts the line shape of both
the magnitude (Fig. 6a) and the phase (Fig. 6b) of Ysensor

compared to that of a bare resonator described by G(f)
(Eq. (6)). As a result, the electrical sensitivity resulting by
differentiation of the admittance’s phase is smaller than stated
in Eq. (9) (Fig. 6d). The Nyquist plot in Fig. 6c illustrates
that effect by means of the phasor of the excitation signal,
i.e. the carrier signal (gray lines), and by the highlighted
resonance frequencies (red crosses) of the slightly detuned
resonator. Although the effect is not as pronounced for the
sensor under investigation due to its comparatively low static
capacitance of only CME = 44 pF, one can easily imagine that
the larger the sensor’s static capacitance (shift of the locus
curve to the top), the lower the resulting phase modulation.
This is the reason why various methods for neutralizing the
sensor’s static capacitance have been reported [59]–[62], espe-
cially for large capacitance sensors. On the contrary, for this
contribution, a neutralization is performed for symmetrizing
the sensor’s behavior. Thus, the admittance can be described
by the frequency response of a simple harmonic oscillator
G(f) (compare Fig. 6a and Fig. 6b) which simplifies the noise
considerations in the following section.

In the actual system as depicted in Fig. 5 the neutralization
is perceived by a second branch that contains a trimming
capacitor with a capacitance of Cn ≈ CME and an identical
charge amplifier as in the sensor branch. When neglecting the
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Fig. 5: Electrical readout system for the reconstruction of a magnetic measurement signal due to an induced detuning of
the resonant sensor. The sensor (upper branch) is driven at its resonance frequency by an electrical excitation signal vex(t),
leading to a magnetically modulated voltage signal vsensor(t) at the output of the subsequent charge amplifier. An additional
signal branch together with a subtractor is used to neutralize the parasitic effect of the sensor’s static capacitance. The phase
demodulation is performed in the digital domain by means of a conventional quadrature detector.

influence of the dielectric losses (RME) on the sensor signal
vsensor(t) (see above) its amplitude spectrum yields

Vsensor(f) = TIsensor(f) = TVexYsensor(f) (18)

= TVex

(
1

Zr(f)
+ j2πfCME

)
. (19)

Similarly, the amplitude spectrum at the output of the second
charge amplifier is given by

Vn(f) = TIn(f) = TVexj2πfCME, (20)

thus resulting in an amplitude spectrum of the differential
signal vd(t)

Vd(f) = Vsensor(f)− Vn(f) =
TVex

Zr(f)
(21)

in which the parasitic influence of the static capacitance CME

is suppressed. For a resonant excitation Zr(fres) is purely
ohmic. Consequently, the differential signal’s amplitude can
be written as (compare Fig. 6a)

V̂d =
√

2 |Vd(fres)| =
V̂ex|T (fres)||G(fres)|
Q(Rr +Rmag)

(22)

=
V̂ex|T (fres)|
Rr +Rmag

. (23)

When neglecting the amplitude modulation and the static
phase delays due to the sensor and the amplifiers, the associ-
ated time domain signal can be written as

vd(t) = V̂d cos (2πfrest+ SPMBx(t) + ϕ(t)) (24)

which contains the phase modulation with the phase sensitivity
SPM (Eq. (14)) and phase fluctuations ϕ(t) due to the sensor
and the electronics that are analyzed in more detail in the
following section.

By means of a quadrature detector the phase demodulation
is performed in the digital domain. For fex = fres the output
signal is then equal to

sout(t) = SPMBx(t) + ϕ(t). (25)

For all measurements in this paper, a high-resolution analog-
to-digital (A/D) and digital-to-analog (D/A) converter, respec-
tively, of type Fireface UFX from RME running at a sampling
rate of 32 kHz has been used for digitizing vsensor(t) and vn(t)
and for generating the excitation signal vex(t). The digital low-
pass filters (LPF) in the quadrature detector are third-order
Butterworth filters with −3 dB cutoff frequencies of 3 kHz.

III. PHASE NOISE ANALYSIS

A. Thermal-mechanical and thermal-electrical noise

As discussed in Sec. II-F, an electromechanical cantilever
exhibits several loss mechanisms that, in the electrical equiv-
alent circuit, are covered by two resistors with the resistances
Rr +Rmag and RME. In previous studies [24], [25] it has
already been shown that both the related thermal-mechanical
noise of the resonant structure Ed,RrRmag as well as the
thermal-electrical noise Ed,RME of the dielectric material can
accurately be predicted. Adjusting the previously published
expressions to the readout structure as depicted in Fig. 5, the
amount of the sensor’s thermal voltage noise at the output of
the subtractor can be calculated by

Ed,RrRmag(f) =

∣∣∣∣ T (f)

Zr(f)

∣∣∣∣√4kBT0(Rr +Rmag) (26)

=
|T (f)||G(f)|

√
4kBT0

Q
√
Rr +Rmag

(27)

and

Ed,RME(f) =
|T (f)|
RME(f)

√
4kBT0RME(f) (28)

=
|T (f)|

√
4kBT0√

RME(f)
(29)

where kB ≈ 1.381 · 10−23 J/K is the Boltzmann constant
and T0 = 290 K the room temperature. A noise measurement
without any external excitation of the sensor (V̂ex = 0) and in
comparison to the theoretical expectations is depicted in Fig. 7.
Due to the sensor’s resonant behavior the thermal-mechanical
noise Ed,RrRmag is weighted by G(f) and perfectly agrees
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Fig. 6: Measured (stars) and calculated (solid lines) trajectories of magnitude (a) and phase (b) of the sensor’s admittance
Ysensor. Due to the parasitic influence of the sensor’s static capacitance CME both line shapes are distorted, i.e. the locus curve
(c) is shifted to higher imaginary parts. Neutralizing this effect not only leads to symmetric line shapes but also to an increase
in the electrical sensitivity (d). The measurements have been conducted in magnetic saturation and for V̂ex = 1 mV.
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Fig. 7: Measured noise at the output of the subtractor in com-
parison to the theoretical expectations according to Eq. (27)
and (29). In the vicinity of the resonance frequency the overall
noise is dominated by the sensor-intrinsic thermal-mechanical
noise Ed,RrRmag. Far beyond the sensor’s −3 dB bandwidth
the measured noise is approximately frequency independent
but higher than predicted (Ed,RME) because of further contri-
butions of the system electronics. The measurement has been
conducted in magnetic saturation and for V̂ex = 0.

with the measurement in the vicinity of the resonance fre-
quency. Far beyond the sensor’s −3 dB bandwidth the mea-
sured noise is approximately frequency independent but higher
than predicted (Ed,RME) because of further contributions due
to the system electronics, i.e. that of the two charge amplifiers
and the D/A and A/D converters, respectively.

B. Relation between voltage noise density and phase noise

Various and statistically independent voltage noise densities
due to the sensor and the system electronics (Ed,system) add
up at the output of the subtractor

E2
d = E2

d,RrRmag + E2
d,RME + E2

d,system. (30)

To determine their relation to the power spectral density Sϕ(f)
of the random phase fluctuations ϕ(t), Eq. (24) is written as

vd(t) = V̂d cos (2πfrest+ ϕ̂(fx) cos(2πfxt)) (31)

in which one noise component with the modulation index ϕ̂
at fx represents other spectral components that can be taken
into account by linear superposition. In addition, for this noise
consideration the measurement signal Bx(t) is assumed to be
zero. Based on basic trigonometric identities Eq. (31) can be
rearranged into

vd(t) = V̂d

[
cos(2πfrest)−

ϕ̂(fx)

2

[
sin(2π(fres − fx)t)

+ sin(2π(fres + fx)t)
]]

(32)

revealing the typical structure of a narrow band small signal
phase modulated signal with a carrier at fres and two symmet-
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rical sidebands at fres ± fx. Following the concept of noise
sidebands [63, pp. 243] the carrier-to-noise sideband ratio

V̂d

V̂d
ϕ̂(fx)

2

=
2

ϕ̂(fx)
=

V̂d

Ed(fres ± fx)
√

2
√

∆f
(33)

is equal to the carrier-to-voltage noise ratio if a symmetrical
noise distribution (Ed(fres − fx) = Ed(fres + fx)) around the
resonance frequency is assumed. The additional term

√
∆f

transforms the voltage noise density into an effective voltage
noise in the bandwidth ∆f . From Eq. (33) the phase modula-
tion index

ϕ̂(fx) =
2 Ed(fres ± fx)

√
2
√

∆f

V̂d

(34)

can be deduced which directly yields the power spectral
density

Sϕ(fx) =

(
2 Ed(fres ± fx)

V̂d

)2

(35)

of the random phase fluctuations ϕ(t) in units of rad2/Hz.
For voltage noise distributed asymmetrically around the res-
onance frequency (Ed(fres − fx) 6= Ed(fres + fx)) the more
generally valid power spectral density is given by

Sϕ(fx) =

(
Ed(fres − fx) + Ed(fres + fx)

V̂d

)2

. (36)

However, for the frequency range in the vicinity of fres

|T (fres)| ≈
1

2
(|T (fres − fx)|+ |T (fres + fx)|) (37)

and

RME(fres) ≈
1

2
(RME(fres − fx) +RME(fres + fx)) (38)

are generally good approximations. Because of the neutraliza-
tion Ed,RrRmag(f) is also symmetric around fres, thus leading
to expressions for the power spectral densities of random phase
fluctuations due to thermal-mechanical noise

Sϕ,RrRmag(fx) =

(
2 |T (fres)Sdyn(fx)|

√
4kBT0

V̂d

√
Rr +Rmag

)2

(39)

Eq. (23)
=

(
2 |Sdyn(fx)|

√
4kBT0(Rr +Rmag)

V̂ex

)2

(40)

and due to thermal-electrical noise of the loss in the dielectric
material

Sϕ,RME =

(
2 |T (fres)|

√
4kBT0

V̂d

√
RME(fres)

)2

(41)

Eq. (23)
=

(
2
√

4kBT0 (Rr +Rmag)

V̂ex

√
RME(fres)

)2

. (42)

Obviously, the thermal-electrical noise Ed,RME leads to ad-
ditive white phase noise that decreases with the excitation
amplitude since V̂d ∝ V̂ex. The phase noise, which is caused
by the thermal-mechanical noise Ed,RrRmag, also decreases
with V̂ex. However, due to the influence of the resonator
this additive phase noise decreases with 20 dB/decade for

frequencies fx above the cutoff frequency fc = fres/(2Q). In
contrast to this, thermal-mechanical noise also leads to white
phase noise for frequencies well below the cutoff frequency
(fx � fc).

C. Phase noise measurements

With the system described above (Fig. 5), several series
of noise measurements were performed to analyze the sen-
sor’s phase noise behavior. Without any additional magnetic
measurement signal (Bx(t) = 0), the system’s output signal
sout(t) is then equal to the random phase fluctuations ϕ(t)
which were transformed to the frequency domain based on
Welch’s method [64], thus leading to the power spectral
densities of random phase fluctuations Sϕ. In the following,
Sϕ(fx) is given as a function of the frequency fx to clarify
that this phase noise is effective in the same frequency range
as the measurement signal. Formally it would be just as correct
to use f here.

For all measurements the sensor was placed inside an ultra-
high magnetic field shielding mu-metal cylinder (Aaronia AG
ZG1) which, in turn, is placed inside a vibrationally decoupled
box with lined absorbers against airborne sound. In addition,
the whole box is coated with a copper fleece, which shields
electrical fields. Furthermore, the sensor is surrounded by two
solenoids inside the mu-metal that are used for generating both
the magnetic bias flux density Bbias as well as the magnetic
measurement signal Bx(t). The latter is generated with a
commercially available current source (Keithley 6221). How-
ever, no commercially available power source was suitable
for generating comparatively large bias fields in the millitesla
range while keeping the resulting low-frequency noise well
below 100 pT/

√
Hz. Therefore, an in-house built setup based

on several batteries (capacity > 100 Ah) and a stepper motor
controlled potentiometer in series to the coil was used.

In a first series of noise measurements the sensor was
magnetically saturated by means of a strong permanent magnet
generating a magnetic bias flux density of Bbias ≈ 20 mT
which is distinctly higher than the sensor’s saturation flux
density < 5 mT (compare e.g. Fig. 2a). At the same time
the amplitude V̂ex of the electrical excitation signal Vex(t)
was increased incrementally. For several values of V̂ex, the
measured phase noise is depicted in Fig. 8a together with
the phase noise contributions due to thermal-mechanical noise
Sϕ,RrRmag (Eq. (40), dashed lines) and due to thermal-
electrical noise of the dielectric material Sϕ,RME (Eq. (42),
dotted lines). As expected, the measured noise spectra de-
crease with increasing excitation amplitudes, thus confirming
the additive character of both thermal noise contributions.
In addition, values of measured phase noise and calculated
phase noise Sϕ,RrRmag (dashed lines) agree well for the
low frequency range in the range of the sensor’s passband,
indicated by the respective cutoff frequency (black crosses).
Due to the impact of the mechanical resonator, the phase
noise decreases with higher frequencies proportional to f−2

x

until the white phase noise floor beyond the sensor’s pass-
band is reached. According to previous calculations, the
crossover frequency between frequency-dependent and white
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(b) Sensor in magnetic operating point Bbias = 0.65mT

Fig. 8: Power spectral densities of the measured random phase fluctuations ϕ(t) at the sensor system’s output for the sensor
in magnetic saturation (a) and for the sensor in its magnetic operating point (b) for various amplitudes of the excitation signal.
For the magnetically saturated sensor, the additive phase noise due to thermal-mechanical (Eq. (40), dashed lines) and due
to thermal-electrical noise (Eq. (42), dotted lines) decreases with the excitation amplitude V̂ex. For the sensor in its magnetic
operating point low-frequency parametric phase noise occurs whose underlying physical noise process must exhibit a f−1

x

characteristic because an amount of f−2
x is attributed to the influence of the resonator. The slightly different levels of white

phase noise floors between the measurements in (a) and (b) are probably due to different states of charge of the battery
supplying the amplifier, thus leading to different drain currents in the amplifier’s discrete JFET front-end [25].

phase noise due to thermal-electrical noise of the dielectric
material (Sϕ,RrRmag = Sϕ,RME) is about 50 Hz. However,
as already discussed in the context of Fig. 7, the overall
noise floor outside the sensor’s passband is dominated by
noise contributions of the system electronics, thus leading to
a crossover frequency at about 10 Hz for the system under
investigation.

The same series of measurements was repeated for the sen-
sor not being saturated anymore but brought into its magnetic
operating point of Bbias = 0.65 mT after saturating the sensor
in negative direction and stepwise incrementing Bbias. The
measured phase noise acquired in this way is shown in Fig. 8b,
again in comparison to the theoretical expectations (dashed
lines) according to Eq. (40) (phase noise due to thermal-
mechanical noise Sϕ,RrRmag). The measured phase noise at
low excitation amplitudes of about 1 mV still corresponds to
the contribution of the thermal-mechanical noise. However,
for increasing amplitudes V̂ex the measured phase noise in the
sensor’s passband no longer decreases significantly as for the
magnetically saturated case (Fig. 8a). Thus, the noise contri-
bution of the magnetic material leads to so-called parametric
noise which is independent from the amplitude of the carrier
signal [65, p. 36], at least if the noise process itself or material
properties do not depend on the amplitude. Such a behavior
is well-known from 1/f flicker phase noise, e.g. of amplifiers
[66]. And indeed, considering the slope of f−3

x with which the
measured phase noise decreases, the underlying physical noise
process must exhibit a f−1

x characteristic because an amount
of f−2

x is attributed to the influence of the resonator.

To further verify the relationship between the sensor’s
magnetic state and the magnetically induced phase noise,
measurements as a function of the magnetic bias flux density
Bbias from negative to positive saturation were conducted
(inverse measurement gives results mirrored on the axis of
ordinates). As depicted by the corresponding power spectral
densities of the random phase fluctuations in Fig. 9a, the
f−1

x flicker phase noise and the f−3
x phase noise at the

sensor system’s output, respectively, clearly depend on the
sensor’s magnetic state. In fact, as shown by the measured
phase noise at a frequency of 1 Hz in Fig. 9b, the induced
phase noise is unambiguously related to the magnetic losses,
represented by Rmag. For operating points with low losses,
i.e. at which the magnetic sensitivity is low, e.g. near satu-
ration and for Bbias = 0, also the phase noise adopts lower
values. In contrast, the phase noise is particularly high when
the losses or the magnetic sensitivity is high (dashed lines
at Bbias = ±0.65 mT). In investigations on magnetoresistive
sensors, an identical behavior could be observed in the past
[67], [68]. These sensors also show largest noise for operating
points of maximum sensitivity which was attributed to random
fluctuations of the magnetization due to magnetic domain wall
movements and rotations [68], [69].

D. Magnetically induced flicker phase noise

Due to the significant relation to the magnetic losses it
is obvious to describe the magnetically induced phase noise
using the fluctuation-dissipation theorem. Based on that theo-
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(a) Phase noise for various magnetic bias flux densities in the
frequency domain
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(b) Phase noise at a frequency of 1Hz and magnetic losses as a
function of the magnetic bias flux density

Fig. 9: Power spectral densities of the measured random phase fluctuations ϕ(t) at the sensor system’s output for a constant
excitation amplitude of V̂ex = 100 mV as a function of the magnetic bias flux density Bbias measured increasingly from negative
to positive magnetic saturation. The magnetically induced phase noise significantly changes with Bbias while the slope stays
constant as far as the sensor is not in magnetic saturation (a). Obviously, the measured phase noise is directly linked to the
magnetic losses, represented by Rmag, and for this excitation amplitude always higher than the phase noise due to the sensor’s
thermal-mechanical noise Sϕ,RrRmag (b).

rem, the power spectral density of random fluctuations of the
magnetization M

SM(fx) =
4kBT0

2πfx Vmag

µ′′r,eff

µ0
(43)

with the physical dimension (A/m)2/Hz can be derived [70],
[71] which can be referred to as flicker magnetization noise
since the power density decreases with 1/fx. This expression
is typically given as a function of the imaginary part µ′′r of
the magnetic material’s complex permeability µr = µ′r − jµ′′r .
In general, however, µ′′r is also used to account for other
losses, in particular eddy current losses, which in turn do not
correspond with flicker noise but with frequency-independent
white noise [72]. Therefore, in this paper, an effective complex
permeability µr,eff = µ′r − jµ′′r,eff is used to cover only for
magnetic hysteresis losses corresponding with 1/f flicker
noise. Furthermore, µ0 = 4π · 10−7 Vs/(Am) and Vmag de-
note the vacuum permeability and the volume of the magnetic
material, respectively. Thus, fluctuations of the magnetization
can be decreased by larger magnetic volumes, at least if the
magnetic losses µ′′r,eff do not rise proportionally with Vmag.
However, literature shows that volume and losses are generally
not independent of each other [73].

The expression for changes of the resonant sensor’s phase
response γ(f) (Eq. 8) at the resonance frequency fres due to
changes of the magnetization M

∂γ(fres)

∂M
=
∂γ(f)

∂f

∣∣∣∣∣
f=fres

∂fres

∂M
(44)

can be factorized into two terms. The first term describes the
changes of the sensor’s phase response at fres due to a detun-
ing of the resonator. As discussed above, this term is equal to
the electrical sensitivity Selec (Eq. (9)). The second term covers

the detuning of the resonator due to changes of the magnetiza-
tion. With the magnetic susceptibility χ = ∂M/∂H = µ′r − 1,
with B = µ0H , and with Smag = ∂fres/∂B (Eq. (5)) the
second term

∂fres

∂M
=
∂fres

∂H

∂H

∂M
=
∂fres

∂H

1

χ
=

∂fres

µ0∂H

µ0

χ
(45)

= Smag
µ0

χ
≈ Smag

µ0

µ′r
(46)

can be expressed as a function of the magnetic sensitivity
Smag and the real part µ′r of the effective permeability.
The approximation is generally valid for commonly utilized
magnetic materials with high permeabilities (µ′r � 1).

Using these relations, the power spectral density of random
phase fluctuations due to random fluctuations of the magneti-
zation yields

Sϕ,M(fx) = SM(fx)

∣∣∣∣∂γ(fres)

∂M

∣∣∣∣2 |Sdyn(fx)|2 (47)

= SM(fx)|Selec|2
∣∣∣∣Smag

µ0

µ′r

∣∣∣∣2 |Sdyn(fx)|2 (48)

in which the dynamic sensitivity Sdyn (Eq. (13)) accounts
for the additional decrease in phase noise with increasing
frequency due to the resonator. With Eq. (43) and the sensor’s
overall phase sensitivity SPM (Eq. (14)) the expression further
simplifies to

Sϕ,M(fx) =
4kBT0

2πfx Vmag
|SPM(fx)|2

µ0µ
′′
r,eff

(µ′r)
2
, (49)

clarifying that the magnetically induced phase noise is propor-
tional to the sensor’s sensitivity.

E. Limit of detection
The limit of detection (LOD) of a magnetic field sensor

system denotes the frequency-dependent noise floor, i.e. an
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Fig. 10: Calculated limit of detection (LOD) at a frequency
of 1 Hz and for typical sensor parameters (fres = 7450 Hz,
Rr +Rmag = 388.85 kΩ, Q = 1121.7, Smag = 80 Hz/mT,
Vmag = 6 · 10−12 m3) at room temperature (T0 = 290 K). The
fundamental LOD is limited by additive thermal-mechanical
noise, thus LODRrRmag (Eq. (51)) improves with the exci-
tation amplitude V̂ex. Parametric magnetically induced phase
noise Sϕ,M (Eq. (49)) limits the LOD of real sensors. However,
LODM (Eq. (52) and (54)) can be improved by decreasing the
relative magnetic loss factor tan δmag/µ

′
r.
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Fig. 11: Measured phase noise at a frequency of 1 Hz (same
data as in Fig. 9b) and measured limit of detection (LOD), also
at a frequency of 1 Hz for a constant excitation amplitude of
V̂ex = 100 mV as a function of Bbias measured increasingly
from negative to positive magnetic saturation. Best values
as low as LOD(1 Hz) = 292 pT/

√
Hz are obtained in the

sensor’s magnetic operating point at Bbias = 0.65 mT.

amplitude spectral density, in units of T/
√

Hz [46]. Thus, the
LOD is given by the ratio of the amplitude spectral density of
random phase fluctuations and the phase sensitivity.

Considering only the phase noise Sϕ,RrRmag (Eq. (40)) due
to the resonator’s thermal-mechanical noise, the fundamental
LOD is given by

LODRrRmag(fx) =

√
Sϕ,RrRmag(fx)

|SPM(fx)|
(50)

=
fres

√
4kBT0(Rr +Rmag)

V̂exQ|Smag|
(51)

which is frequency-independent, deteriorates with the losses,
and improves with the magnetic sensitivity. In particular, this
fundamental LOD could be improved simply by increasing
the excitation amplitude because the phase noise due to
thermal-mechanical noise is additive (Fig. 8a). For the sensor
under investigation, with typical values (compare Fig. 6a) of
fres = 7450 Hz, Rr +Rmag = 388.85 kΩ, Q = 1121.7, and
Smag = 80 Hz/mT the frequency-independent LOD would
result, e.g. in a value as low as 6.5 pT/

√
Hz for an electrical

driving amplitude of V̂ex = 1 V (dashed line in Fig. 10).
However, because the sensor system’s overall noise floor

is dominated by magnetically induced phase noise (as shown
in Fig. 9b this noise is usually distinctly higher than phase
noise due to the resonator’s thermal-mechanical noise when
the magnetic material is not saturated) it is more convenient
to consider Sϕ,M(fx) (Eq. (49)) for the determination of the
detectivity

LODM(fx) =

√
Sϕ,M(fx)

SPM(fx)
=

√
4kBT0

2πfx Vmag

µ0µ′′r,eff

(µ′r)
2

(52)

which improves with 1/
√
fx. Remarkably, in that case, the

limit of detection does not depend on the sensor’s sensitivity
at all but is solely determined by the volume and the magnetic
properties µ′r and µ′′r,eff of the magnetostrictive film which, in
turn, depend on the sensor’s operating point in terms of bias
field, excitation frequency, and excitation power. A basically
identical result was reported e.g. for giant magnetoimpedance
sensors, for which the fundamental detectivity is also inde-
pendent of the sensitivity [74]. A recently published article
[38] about magnetic domain activities confirms the relation
between magnetic losses and magnetic noise in periodically
driven magnetoelectric cantilevers. The authors also come to
the conclusion that controlling the magnetic domain behavior
is the key to optimum sensor performance.

For the sensor under investigation magnetically coated with
a volume of Vmag = 3 mm · 1 mm · 2 µm = 6 · 10−12 m3, the
expression for the LOD can be further simplified to

LODM(fx) =
23.1 nT√

fx

√
µ′′r,eff

µ′r
(53)

=
23.1 nT√

fx

√
tan δmag

µ′r
, (54)

clarifying the exclusive dependence on the magnetostrictive
film’s magnetic properties. The best value for the detec-
tivity of LOD(1 Hz) = 292 pT/

√
Hz is measured around

a bias flux density of Bbias = +0.65 mT (Fig. 11) de-
spite the higher losses compared to the operating point
around Bbias = −0.65 mT (Fig. 9b) for which a value
of LOD(1 Hz) = 394 pT/

√
Hz is achieved. The reason is

the higher magnetic sensitivity in this measurement of
Smag = 61.3 Hz/mT at Bbias = +0.65 mT compared to a
value of Smag = 42.5 Hz/mT at Bbias = −0.65 mT. Thus, an
optimum LOD is achieved at an operating point at which the
sensitivity-to-loss ratio Smag/Rmag is maximized.

From a measured value LOD(1 Hz) = 292 pT/
√

Hz
at Bbias = +0.65 mT the relative magnetic loss
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factor can be determined to tan δmag/µ
′
r = 1.6 · 10−4

(tan δmag/µ
′
r = 2.9 · 10−4 at Bbias = −0.65 mT). Due to the

dependence of the magnetic properties on e.g. the material
composition, thickness, magnetic domain configuration, shape,
etc. and also due to their interdependencies it is difficult to
compare the determined value with other values from the
literature. However, values reported in [70] are at least in
the same order of magnitude even though the investigated
samples were measured at cryogenic temperatures. For typical
parameters of the sensor under investigation, Fig. 10 depicts
resulting limits of detection at a frequency of 1 Hz for
various relative magnetic loss factors. Because the LOD is
proportional to the square root of this loss factor, tan δmag/µ

′
r

needs to be decreased by two orders of magnitude in order to
improve the LOD by a factor of ten.

IV. CONCLUSION

In this paper, a cantilever-type magnetoelastic resonant
sensor, representative for other kinds of magnetoelastic res-
onators, has been investigated. Such sensors for the detection
of low-frequency and low-amplitude magnetic fields utilize the
∆E effect which leads to a magnetically induced resonance
detuning. For the detection of the resonator’s detuning, the
sensor is preferably driven by an electrical excitation signal
which, in turn, is then phase modulated by the magnetic
measurement signal. Based on the dynamics of resonant
mechanical structures an expression for the overall phase
sensitivity has been derived. Such sensors exhibit several loss
mechanisms that lead to random vibrations of the structure
(thermal-mechanical noise) as well as to random agitation
of the charge carriers flowing through the sensor (thermal-
electrical noise). The phase noise resulting from these thermal
noise sources can not only be predicted accurately but also
decreased easily by increasing the excitation amplitude (addi-
tive noise). However, it has been shown that losses appearing
in the sensor’s magnetic material due to domain wall actions
clearly generate additional flicker phase noise that can not be
decreased by increasing the excitation amplitude (parametric
noise). Based on the fluctuation-dissipation theorem indicat-
ing random fluctuations of the magnetization, an analytical
expression for the magnetically induced phase noise could
be derived. With this result, not only the fundamental LOD
due to thermal vibrations of the mechanical structure but also
the LOD for sensors impaired by magnetically induced phase
noise could be described. In particular, in the latter case,
the LOD does not depend on the sensitivity but is solely
determined by the dynamic loss properties of the magnetic
layer, at least if the magnetic sensitivity is high enough such
that thermal noise sources are negligible. Hence, instead of the
sensitivity, the magnetic losses, represented by the material’s
effective complex permeability, should be considered as the
most important parameter for the further improvement of such
sensors. This implication is not only valid for magnetoelastic
cantilevers but also applies to any type of magnetoelastic
resonator.

Please note that all statements made in this paper refer to
magnetic fields oriented along the long axis of the cantilever as

depicted in Fig. 1. If the low-amplitude magnetic measurement
signal Bx(t) is applied at a different angle, only the sensitivity
decreases cosinusoidally while all noise contributions remain
unchanged. Thus, independently of the dominant noise source,
the LOD worsens by the same factor the sensitivity is de-
creased. Contrary, if the ambient magnetic bias flux density
Bbias is applied at a different angle, the sensor’s magnetic
state might be altered significantly. Due to the tight relation
between the magnetic state and the magnetic losses, not only
the magnetic sensitivity but also the noise contributions will
change (with exception of the thermal-electrical noise caused
by the dielectric losses of the piezoelectric material). As long
as the overall noise floor is dominated by random fluctuations
of the magnetization, the LOD is still exclusively determined
by the relative magnetic loss factor (Eq. (54)).
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