
Deterministic Scaffold Assembly By Self-Reconfiguring Micro-Robotic Swarms

Pierre Thalamya,∗, Benoı̂t Pirandaa, Frédéric Lassabea, Julien Bourgeoisa

aUniv. Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS
1 cours Leprince-Ringuet, 25200, Montbéliard, France.

Abstract

The self-reconfiguration of large swarms of modular robotic units from one object into another is an intricate problem whose
critical parameter that must be optimized is the time required to perform a transformation. Various optimizations methods have
been proposed to accelerate transformations, as well as techniques to engineer the shape itself, such as scaffolding which creates
an internal object structure filled with holes for easing the motion of modules. In this paper, we propose a novel deterministic and
distributed method for rapidly constructing the scaffold of an object from an organized reserve of modules placed underneath the
reconfiguration scene. This innovative scaffold design is parameterizable and has a face-centered-cubic lattice structure made from
our rotating-only micro-modules. Our method operates at two levels of planning, scheduling the construction of components of
the scaffold to avoid deadlocks at one level, and handling the navigation of modules and their coordination to avoid collisions in
the other. We provide an analysis of the method and perform simulations on shapes with an increasing level of intricacy to show
that our method has a reconfiguration time complexity of O(3

√
N) time steps for a subclass of convex shapes, with N the number of

modules in the shape. We then proceed to explain how our solution can be further extended to any shape.

Keywords: Modular Robotic Swarm, Self-Reconfiguration, Large-Scale Swarm Coordination, Distributed Algorithm, Scaffolding

1. Introduction

Optimization methods is a field of research in constant in-
novation: Making its debut with methods using a centralized
approach based on iterative searches, it quickly moved towards
new paradigms like genetic algorithms (GA) (Goldberg and
Holland, 1988). Then, it benefited from the invention of the
concept of swarm intelligence (SI) (Beni, 2005), initially linked
to modular robotic systems, called cellular robotic systems at
the time. This revolution gave birth to ant colony optimization
(ACO) (Dorigo et al., 1996) and particle swarm optimization
(PSO) (Kennedy and Eberhart, 1995), which are methods that
rely on the emergence of the solution through the interaction
of the elements of the system and that can be applied to many
different kinds of applications.

In the Programmable Matter Project1, we are building a mod-
ular robot composed of quasi-spherical micro-robots able to
compute, communicate and move around each other (see Fig-
ure 1). We also develop algorithms to perform various tasks
with these robots. Among these tasks, the most difficult to per-
form is almost certainly self-reconfiguration, which transforms
an initial configuration of connected micro-robots into a final
one. The number of unique configurations that can be created
with n modules is huge: (c × w)n, where c is the number of

∗Corresponding author.
Email addresses: pierre.thalamy@femto-st.fr (Pierre Thalamy),

benoit.piranda@femto-st.fr (Benoı̂t Piranda),
frederic.lassabe@utbm.fr (Frédéric Lassabe),
julien.bourgeois@femto-st.fr (Julien Bourgeois)

1http://projects.femto-st.fr/programmable-matter/

possible connections per module, and w the number of ways to
connect the modules together (Park et al., 2008). Furthermore,
the most critical parameter of self-reconfiguration is the time
required to perform a transformation, the reconfiguration time.
To optimize the reconfiguration time, modules must move con-
currently, which unfortunately makes the configuration space
grow at the rate of O(mn) with m the number of possible move-
ments and n the number of modules free to move (Barraquand
and Latombe, 1991). The exploration space for reconfiguration
between two random configurations is therefore exponential in
the number of modules, which prevents complete optimal plan-
ning for all but the simplest configurations.

To solve this problem more efficiently we propose therefore
two optimizations. The first one is to change the way we define
an object: rather than constructing an object filled with micro-
robots, we define it using its boundary representation. Second,
we propose to build an object using an internal scaffold that
leaves internal holes inside the shape to facilitate motion and
coordination. This scaffold can then be coated by modules af-
terward so as to preserve the external aspect of the object. Ac-
cordingly, while the object will look like a plain object from the
outside, it will actually be composed exclusively of a scaffold
with an added coating. The resulting object will thus contain
fewer micro-robots than it would otherwise, and these micro-
robots will be able to move inside the object; these two features
significantly contribute to decreasing the reconfiguration time.

As an example, an estimate of the reconfiguration time for
our sliding blocks (Piranda et al., 2013) and using the metrics
introduced in (Zhu and El Baz, 2019) is 12 h for 800 blocks.
This is just a rough estimate to stress that time is really an issue

Preprint submitted to Swarm and Evolutionary Computation: PDCO August 20, 2020

http://projects.femto-st.fr/programmable-matter/

in self-reconfiguration algorithms. Besides, it was showed in
practice that it could take 11.66 h to reconfigure an ensemble of
1,000 Kilobots (Rubenstein et al., 2012). Given a rotation time
of 20 ms, as gauged by our latest hardware experiments with
2 mm 3D Catoms, and using scaffolding, we estimate that it
would take roughly 6 s to build the scaffold of a cube of size
19 × 19 × 19 modules (110 cm3) and made of nearly 1,200
modules—while the filled cube of the same size would consist
of 6,859 modules. Even though 6 s is an order of magnitude and
not a precise result, it shows that together, electrostatic actua-
tion and the scaffolding algorithm we propose can dramatically
reduce the reconfiguration time, enabling practical applications
for programmable matter.

The objective of this article is to introduce a method for
building an internal robotic scaffold of a large class of objects in
sublinear time, through the coordinated effort of up to millions
of distributed rotating modules in a 3D grid.

Section 2 starts by introducing the related work, followed by
an overview of the fundamentals of our method in Section 3.
Section 4 then presents the first version of our algorithm, spe-
cialized in building various dimensions of square pyramids, as a
way to familiarize the reader with the concept and mechanisms
at play. We then dive, in Section 5, into the partial general-
ization of the scaffolding algorithm to a well-defined sub-class
of convex shapes, and demonstrate how it performs theoreti-
cally, and in simulation on various reconfiguration cases. In
Section 6, we describe the conditions under which our work
can be extended to any shape, and the solutions that we are in-
vestigating for that purpose, before concluding and proposing
some future work in Sections 8 and 9. All the presented al-
gorithms are fully decentralized and operate on robotic ensem-
bles where micro-robots act like autonomous agents. Lastly,
the simulations presented in this paper were performed in Vis-
ibleSim (Piranda, 2016), a discrete event simulator for large
modular robotic systems.

2. Related Work

One way to generally approach the kind of problem tack-
led in this work is by use of metaheuristics from the field
of biologically inspired computing (Ser et al., 2019). Those
are stochastic techniques that are generally classified into two
groups: nature-inspired metaheuristics on the one hand, such as
evolutionary algorithms (EA) (Bäck et al., 1997); and swarm
intelligence (SI) on the other (Beni, 2005; Strumberger et al.,
2019). GA (Goldberg and Holland, 1988) are the most widely
used kind of EA algorithms, and can be used to evolve qual-
ity solutions to optimization and search problems (Goldberg
and Holland, 1988; Chung and Shin, 2019) using genetics-
inspired operations. Besides, SI uses decentralized control to
let a system composed of multiple agents self-organize exclu-
sively through interactions with themselves and their local en-
vironment. This leads to the emergence of complex behavior
from the whole system, much like the complex behavior of ant
colonies, flocks of birds, or honey bee colonies, in biological
systems, which can be applied to a variety of computing appli-
cations (Rajasekhar et al., 2017). While both EA and SI have

been successfully used in tackling NP-hard problems individ-
ually, hybrid methods that combine both SI and EA (GA, usu-
ally) also exist such as in PSO (Tuba et al., 2015).

Early work on self-reconfiguration considered only a very
limited number of modules in the system (dozens), and with
intricate geometries that made self-reconfiguration excessively
complex (bipartite systems, for instance (Kotay and Rus, 2000;
Ünsal et al., 2000), or others (Yoshida et al., 1998)). The field
also moved away from heavily centralized approaches to more
adequate distributed methods, better fitted for large-scale recon-
figuration and the dynamic nature of the underlying systems.
While most self-reconfiguration methods are deterministic, a
number of stochastic methods can be found in the literature.
Early attempts using stochastic relaxation (Yoshida et al., 1998)
or simulated annealing (Kurokawa et al., 1998) suffered from a
difficulty to converge into the goal shape as they were getting
trapped into local minima. Nonetheless, more recent attempts
such as (Fitch and McAllister, 2013)—based on a Markov deci-
sion process to optimize the number of connection/disconnec-
tion of modules—have proven very promising as they can be
easily made generic and applied on diverse hardware systems
and models. Stochastic methods might also be by themselves
more robust to faults in hardware systems during reconfigura-
tion, which is critical, while deterministic methods would need
additional correction mechanisms.

On the other hand, deterministic approaches generally have
a guaranteed convergence into the goal shape, but might need
additional correction mechanisms in case of hardware failures
as opposed to the built-in robustness of stochastic methods.
The most popular self-reconfiguration model is by far the sim-
ple sliding-cube, which resides in a cubic lattice and can per-
form translations and convex rotations on the surface of other
modules, or only one of the former in some models. Ap-
proaches vary from disassembly/reassembly through an inter-
mediate shape (Fitch et al., 2003), tunneling through the shape
with sliding-only cubes (Kawano, 2015) (both with quadratic
operating time cost), to more specialized methods such as (Bie
et al., 2018) which can build branching structures in a linear
number of module motions using Lindenmayer-systems and
cellular automata (Bie et al., 2018; Zhu et al., 2017).

Most related works did not assume a model with a complex
geometrical grid and rotation only motions, unlike ours. How-
ever, Yim et al. (2001) showed with hundreds of modules that
a flat 2D disk of Rhombic Dodecahedral (RD) modules in a
Face-Centered-Cubic (FCC) Lattice could be reconfigured into
various shapes in O(n) reconfiguration steps (individual module
motions) through a planning method named goal ordering, with
n the number of modules, albeit with no guarantee of conver-
gence. They nonetheless found that deadlock avoidance could
still be improved slightly by adding randomness in the decision
process of the modules. This is most relevant as these RD mod-
ules have motions constraints very similar to the ones of our
own model, introduced in the next section. While it is usually
assumed that all the modules composing a modular robot must
remain connected at all times during reconfiguration, dropping
this constraint can lead to interesting systems such as the rotat-
ing M-Blocks (Sung et al., 2015).

2

In order to aid self-reconfiguration, researchers introduced
the notion of scaffolding in (Kotay and Rus, 2000), where the
ensemble could be made porous thanks to the construction of
multi-module structures so that modules could easily flow in-
ternally, simplifying planning, reducing the number of mod-
ules to displace, and therefore accelerating reconfiguration al-
together. Scaffolding was further studied in (Støy, 2006; Støy
and Nagpal, 2007) with a very simple scaffold geometry thanks
to the simplicity of their cubic sliding and rotating robotic
model. They proposed an elegant deterministic reconfigura-
tion method based on cellular automata and simple gradients.
The same scaffold geometry later inspired (Lengiewicz and
Holobut, 2019), with a resembling model but solving recon-
figuration through a max-flow search to optimize the flow of
modules between the boundaries of the initial shape and those
of the goal shape. Both achieved self-reconfiguration with a
number of individual movements linear in the number of mod-
ules present in the system.

Furthermore, our approach is somewhat conceptually similar
to (Dewey et al., 2008), where modules are arranged into reg-
ular multi-module units called metamodules, that can be in an
empty (only structural modules of the unit), or a filled state (sur-
plus of modules in the unit). Modules flow through the growing
shape from filled metamodules to empty metamodules guided
by a planner and achieve a completion time linear with the di-
ameter of the ensemble. They did not address however the re-
source allocation aspect of the reconfiguration, that is to say
how to decide on which part of the initial shape will fill each
part of the goal shape, an inescapable and complex problem.

However, these scaffolding approaches considered an initial
shape as a prebuilt scaffold but none addressed how to con-
struct the scaffolding structure from a mass of modules, which
is the topic of this paper. This work is, therefore, putting for-
ward an original solution to a previously unstudied problem,
as shape assembly work from the modular robotic literature is
usually more concerned with the final latching of modules at
specific locations than the planning of the motion that led them
there (Tucci et al., 2018), and classical self-reconfiguration ap-
proaches with massive ensembles generally transform a shape
into another rather than build one from the ground up (Dewey
et al., 2008; Butler et al., 2002; Lengiewicz and Holobut, 2019).
Hence, identifying bases of comparison for evaluating this work
in regard to other assembly or self-reconfiguration solutions is
arduous and the resulting findings might be inconclusive. As
a matter of fact, this a much deeper problem in this line of
work, as traditional (i.e., shape to shape) self-reconfiguration
works are already afflicted by this evaluation conundrum, due
to the variance in robotic models, capabilities, and modes of
motion (Thalamy et al., 2019b; Ahmadzadeh et al., 2016).

3. Fundamentals

3.1. Modular Robotic Model
Our work considers the self-reconfiguration of modular

robots made of quasi-spherical rotating modules named 3D
Catoms. These robots can attach to each other and rotate around
one another using electrostatic actuation.

3.1.1. 3D Catom
3D Catoms have a quasi-spherical geometry which consists

of 12 flat squares (named connectors, drawn in red in Fig-
ure 1a) linked by curves. Connectors are centered and tangent
to the contact points of a dense set of spheres placed in a Face-
Centered-Cubic (FCC) grid (cf. (Piranda and Bourgeois, 2018)
for relative contact points coordinates). Two kinds of curves are
placed between connectors to allow the rotation of a 3D Catom
around another: The first shape, the hexagonal actuator (drawn
in green in Figure 1a) is made of a triangle and 3 sections of the
body of a cylinder; the second shape, the octagonal actuator
(drawn in blue in Figure 1a) is made of a square and 4 sections
of the body of a cylinder.

The 12 electrostatic connectors on the surface of the 3D
Catoms are used for latching, actuation between modules, and
peer-to-peer communication between connected neighbors. 3D
Catoms latch onto each other using their electrostatic connec-
tors and assemble to form FCC lattice structures, resulting in
staggered vertical layers of modules.

Individual movements consist in a rotation from one connec-
tor of a neighbor module to another connector on the surface
of this same module, which acts as a pivot. Figure 1b shows
the two possible ways of performing rotations, through an oc-
tagonal actuator at the bottom (rotating around the green pivot),
and using a hexagonal actuator at the top (rotating around the
yellow pivot). Each rotation displaces the rotating module from
one cell to an adjacent one of the FCC lattice. More complex
motions comprised of several steps are therefore sequences of
individual rotations on the surface of neighbor modules.

Although this can seem like a strictly abstract model, the Pro-
grammable Matter Project is actively engaged in creating hard-
ware 3D Catoms. Current efforts are focused on the production
of a prototype 3D Catom that is 3.6 mm in diameter. Figure 1b
shows the printed envelop of this micro-robot.

3.1.2. Module Assumptions and Critical Constraints
While the movement of a single module can seem trivial, the

intricacy of self-reconfiguration becomes apparent when con-
sidering 3D Catoms in a swarm context, with multiple mod-
ules attempting to perform their respective tasks in parallel. We
model a modular robot consisting of a connected ensemble of
3D Catoms as a distributed system, where:

• all modules are identical and they all execute the exact
same distributed program;

• the graph constituted by all modules in the systems and
their interconnection must remain connected at all times—
this is the connectivity constraint;

• modules can only react to either the reception of a mes-
sage, to the connection/disconnection of a neighbor, or to
an internal event such as a timer event;

• computation is only performed locally to each 3D Catom;

• communication is also performed exclusively in a local
fashion, with modules only communicating with their

3

Rotation around
the yellow pivot

Rotation around
the green pivot

a) b) c)

connectors

octagonal
actuators

hexagonal
actuators

Figure 1: The 3D Catom: sample motions and first prototype (Nanoscribe picture, thanks to Gwenn Ulliac)

immediate neighbors on the FCC grid, and through a
message-passing scheme;

• all modules share a common coordinate system and have
a global knowledge of the goal shape;

• modules perform asynchronously.

Furthermore, 3D Catoms do not undergo any deformation
when rotating, as deformation is likely to require moving
parts, and 3D Catoms are meant to be inexpensive and mass-
producible by design. This raises, however, an important con-
straint on the movement of modules, as the geometry of 3D
Catoms thus does not allow a module to enter or leave a posi-
tion that is surrounded by two opposing modules. This means
for instance that in the case of two lines of modules growing
into each other, it would not be possible to insert the last mod-
ule required to bridge the gap between the two lines. This is a
major constraint on any self-reconfiguration, as this means that
the construction of any shape must follow a strict set of ordering
principles and construction rules so as to avoid the occurrence
of deadlocks during construction. From here on, we will refer
to this constraint as the bridging constraint.

3.2. Scaffold Anatomy

The objective of our work is to build an internal scaffolding
of a goal object as fast and efficiently as possible. This scaffold,
which forms a sort of highly regular skeleton of an object, is
composed of an arrangement of regular units sharing a common
structure named scaffold tiles.

3.2.1. Structure of a Scaffold Tile
The scaffold tile is the parameterizable unit of the scaffold.

All the tiles composing a 3D Catom scaffold share a common
geometry, but their exact structure can vary depending on the
specific location of the tiles within the shape.

A tile consists of a number of components placed in an appro-
priate coordinate system, where −→x and −→y are classical orthogo-
nal axes but where the vertical axis −→z is skewed and defined as
−→z = (

√
2

2 ;
√

2
2 ; 1

2). These components are:

• A root module at the center of the tile, to which we will
refer hereinafter as the tile root or simply R module (in
white in Figure 2a).

• Two horizontal branches placed orthogonally across the −→x
and −→y axes named the X and Y branches (in red and green
in Figure 2b, respectively).

• Four upward branches ascending at a 45◦ angle and placed
orthogonally to each other: the Z branch along the −→z
axis, and the RZ, RevZ, and LZ branches at 90°, 180°, and
270°clockwise from Z (therefore following axes (1,−1, 1),
(−1,−1, 1) and (−1, 1, 1)), respectively—all in light blue in
Figure 2b.

• Four support modules: S Z , S RevZ , S LZ , and S RZ ; one un-
der each of the ascending branches at respective positions
(1, 1, 0), (−1,−1, 0), (−1, 1, 0), and (1,−1, 0) relative to the
tile root R. Supports are absolutely necessary for modules
coming from below the tile so that they can traverse it ver-
tically, as imposed by the bridging constraint (in yellow in
Figure 2b).

3.2.2. Parameters and Conditional Structure
Let b be the parameter of the scaffold that defines the length

of the branches of the tiles in number of modules. There is a
lower bound on the value of b as under four modules in length
tiles become too dense to allow module movement through all
of their internal paths. Furthermore, an upper bound on the
value of b is given by the mechanical strength of the connec-
tors of the hardware 3D Catoms, which is still undefined at the
moment. Varying the length of tile branches allows control on
the resolution of the target shape and thus the speed of self-
reconfiguration, as higher b values would result in shapes with

4

4 EPL cells

Tile root

4 supports

Z branch

RZ branch

LZ branch

X branch

Y branch
RevZ branch

a) b) c)

Figure 2: Anatomy of a scaffold tile: a) Tile root and vertical entry point locations, ingoing branches from parent tiles in transparency; b) Supports and outgoing
horizontal branches; c) Outgoing upward branches.

lower density and fewer modules to place but also might result
in a lower fidelity for the details of the shape. Throughout this
paper, we will assume b = 6 as the length of the branches, as it
is a very reasonable value mechanically.

If necessary, we will refer to a specific module of the tile with
a name formed from its branch followed by its order within that
branch (e.g., RevZi, where i ∈ [1, b − 1]), or from S with the
branch above it in subscript for support modules (e.g. S LZ).
Note that for any branch, the module of order 0 is always the
tile root.

Furthermore, while b defines the maximum length l of the
branch of a tile, a branch can have anywhere between 1 and b
modules when part of the scaffold. A length of 1 means that
the branch should not be grown for that tile, and only the tile
root remains—tiles can, therefore, have a variable number of
grown branches. A length of b means that the branch must be
grown and it is likely that another tile will be grown from the tip
of that branch once complete. A length anywhere between the
two means that due to the geometry of the shape and placement
of the tile within that shape, the full branch must not be grown
and a child tile will not be grown from this branch.

To sum it all up, a tile always has a root module, and can
grow between 0 and 6 branches, each between 2 (including the
tile root) and b modules long. Furthermore, support modules
need only be present if the upward branch below it and ingoing
to its tile has been grown. Thus, a full tile (with all branches
grown), can have anywhere between 1 (the R module), and 1 +

((b − 1) × 6) + 4 modules.
Finally, we may also consider a number of additional

branches opposing each of the aforementioned branches, which
are named using Opp as a prefix, but these are special cases
used for growing the shape in reverse that will be covered in
due time.

3.2.3. Tile Construction Ordering
Due to the bridging constraint and the other motion con-

straints imposed on the modules, the tile cannot be built in any

order2. There are a few rules that must be respected to limit the
number of possible intersecting paths and avoid deadlock when
building a tile:

1. The first component of the tile to be added will always
be the tile root. This is even more crucial as the module
claiming this component has a major role to play in the
rest of the construction of the tile, as we will see,

2. Then, while the exact order depends on the location of the
tile, the support modules and X1/Y1 modules must be built
if present.

3. Horizontal branches must be built before all vertical
branches are grown in order to prioritize the horizontal
growth of the shape.

3.2.4. Connecting Tiles
Tiles assemble by connecting the tip of a fully grown branch

(i.e., where l = b) to the tile root of another, as demonstrated in
Figure 3.

Much like for the tile itself, we must enforce a construction
order for the scaffold. This construction order follows the di-
agonal of the shape to be built. This means that the first tile to
be built (seed tile) will be on a corner of the base of the object,
and the last one will be the one on the opposite corner of its top
layer. We arbitrarily choose this corner as the one with minimal
x and y coordinates. Therefore, the growth of the shape will by
default (there are exceptions) proceed along the −→x and −→y axes
for a given plane, and from bottom to top. Then we can say that
a tile that has been built before another that is connected to it
(i.e., a neighbor tile) is a parent tile of the latter—conversely,
the other is a child tile of the parent. A tile usually has more
than 1 parent and up to 6 (one for each branch) if all ingoing
branches are grown. Parent tiles are responsible for the growth

2See youtu.be/DjLwsrzA0MI?t=0 for an example of tile construction, in the
case of a full tile.

5

https://youtu.be/DjLwsrzA0MI?t=0

Sandbox

Ntile= 1 Ntile= 2 Ntile= 4 Ntile= 8

Figure 3: Anatomy of the entire scaffold: Breakdown of a sample scaffold consisting of an arrangement of 8 tiles with all branches grown, directly over the
sandbox (branches from sandbox tiles in transparency).

of their children tile by feeding them modules through the con-
necting upward branch.

By generalization, we can generate a polytree, named con-
struction polytree, representing the growth of a scaffold into a
given object, where nodes are tiles and edges express construc-
tion precedence, with the seed tile as the root of the underlying
tree.

3.2.5. Entry Points into the Tile
Module navigation from one tile to another is supported by

special positions around the base of each tile, named Entry
Point Locations (EPL hereinafter). There are 4 EPL for a tile,
one on each of the ingoing upward branches (see Figure 2, with
entry points in transparent pink and ingoing branches in trans-
parent blue). Entry points are located over the second-last mod-
ule of the ingoing upward branches, and right below the support
module for that branch, which guarantees the reachability of the
higher portion of the tile.

Any module entering a tile will do so from one of the four
EPL, that is to say, that modules always flow through the scaf-
fold from the lower tiles to the tiles above, and always do
so through the connecting ascending branches—and therefore
never through the horizontal branches, except for tile construc-
tion purpose. What motivates this mode of operation is that it
limits to a maximum the number of possible intersecting paths
along the scaffold, which lowers the risks of motion distur-
bance between modules and eases coordination. Entry points
also have a crucial functional role to play in module navigation
across the tiles and scaffold as a whole, which will be addressed
later on.

As a consequence, a tile will have a maximum of four incom-
ing flows of modules, which is the number of different usable
paths leading to it. One of the main challenges is hence to co-
ordinate these flows of modules such that they cannot intersect
and impinge on each other’s courses.

3.2.6. Sandbox
There is one last essential component of the system that

needs to be introduced, and it is the sandbox. Indeed, this
work focuses on the coordinated construction of the scaffold
of a shape from an ordered reserve of modules rather than from
one prebuilt shape to another, which will be further addressed.
This reserve of modules, named sandbox, is located underneath
the reconfiguration scene, and its main purpose is to introduce
(or discard) as many modules as needed for the reconfiguration,

at various ground locations of the scene (see Figure 3). The
sandbox is structured internally exactly as the scaffold (with
the same parameter b) and contains a surplus of modules along
its branches, which can then be called in for the reconfigura-
tion above. Therefore, all modules are initially introduced to
the growing shape through one of the ground tiles at the top of
the sandbox.

Furthermore, the sandbox is connected to an external appa-
ratus that powers the whole system and provides the distributed
program that the modules will execute during reconfiguration.

3.3. Self-Reconfiguration
3.3.1. Module States

Throughout the self-reconfiguration, modules will change
state depending on their current task (e.g., navigating the scaf-
fold in search of a position to be filled, coordinating flows of
modules, or passively responding to messages). For each of
these states, we can consider that modules execute a different
distributed algorithm, which will be synthesized over the course
of this section. Figure 4 summarizes the behavior of each mod-
ule state and transitions between them; the roles of the messages
mentioned are explained in the next section. All the possible
module states are briefly shown below:

• Idle: This is the default module state in which modules
are when they are not yet introduced into the reconfigur-
ing system by the sandbox. They are simply waiting to
be called in to partake in the reconfiguration. While this
state will be left out from the rest of the article, it is shown
here to emphasize that modules do not just appear from
nowhere, but are already within the system as Idle mod-
ules in the sandbox.

• Free Agent: Once modules are introduced from the sand-
box, they enter the Free Agent state. This corresponds to
a module that has not been assigned a final position as a
component of the scaffold yet and will navigate the struc-
ture until it encounters a tile that has a position to be filled.

Then, once a Free Agent has been assigned a scaffold com-
ponent to fill and has reached it, it can enter one of two states
depending on the location of the component within the tile.

• Beam: By default, it enters the passive Beam state. Beam
modules only help forwarding messages between neigh-
boring modules and regulate module flows to ensure that

6

Free Agent

Tile Entry Point Location
State := Free Agent

Sends message «RGP»
to Tile Root.

Receives position goalPos

Is
goalPos a scaffold

 component?

Navigates to goalPos position

no

Is Tile Root
in place?

goalPos := Tile Root position

yes

no

State = Beam

Is
goalPos a

Tile Root position
?

State = Coordinator

no

yes

yes

Beam

msg is «TCF»?Forward msg to
relevant neighbor modules

yes

Waits for a message (msg)

Coordinator

Waits for a message
RGP

Is tile
construction

done?

goal:=next tile
component
to be filled

goal:=next
tile up

sends goal
to requester

yes no

TCF
received from

all children
tiles?no

no

Broadcasts TCF
message towards

parent tiles

TCF

no

yes

Is
requester

 on right EPL
for the next tile

position?

yes

Put requester on hold

Is
there a

module waiting
on EPL for the
new next tile

position?

requester:=module
waiting on EPL for
next component

yes

no

Has
children

tiles and has
not sent
TCF?

sends TCF to
parent tiles

Figure 4: Simplified view of the behavior of each module state and transitions between them.

modules are not flowing too tightly, which could introduce
collisions. Beam modules are either branch components or
support modules.

• Coordinator: However, if the assigned component is the
tile root, then the Free Agent module enters the Coordi-
nator state. Coordinators are key modules of the self-
reconfiguration, as their role is to assign a destination to
Free Agent modules coming into their tile, either so that
they go fill a component of that tile, or to reach one of the
children tiles. Coordinators also schedule the construction
of the tile to ensure that components are built in the right
order and thus avoid collisions or deadlocks.

3.3.2. High-level Planning: Tile Construction Scheduling
Our proposed self-reconfiguration planning process3 oper-

ates at two levels. On the one hand, the higher level is responsi-
ble for coordinating the construction of the scaffold at the level
of the tile, directing module flows to the tiles that need to be
constructed, when they need to.

Indeed, as previously mentioned, the growth of the goal
shape proceeds according to a precise scheduling that ensures
that structural deadlocks caused by an ill-formed tile construc-
tion ordering are avoided. A diagonal growth direction is
enforced. Furthermore, based on this construction plan, the
growth of the scaffold behaves according to a single crucial
rule:

1. A tile can only begin its own construction once all of its
ingoing branches (i.e., connecting it to its parent tiles) are
complete.

3Please refer to the following video for a walkthrough of a reconfiguration
into a cube: youtu.be/DjLwsrzA0MI?t=36.

The growth of the scaffold will, therefore, start from either
a single ground position (seed tile, in the corner of the object)
or multiple seed tiles in more complex shapes where the target
object has a base that has 2-dimensional concavities. These ini-
tial ground tiles are tiles that rest onto the sandbox and have no
ingoing horizontal branches, they are therefore ready to receive
modules right away and start building. In the case of multi-
ple initial tiles, the growth of the disjoint portions of the object
will later synchronize at their junction based on the construc-
tion plan, or not synchronize at all if these portions are entirely
disjoint.

The construction of a tile begins when a Free Agent module
arrives at one of the EPL of the future tile (see Figure 5a, b &
c), and claims the empty tile root position (Figure 5d). Once
this module gets into position, it is ready to halt or direct any
module that enters one of the EPL of the tile (see Figure 5d & e)
in order to build the various branches and tile supports it needs
(see Figure 5f). By default, when a module arrives at an EPL
of a tile (whether it is already built or not), it halts there and
requests a destination from the Coordinator of the tile it just
entered (cf. Algorithm 2, ll. 9–12).

But before going further, let us introduce below the dis-
tributed messages on which high-level planning relies:

MESSAGE NAME (ACRONYM) [DATA]

INGOING BRANCH READY (IBR) [recipient, branch]:
This message is used to discover when all branches ingoing
to a tile are complete. It is sent by the tip module of a fully
grown branch that extends into a future new tile, identified by
the branch data. It is sent to all the tips of the branches ingoing
to that tile that are already in place. If a tip module receives an

7

https://youtu.be/DjLwsrzA0MI?t=36

Module: #1411
State: Free Agent
Position: (4,4,0)
Goal: (2,2,5)[Z_EPL]

Cell: Z_EPL
Position: (2,2,5)

Time: 28 188 744 µs

Module: #1429
State: Free Agent
Position: (4,4,0)
Goal: (2,2,5)[Z_EPL]

Module: #1411
State: Free Agent
Position: between
 (3,2,3) and (2,2,5)
Goal: (2,2,5)[Z_EPL]

Time: 29 823 968 µs

Module: #1411
State: Free Agent
Position: (2;2;5)
Goal: (0;0;6) [R]
 (received TIR)

Module: #1411
State: Coordinator
Position: (0,0,6) [R]

Time: 31 054 160 µs

Module: #1429
State: Free Agent
Position: (2,2,5)
Comm: send RGP to
 Coordinator (0,0,6)

Module: #1429
State: Free Agent
Position: (2,2,5)
Goal: (0,1,6) [Y1]
 (received PGP)

Time: 29 428 872 µs

Time: 32 400 880 µs Time: 33 220 216 µs

Module: #1429
State: Beam
Position: (5,6,10) [Y1]

a) b) c)

d) e) f)

Figure 5: Simulation snapshots of the Free Agent goal assignment process. Two Free Agents (#1411 and #1429 drawn in black) climb up to the Z EPL cell and
get assigned their position in the future tile: Tile root for #1411 through a TIR message as the tile was missing its Coordinator (in white), and Y1 for #1429 through
a PGP/RGP transaction (in green). Each then reaches its final position in the tile, before updating its state accordingly.

IBR message from a new branch, it responds with an IBR mes-
sage to notify the sender that its branch is in place too, which
ensures that all tips have a correct representation of the current
state of the tile at all times. IBR is not sent to the branch tips to
which the sender is directly connected, as they can locally de-
tect the presence of neighbor modules through their connectors.

TILE INSERTION READY (TIR) [∅]: When a branch tip
module has received an IBR from all the branches ingoing to
its tile, it can instruct a module waiting on the EPL over its
branch to claim the free tile root position, by sending it a TIR
message. Only one of the ingoing branches has this responsi-
bility, which depends on the location of the tile. If no module is
waiting on the EPL, then the branch tip stores the message and
sends it to the next module that enters its EPL. This is used as a
synchronization mechanism between parts of the scaffold grow-
ing concurrently, so as to ensure the correct implementation of
the construction plan.

REQUEST GOAL POSITION (RGP) [sender]: RGP is sent
to the local Coordinator by a Free Agent module when it ar-
rives at the EPL of a tile, and is used to request a destination to
continue the flow (cf. Algorithm 2, ll. 9–12)

PROVIDE GOAL POSITION (PGP) [recipient, goal]: This
is the response sent by a Coordinator to a Free Agent mod-
ule waiting on an EPL, when it receives an RGP message from
it. After receiving an RGP message, the coordinator checks
whether it needs resources from that ingoing branch at the time,
and either puts the requesting module on hold until new re-
sources are needed (in which case it simply differs the response)
or responds right away with a goal position for that module (cf.
Algorithm 1, ll. 1–10 and Algorithm 2, ll. 26–28). The goal
positions can either be the position of a component of that tile
that needs to be filled, or the position of one of the EPL of the
children tiles. The latter occurs if all the components that are
built from a branch are complete, in which case the requesting

module is forwarded up to the child tile at the end of the branch
located above its position. recipient is equal to the sender of
the RGP request and is used for rooting the answer back. Each
time that a coordinator responds with a PGP message providing
a destination within its tile, it checks all the modules waiting on
entry points that it has put on hold, and evaluates whether the
new next position to be filled can be assigned to one of them
(see, Algorithm 1, ll. 11–19).

COORDINATOR READY (CR) [∅]: In some cases, arriving
modules might send RGP to the tile before the tile root has
taken its position. In such a case, the RGP messages cannot
be delivered. Hence, in order to increase the robustness of the
algorithm, the Coordinator sends a CR message to all the entry
points of the tile once it gets into position, to which any module
receiving it will respond by resending its RGP message.

TILE CONSTRUCTION FINISHED: (TCF) [∅]: When a
Coordinator module from a leaf tile (in terms of the construc-
tion polytree) has finished constructing its tile, it sends a TCF
message to the Coordinators of all of its parent tiles. When
parents have finished constructing their own tile and have re-
ceived a TCF message from all of their children, then they also
send one to their parent. This is repeated until the seed tile of
the scaffold has received all of its expected TCF, which marks
the end of the self-reconfiguration and then terminates the algo-
rithm.

At the start of the self-reconfiguration, there is nothing but an
empty sandbox, with Idle modules waiting on the entry points
of all of the ground tiles right above the sandbox. Then the seed
module comes into place. It is the module that claims the tile
root position of the corner tile acting as the seed for the self-
reconfiguration.

Once in place, it gets into the Coordinator state. It then ini-
tializes based on its knowledge of the target shape and position
within it, an ordered list of components to be filled to complete

8

its tile, and their matching entry points: it is the construction
plan of the tile. Indeed, in every construction plan, each com-
ponent is coupled with an EPL that will be exclusively used
for supplying the module that will claim that location. More
precisely, every branch or support has a preferred feeding EPL
by default: the EPL right below them for upward branches and
supports, ZEPL for the root R, RZEPL for X branch, and LZEPL

for Y branch. However, depending on the location of the tile to
be built, and thus its set of ingoing branches, some of these EPL
might not exist for the tile. Therefore, alternate EPLs might
need to be used in each of these cases.

From there on, the Coordinator waits for Free Agent mod-
ules to enter an EPL of its tile and send an RGP message (see
ll. 9–12 Algorithm 2). If the sender is on the EPL of the next
component to be filled, it directs it right away to its goal com-
ponent or otherwise awaits a request from the correct EPL (see
ll. 1–10 Algorithm 1). However, once a Coordinator receives a
request from an EPL from which no more components will be
built, it responds right away and directs the incoming module
to the EPL of the branch directly above it, thus forwarding it
to one of its children tiles to continue the construction process.
This is repeated until all the tiles constituting the scaffold are
complete.

Furthermore, the IBR / TIR messaging system ensures that
the precedence in the construction order of tiles is respected, by
enforcing synchronization points between portions of the goal
shape growing concurrently.

This process corresponds to Algorithm 1 for the point of view
of the Coordinator, while the point of view of the Free Agent
appears later in Algorithm 2. Note that in all presented algo-
rithms, low importance messages and handlers have been left
out. Figure 4 also summarizes the high level reconfiguration
process.

3.3.3. Low-level Planning: Module Navigation
On the other hand, the lower level of planning defines how

a module navigates the structure from its current location to its
assigned goal position within the tile it is currently traversing.
This is now entirely local to the module, based on its current
neighborhood, origin, and destination. The high-level planning
process thus handles the navigation between tiles, by providing
each module with its origin (the position of an EPL) and its
destination (the position of a component or of an EPL above),
while the low-level planning handles the navigation within the
tiles themselves. It does so by the use of local motion rules, that
match a series of individual displacements (rotations between
lattice positions), to the local context of a Free Agent module.

It is worth noting that in principle any low-level planing
method could work, whether stochastic or deterministic as ours,
as long as it provides a solution for safely displacing a Free
Agent module from its current position to its assigned destina-
tion.

In more concrete terms, each local rule matches a tuple
〈neighborhoodbin, EPL, destination, step〉 to a displacement
vector

−−−→
disp, where each element corresponds to:

• neighborhoodbin: A 12-bit word that shows the current

Algorithm 1: Distributed control algorithm pseudo-code
for the Coordinator module role.

1 Msg Handler REQUEST GOAL POSITION(RGPmsg):
2 epl = getEPLForPosition(RGPmsg.srcPos);
3 if plan.isOver() then
4 goalPos = getEPLForBranchAbove(epl);
5 else if plan.nextComponentIsFedBy(epl) then
6 goalPos = plan.popNextComponent();
7 else
8 moduleWaitingOnEPL[epl] = true; return;
9 sendMsg(sender, PGP(RGPmsg.srcPos, goalPos));

10 checkModulesWaitingOnEntryPoints();

11 Function checkModulesWaitingOnEntryPoints:
12 do
13 moduleAwoken = false;
14 foreach epl ∈ getAllEntryPoints() do
15 if plan.nextComponentIsFedBy(epl) and

moduleWaitingOnEPL(epl) then
16 goalPos = plan.popNextComponent();
17 sendMsg(sender, PGP(epl.pos, goalPos));
18 moduleAwoken = true;
19 while moduleAwoken = true;

state of each of the connectors of the module, ordered ac-
cording to their default orientation. A 1 means that the
connector is connected, while 0 means that there is no
neighbor connected to it.

• EPL: The last EPL traversed by the current module, used
as the origin of the motion path.

• destination: The coordinates of the goal component or
EPL that the module is trying to reach as the destination
of the motion path.

• step: The current step of the multi-motion displacement
between the origin and the destination—i.e., the first rota-
tion would be step 1, the second step 2, etc... Usually, a
motion path within a tile with b = 6 has between 2 and 9
individual steps.

•
−−−→
disp: The displacement that the mobile module will have
to perform in order to reach the next position in the current
motion path.

Therefore, whenever a module must perform a motion, it
checks its local rules database against its current context and
obtains the next rotation it should perform. If the rule matching
processes fails, probably due to the module being early at its
location (hence with a not-yet-ready local neighborhood), the
module waits for its local neighborhood to update (marked by
an ADD NEIGHBOR or REMOVE NEIGHBOR event) and
re-attempts matching (see ll. 23–25 Algorithm 2).

The exact algorithm used by Free Agent modules to navigate
between two distant positions is summarized in Algorithm 2,
and lines 13–22 specifically address local-rule matching.

9

Algorithm 2: Distributed control algorithm pseudo-code
for the Free Agent module role.

1 Event ROTATION END: ARRIVED FROM SANDBOX:
2 if myPos == goalPos then
3 if isTileComponent(myPos) then
4 agentRole = agentRoleForComponent(myPos);
5 else reachedNewTileEntryPoint() ;
6 else
7 step++;
8 planNextRotation();

9 Function reachedNewTileEntryPoint():
10 coordinatorPos = getNearestTileRootFrom(myPos);
11 nextHop = findSupportOrBranchTipNeighbor();
12 sendMsg(nextHop, RGP(myPos));

13 Function planNextRotation():
14 ngbh = getNeighborhood();
15 disp = matchRules(ngbh, lastEPL, goalPos, step);
16 if disp then
17 nextPos = myPos + disp;
18 pivot = findPivotForMotionTo(nextPos);
19 sendMsg(pivot, PLS(myPos, nextPos));
20 waitingForLocalRuleMatch = false;
21 else
22 waitingForLocalRuleMatch = true;

23 Event ADD NEIGHBOR: REMOVE NEIGHBOR:
24 if waitingForLocalRuleMatch then
25 planNextRotation();

26 Msg Handler PROVIDE GOAL POSITION(PGPmsg):
27 step = 0; goalPos = PGPmsg.goalPos;
28 planNextRotation();

29 Msg Handler GREEN LIGHT ON(GLOmsg):
30 rotate(nextPos, pivot);

The main drawback of this approach, however, is that the
number of local rules that are necessary to cover all possible
paths from an EPL to a component reachable from that entry
point is very high. For that reason, designing rules by hand is a
tedious process, and the sheer number of rules might overload
the limited memory of the modules. Thus, improvements on
the current format of the rules should be researched in order to
reduce their memory footprint and attempt to factorize eligible
rules.

3.3.4. Motion Coordination Algorithm
Finally, there is one last process that takes place during

self-reconfiguration and that needs to be introduced, and it re-
lates to motion coordination between mobile modules. In our
work, motion coordination and collision avoidance are ensured
through two methods: a passive rule-based mechanism and an
active process. The former has already been introduced, as it
relates to the ordering in the construction of the tile, which

reduces the likelihood that module paths will intersect during
construction. There is however an additional measure that must
be taken to ensure that modules cannot impinge on their re-
spective motions, and that is to leave a gap between moving
modules at all times, an idea previously explored in the context
of 2D self-reconfiguration by Naz et al. (2016). This is nec-
essary because when modules move right next to each other,
one of them might get blocked between two modules, and due
to the bridging constraint cause a deadlock of the construction
process. This coordination is message-based and relies on a
green-light handshake between modules seeking to move, their
motion pivot, and their future latching point. Three different
kinds of messages are required, which are detailed below:

MESSAGE NAME (ACRONYM) [DATA]

PROBE LIGHT STATE (PLS) [sender, motionTarget]: Sent
by a module seeking to move to location motionTarget, one ro-
tation away from the sender. The sender Free Agent sends this
message to the pivot module it plans to use for its motion to
motiontarget (see Algorithm 2, l. 19). Then, the destination of
the message is discovered during routing, and the message for-
warded to it (see Algorithm 3, l. 21). This destination module
(hereinafter light pivot) is the module further along the motion
path of the sender, among the modules to which it will connect
upon reaching motionTarget. When a Beam module receives a
PLS message, it computes the light pivot for the requested mo-
tion based on its local knowledge of the neighborhood. If it is
not the light pivot, it forwards the request to it.

GREEN LIGHT ON (GLO) [recipient]: However, if it is the
one that should respond, it checks whether it already has a Free
Agent module on one of its interfaces (red light state). If there is
none, then it means it is in the green light state, and it responds
right away with a GLO message to the sender of the PLS re-
quest (see Algorithm 3, ll. 15–16). Otherwise, it memorizes
that the sender module is waiting to move towards it and turns
into the orange light state and differs its response until it is free
of its current Free Agent neighbor (see Algorithm 3, ll. 1–5 and
18–19).

FINAL TARGET REACHED (FTR) [∅]: Finally, the FTR
message is sent by a module that has performed a final motion
to take its place as a scaffold component and that is adjacent to
the light pivot of the module. In this scenario, FTR is sent to
the light pivot to inform it that it can now turn back to the green
light state even though the two modules are still connected to
each other.

There are therefore three different states in which a Beam
module can be: green light, if it is ready to receive a new Free
Agent on one of its connectors; red light, if it already has a Free
Agent module connected to it; or orange light, if it was in the
red light state but there is also another module that is waiting
for the pivot to turn back to the green light state to perform its
motion.

The transition between this states is not only assured via mes-
saging, as modules also monitor their interfaces to react to any

10

FreeAgent Module
Sends message

PLS

receives message
GLO

produces event
REMOVE_NEIGHBOR

produces event
ADD_NEIGHBOR

MOVE

no

reaches
goalPos

sends message
FTR

no

Beam Module
receives message

PLS

sends message
GLO

no

no

no

receives event
ADD_NEIGHBOR

:=

receives event
REMOVE_NEIGHBOR

OR
receives message

FTR

no

:=

:=

Figure 6: Light state transition diagram. The two Beam routines are executed
concurrently on pivot modules.

connection or disconnection event and update their state ac-
cordingly. Thus, if a Beam modules notices a new connection
from a Free Agent (characterized by a neighbor with a position
that is not part of the scaffold), it turns red (see Algorithm 3, l.
5). Conversely, if it notices a disconnection from a Free Agent
module, it turns its state back to green light (see Algorithm 3,
ll. 6–7). These mechanisms are summarized in Figure 6 and the
pseudo-code for it from the points of view of the Free Agent and
Beam modules can be seen on Algorithms 2 and 3, respectively.
This protocol has been shown to be robust to stochastic varia-
tions in the rotation duration of individual modules in (Thalamy
et al., 2019c).

4. Building Simple Pyramids

Now that all the fundamental elements of our work have been
introduced, this section will present as a case study the con-
struction of a square pyramid from the sandbox.

4.1. Motivations
The square pyramid of size h, or h-pyramid, is a pyramid

with a square base of dimensions h tiles and a height of h tiles.
This is the first shape for which we have implemented our self-
reconfiguration method, as it is the most simple shape that can
be built with it, due to the geometry of individual tiles.

Indeed, there are reasons why this is so:

1. As the dimensions of h-pyramids are multiples of b, all
branches are either grown fully or not grown at all, there
is no need to deal with incomplete branches.

2. Then, due to the geometry of h-pyramids, all the tiles
of the shape will have 4 ingoing upward branches. This
means that we can simply assign one EPL to each of
the supports and branches to be grown—e.g., the RevZ
branch can always be built from the Z ingoing branch be-
low, no need therefore to handle any additional motion
path from another EPL to Z. Not only does it limits the
number of local motion rules, but also the possible tile
construction scheduling to just a few cases.

Algorithm 3: Distributed control algorithm pseudo-code
for the Beam module role.

1 Function setGreenLightAndResumeFlow():
2 if state == ORANGE then
3 sendMessage(sender, GLO(waitingModule));
4 state = GREEN;

5 Event Handler ADD NEIGHBOR: state = RED ;

6 Event Handler REMOVE NEIGHBOR:
7 setGreenLightAndResumeFlow();

8 Msg Handler REQUEST GOAL POSITION(RGPmsg):
9 forwardMsgTowards(coordinator, RGPmsg);

10 Msg Handler PROVIDE GOAL POSITION(PGPmsg):
11 forwardMsgTowards(PGPmsg.recipient, PGPmsg);

12 Msg Handler PROBE LIGHT STATE(PLSmsg):
13 dst = computeLightPivotForTarget(motionTarget);
14 if dst == self then
15 if state == GREEN then
16 sendMsg(sender, GLO(PLSmsg.srcPos));
17 else
18 state = ORANGE ;
19 waitingModule = PLSmsg.srcPos;
20 else
21 forwardMsgTowards(dst, PLSmsg);

22 Msg Handler FINAL TARGET REACHED(FTRmsg):
23 setGreenLightAndResumeFlow();

4.2. Assumptions

• All modules have complete knowledge of the target shape
and can geometrically compute whether a coordinate be-
longs to the target shape, and if it does, which scaffold
component it corresponds to.

• Modules rely on a relative coordinate system for which
the origin is the R module of the current tile, both for Free
Agent and scaffold Beam modules.

• The goal h-pyramid is positioned in such a way that the
corners of the base of the pyramid are at a tile root posi-
tion.

• Construction starts from the corner of the base of the pyra-
mid with minimal x and y coordinates.

4.3. Self-Reconfiguration

The self-reconfiguration proceeds exactly as explained in
Section 3, by starting from a corner of the base of the pyramid
and growing tiles in order until the tile at the tip of the pyramid
has finished constructing. Nevertheless, we introduce in this
section two possible variants of the reconfiguration algorithm.

11

4.3.1. Surplus Modules Management
There are two possibles variants of the algorithm that can be

used. In the first one, named Continuous Flow Algorithm (Tha-
lamy et al., 2019c), modules continuously flow through the
structure from the sandbox to any available path in the structure,
even though they might not be needed. The flow is regulated by
the Coordinators depending on their construction needs, and by
the light-based local coordination mechanisms of Free Agents.
In this scenario, the goal shapes contain a surplus of modules on
each of the branches of the scaffold at the end of the reconfigu-
ration, modules that could then be further used for evolving the
shape or covering its surface. The amount of modules in excess
is a function of the length of the branches b, and of the num-
ber of upward branches UBranches in the shape, which can be
expressed as:

E = NUBranches ×
b
2
− 2

On the other hand, in the second variant of the algorithm,
named No Surplus Algorithm, low-level Coordinators from the
base of the scaffold (connected to the sandbox) compute the ex-
act requirements of the whole portion of the scaffold that will
receive their flow of modules, and only send what is needed.
This can be computed at the start of the reconfiguration by these
Coordinators as they have full knowledge of the goal shape.
They compute it using a centralized, local, and recursive tree
counting algorithm. The base Coordinators virtually explore
the set of children of their tile and their respective children re-
cursively, for each tile computing the number of components
that will be constructed from the ingoing branch through which
their fed modules will flow. By summing the resource needs
of all of the tiles that their flow will reach, the total number of
modules that need to be called in from this particular section of
the sandbox can be derived. In the case of faulty modules, a
message-based resource request system could be implemented
to request replacement modules and increase the robustness of
the algorithm. This is the version that will appear in the follow-
ing experiments.

Both have identical algorithmic complexities however, as
they are equivalent; the only difference is in the number of mod-
ules involved in the self-reconfiguration process.

4.4. Analysis

The analysis in this section relies on the same reasoning as
the analysis for our previous heavily synchronized version of
this algorithm (Thalamy et al., 2019a).

4.4.1. Number of modules
This section provides a brief analysis of a scaffolded h-

pyramid, and the performance of our algorithm on this class
of shapes.

Throughout this section and the rest of the paper, we will
use the term tile layer to designate a horizontal section of the
object that is composed of all tiles whose root is on the same
horizontal plane. Let Ntiles(i) denote the number of tiles at tile
layer i, with tile layer 0 as the base of the object. We have:

Ntiles(i) = (h − i)2 (1)

From Ntiles(i), we can express the total number of tiles in a
h-pyramid as:

Ntiles =

h−1∑
i=0

Ntiles(i) = h3 − 2h2 + h (2)

Then let Nmodules(i) denote the number of modules in tile
layer i of the h-pyramid. By counting the number of roots, sup-
ports, horizontal, and upward branches on a given layer, we
find:

Nmodules(i) =(h − i) [(h − i − 1)b + 1 + (h − i − 1)(b − 1)]

+ 4(b − 1)(h − i − 1)2 + 4(h − i)2 (3)

By summing the number of modules on each layer of an h-
pyramid, we obtain the total of number of modules in the shape:

Nmodules =

h∑
i=1

Nmodules(i)

= (2b −
1
3

)h3 + (
9
2
− 2b)h2 +

5
6

h (4)

As a point of comparison, we provide the total number of
modules composing a filled h-pyramid below:

N f illed
modules =

b(h−1)+1∑
i=1

i2

=
2b3(h − 1)3 + 9b2(h − 1)2 + 13b(h − 1) + 6

6

It shows that it takes b2

6 fewer modules to build a scaffolded
shape than the corresponding filled one. This saving has a
tremendous impact on the duration of self-reconfiguration.

4.4.2. Complexity Analysis
We now aim to determine the complexity of the reconfigura-

tion time of our method. In this section and the results discussed
thereafter, time is expressed in time steps, where a single time
step represents the average duration of a 3D Catom rotation.

We assume that the time required to complete the construc-
tion of a single tile is constant in the case of the h-pyramid, as
it only depends on the number of modules that compose it. In
the explanations that follow, we will take the time of arrival of
the tile root R of tiles as a reference point, especially the one
of the first tile of each tile layer (seed tile). This is because
these tiles act as synchronization points for the construction of
the object. In the case of the h-pyramid, the top tile layer will
consist only of the seed tile for that layer, which synchronizes
the construction of the whole object.

Also, our analysis relies on the aforementioned construction
polytree of the pyramid with the seed tile of the base as root
(coordinates (0, 0, 0)), and with the seed tile of the top layer as

12

the only leaf (coordinates (0, 0, (h − 1)b)). Let a critical path
lc of the construction polytree be, among the longest path be-
tween these two nodes, a path for which there will be no waiting
time caused by synchronizations during reconfiguration. The
branches composing the critical path are thus always the last
ones to arrive at any synchronization point. In the case of the
pyramid, there are two critical paths: along the −→x axis border of
the base between (0, 0, 0) and ((h−1)b, 0, 0) positions, followed
by the opposite −→y axis border of the base between ((h−1), 0, 0)
and ((h − 1)b, (h − 1)b, 0) positions, and up the backward edge
to the top tile of the pyramid between ((h − 1), (h − 1)b, 0) and
(0, 0, (h − 1)b) positions; or along the −→y axis border first, and
then the opposite −→x axis and backward edges.

Theorem 1. The height of the construction polytree of the h-
pyramid is 3(h − 1).

Proof. If we follow a critical path of the pyramid, we see that
the depth in the construction polytree between the seed tile and
the end of one of the lateral edges (x or y from the last para-
graph) of the base is h − 1. Then the depth between the latter
and the corner of the base opposing the seed tile is again h − 1.
Finally, the depth from this corner of the base to the top of the
pyramid through the back edge is also (h − 1).

Therefore, the total height of the construction polytree of the
h-pyramid is 3(h − 1), which is in O(h).

Let seedi and seedi+1 the seed tiles of layer i and i+1 from the
ground, respectively. In the case of the h-pyramid, the critical
path from seedi to seedi+1 follows the Y branch of seedi, then
the X branch from the tile at (0, b, 0) from seedi, and finally
through the RevZ branch from the tile at (b, b, 0) from seedi.
As the time to build a tile is constant for a given value of b and
therefore only depends on b, we can deduce, from an analysis of
the set of local rules and from the scheduling between compo-
nents that lead to the construction of a tile, the time in timestep
it takes to traverse this critical path from seedi to seedi+1 in the
construction polytree. This corresponds to the time (in time
steps) it takes for the tile root of the seed tile on layer i of the
shape to come into position, which can be expressed as:

Ttile = 16(b − 1) (5)

And as the height of the construction polytree is O(h), the
total reconfiguration time can be expressed as:

T =

(h−1)∑
i=1

16b − 16 = 16(b − 1)(h − 1) (6)

As Ttile does not depend on i, we conclude that T is linear
in the height of the pyramid h—i.e., the reconfiguration time is
O(h) time steps.

Finally, the reconfiguration time must be expressed relative
to the number of modules in the shape:

Theorem 2. The time complexity of our self-reconfiguration
method is O(N

1
3) for the construction of a scaffolded h-pyramid.

Figure 7: Reconfiguration time relative to tile count and module count for in-
creasing sizes of h-pyramid

Proof. Using Equation 4, and considering that the parameter b
is a positive constant, we can assume that there exist two posi-
tive real numbers {p, q} ∈ R2 verifying: p × h3 < N < q × h3.

Then, we deduce bounds for h:(
N
q

) 1
3

< h <
(

N
p

) 1
3

Combining with previous Equation 6, and with b = 6, we
deduce bounds for the motion time T :

80
(

N
q

) 1
3

− 80 < T < 80
(

N
p

) 1
3

− 80

We conclude that the reconfiguration time is O(N
1
3) time

steps, with N the number of modules in the h-pyramid.

4.5. Experiments

As mentioned in Section 1, all the simulations presented
in this paper were performed in VisibleSim (Piranda, 2016), a
discrete event simulator for large modular robotic systems.

We performed simulations of our algorithm on increasing
sizes of h-pyramid, with 1 < h < 10 to verify our findings from
the analysis section. Figure 7 shows the simulation results, to
which we have added a plot of the fit of both curves, demon-
strating that reconfiguration time is indeed in O(h) and O(N

1
3)

for the h-pyramid.

5. Semi-Convex Generalization

Now that self-reconfiguration using our method has been
demonstrated on a simple shape, this section will present how
these results can be generalized to a greater class of shapes, to
which we will refer to as semi-convex shapes.

5.1. Motivations and Challenges

This class of shape comprises all shapes in which no layer
of the shape is larger than that of the base in number of tiles.
That is to say, given a shape of height h and with lx(i) and ly(i)

13

OppRZ
branch

OppLZ branch
X branch

Y branch

OppX branch

OppY branch

8 horizontal EPL

4 EPL

OppRevZ branch
OppZ branch

a) b) c)

Figure 8: Extended anatomy of a scaffold tile: a) Opposing outgoing horizontal branches OppX and OppY; b) Opposing outgoing vertical branches, downward;
c) Addition of 8 horizontal entry point locations (in transparent blue) for horizontal feeding, along with the 4 standard vertical EPL (in transparent pink).

respectively the width and depth of the tile layer i in number of
tiles: ∀i ∈ [1, h − 1], lx(i) ≤ lx(0) ∧ ly(i) ≤ ly(0).

This is a subclass of convex shapes. The reason for not cov-
ering all convex shapes at this point is that with our system
it is not harder to build a concave shape than a convex shape
that does not fit our criteria since they have the same properties
when taking the sandbox into account. Indeed, the difficulty
lies in the fact that the shape cannot be considered in isolation
from its construction substrate, whatever the surface or contrap-
tion it would rest on during reconfiguration. Therefore, in our
case, an object can only be considered convex if the union of
the object and the portion of the sandbox that is directly below
it, is convex.

However, this is a more challenging problem than building
pyramids, see below:

1. Tile branches can now have a length anywhere between 1
and b modules.

2. Because of varying branch lengths and the non-pyramidal
geometry of the scaffold, not all tiles have 4 ingoing up-
ward branches. However, due to our shape constraint, any
outgoing upward branch is guaranteed to have a match-
ing ingoing upward branch below it, and therefore can be
directly fed by the EPL below as was before—e.g., all
RevZ branches will have an ingoing Z branch below it,
and thus a ZEPL to feed it modules. However, horizon-
tal branches might not have their default ingoing upward
branch in place and thus a new construction scheduling
and set of local rules must be produced in each possible
case.

3. Additionally, there might be X and Y branches around the
border of shapes with no tile preceding them along the −→x
or −→y axes. This means that it will be the responsibility
of the next tile along the axis to construct it. This also
requires new additions into the system, such that a way
to refer to these branches and construct them in the re-
verse direction, new local rules, and additional construc-
tion scheduling constraints.

4. There can now be multiple seed tiles for each tile layer of
the object, growing portions of the shape in parallel and
whose growth will need to synchronize at their junctions.
A tile is a seed tile if it has no parent at the end of an ingo-
ing horizontal branch. Therefore seed tiles can start build-
ing as soon as all their ingoing upward branches are com-
plete, as is immediately the case with the seed tiles directly
above the scaffold. Growing multiple disjoint sub-parts of
the object in parallel appears trivial, as the placement of
seed tiles can be easily inferred from the above criteria,
and the synchronization aspect is already built into the ex-
isting high-level construction rules.

5.2. Updated Model and Assumptions

5.2.1. Specifying Shapes
In order to perform self-reconfiguration with full knowledge

of the goal shape, all that modules need to know is the position
of the origin tile (first tile at x = y, for them to agree on a
coordinate system); a lookup function that can quickly answer
on whether a given coordinate is inside or outside of the shape;
and a geometric rule matching engine that can derive scaffold
relevant information from coordinates (e.g., coordinate (a, b, c)
is component X4 of the tile whose tile root is at position ((a −
4), b, c)).

In the previous case with h-pyramids, the goal shape could
simply be a number of geometrical rules describing an h-
pyramid, with a straightforward lookup function, and an input
parameter h. However, manually designing a set of geometrical
rules for each goal shape in our class of shapes would be cum-
bersome and impractical. A generic way to describe shapes and
represent them in the memory of the modules is hence required.
For this purpose, we propose to use a Constructive Solid Ge-
ometry (CSG) tree model, which has already been successfully
applied in the context of large-scale modular robotic systems
in (Tucci et al., 2017). CSG is used to describe solids using
a combination of simple shapes and Boolean set operators ar-
ranged as a tree. This description is remarkably compact for
objects with a low level of detail, and it is scalable by design

14

thanks to its vectorial nature. Furthermore, it is very efficient
at looking up whether a position is inside the object, which is
critical in our case.

Therefore, by simply providing the modules with the two
lookup functions from the scaffold geometry engine and the
CSG one, modules can seamlessly compute and build the scaf-
folded version of the input goal shape.

5.2.2. Addition of Reversed Horizontal Branches
As stated in item 3 of the last section, some tiles of the scaf-

fold will now need to construct horizontal branches to their left
or behind them, which were previously always built by par-
ent tiles. For this purpose, we introduce two new outgoing
branches to the set of branches of a tile, named OppX, in reverse
along the −→x axis (thus, following axis (−1, 0, 0)), and OppY, in
reverse along the −→y axis (thus following axis (0,−1, 0)). Of
course, these are by nature the same branches as the ingoing X
and Y branches, but there is a logical distinction in that their di-
rections are opposite and their tile of belonging is different (see
Figure 8a).

Tiles will need to grow an OppX branch if the tile root of
the tile before it along the −→x is not in the shape, but the branch
between the two is at least one module long (not counting the R
modules). Accordingly, tiles will need to grow an OppY branch
if the tile root of the tile before it along the −→y is not in the shape,
but the branch between the two is at least one module long.

Finally, the first modules of the Opp branches (i.e., OppX1
and OppY1) will always have to be grown as early as possible
in the construction process, as it might not be possible to insert
them once other branches have started their growth. By default,
OppX is built using the LZEPL and OppY using RevZEPL.

5.2.3. Handling a Variable Number of Ingoing Branches
As previously mentioned, in this class of shapes any outgo-

ing branch from a tile will always have a corresponding ingoing
branch right under it. Therefore, the same feeding principles as
before can be applied. The difference, however, is that for hori-
zontal standard and Opp branches, the preferred feeding branch
is not always present and thus local rules guiding motion from
any ingoing upward branch to any horizontal branches must be
added to the database.

5.3. Analyses

In this section, we will study how our improved reconfigura-
tion algorithm performs theoretically on a cubic shape, and see
how these results can then be extended to all the shapes from
the semi-convex class.

5.3.1. Cube Case Study
Considering a cube of length l = (h − 1) × b + e with h the

number of tile root modules along one of its edges, b the length
of a tile branch, and e the number of modules on each branch
of the tiles with incomplete branches (1 ≤ e ≤ b). For example
in Figure 9, l = (4 − 1) × 6 + 3 = 21.

Theorem 3. The total number of tiles in the cube is h3, and the
number of modules is N = O(h3).

The complexity of the reconfiguration time of the l× l× l cube
is O(h), and as a consequence it is O(N

1
3).

Proof. Let N be the total number of modules. We express these
number as the sum of four groups of modules: modules on even
tile layers (Neven); modules on odd tile layers (Nodd); modules
on the top tile layer (N top

even if h is even or N top
odd otherwise); and

support modules from the border of the bottom tile layer (N0).
Then we get:

N =N0 +

⌊
h − 1

2

⌋
Nodd +

⌊
h
2

⌋
Neven

+(h mod 2)N top
odd + ((h + 1) mod 2)N top

even (7)

For example in Figure 9: h = 4, e = 3 and b = 6 then

N = N0 + 1 × Nodd + 2 × Neven + N top
even = 1426

We express the components used in Equation 7 in terms of h, b
and e:

N0 = 8h − 4

Neven = (6b − 1)h2 + (e − 10b + 9)h + 4b − 4

Nodd = (6b − 1)h2 + 2(5e − 5b − 4)h + 4b − 6e + 6 (8)

N top
even = Nodd + 4(e − b)(h − 1)2 − 2(e − 1)(4h − 3)

N top
odd = Neven + 4(e − b)(h − 1)2

The length (in number of modules) of the critical construc-
tion path lc of the cube (drawn in red in Figure 9) is obtained by
a depth first traversal of one of the critical sub-trees, yielding
the expression:

lc =

{
4(h − 1)b + b

2 + e if h is even
4(h − 1)b + e if h is odd (9)

zt=0

zt=1

zt=2

zt=3

b=6
e=3

H=4

Figure 9: Example of a Cube of length l = (4 − 1) × 6 + 3 = 21. The critical
path lc of length 78 modules is drawn in red.

Then considering that there are moving modules at each step
of the simulation along this critical path, we can deduce that

15

the reconfiguration time is proportional to lc. Following the
critical path for the cube in the same manner as in Section 4.4,
we obtain O(h) as the height of the tree and thus an O(N

1
3)

reconfiguration time for cubic shapes.

5.3.2. Generalization to Semi-convex Shapes
Theorem 4. The complexity of the reconfiguration time into
any semi-convex shape is O(h) relative to the dimensions h of
the shape in number of tiles, and O(N

1
3) relative to the number

of modules in the shape N.

Proof. Let (lx, ly) be the dimensions of the base of the shape in
number of modules, and lz its height. We can express each di-
mension in the same manner as we did for the length of the
cube, but with different h and e values for each dimension,
which gives:

lx =(hx − 1) × b + ex

ly =(hy − 1) × b + ey

lz =(hz − 1) × b + ez

This shape can fit into a cubic bounding box of size
lmax × lmax × lmax, where lmax = max(lx, ly, lz). Furthermore, the
length of the critical path lc of the target shape is guaranteed to
have a length equal in the worst case to that of the bounding
cube, which is O(hmax), where hmax = max(hx, hy, hz). We can
hence conclude that the reconfiguration time of our method is
also O(lmax) for any shape currently supported by our algorithm.

Furthermore, as the number of modules in this shape also
cannot be greater than in the worst case that of the lmax × lmax ×

lmax bounding cube, which is in O(h3
max) as shown in the previ-

ous section, the reconfiguration time relative to the number of
modules is still O(N

1
3).

5.4. Experiments
In this section, we provide various indicators to evaluate the

performance of our algorithms, obtained from simulations on
the VisibleSim simulator. First, we study a set of canonical
shapes. Second, we provide a study on a larger and compos-
ite use case.

5.4.1. Comparison between canonical shapes
In the following pages, we compare the reconfiguration times

with global and relative indicators4 . We compare canonical
shapes—i.e., pyramid, cube, cylinder, and half-sphere—with
sizes ranging from d = 3 to d = 9 tiles wide. Figure 10 shows
the number of modules required to build each shape for vary-
ing sizes expressed as a number of tiles. Note that due to the
FCC lattice and staggered vertical modules layers, the height
of d tiles placed vertically is different from the length of d tiles
horizontally in the real-world coordinate system. We name this
height D, where D =

√
2

2 d. When increasing d, we also increase
the height and the depth of the shape accordingly, so that, for
instance, a cube of height d will actually be a d × d × D cube.
The CSG description of these objects is, therefore:

4Visual comparison with d = 6: youtu.be/DjLwsrzA0MI?t=89.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 2 3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f

m
o
d

u
le

s

Shape size (h parameter)

Number of modules, per canonical shape

Half-Sphere
Pyramid
Cylinder

Cube

Figure 10: Number of modules in canonical shapes, with varying sizes.

 0

 200

 400

 600

 800

 1000

 3 4 5 6 7 8 9

R
e
co

n
fi
g

u
ra

ti
o
n
 t

im
e
 (

ti
m

e
 s

te
p

s)

Size (tiles count)

Performance comparison of base shapes

Half-sphere
Pyramid
Cylinder

Cube

Figure 11: Global reconfiguration time, with varying sizes.

- translate([d×b
2 , d×b

2 ,D×b
2])

cube([d × b,d × b,D × b], center=true);

- translate([D×b
2 ,D×b

2 ,0]) sphere(radius=D×b
2);

- translate([D×b
2 ,D×b

2 ,0]) cylinder(height=D× b,
radius=D×b

2 , center=false);

The first comparison is presented in Figure 11 and shows the
total time to reconfigure the modules into various dimensions
of the shapes under study. The conclusions we can draw from
this figure are the following:

• In terms of raw performances, i.e., the time required to
complete the reconfiguration, the half-sphere performs
faster than the pyramid, which in turn performs faster than
the cylinder, which performs better than the cube.

• The time increase is linear with the d parameter.

Figure 12 shows more clearly that the reconfiguration time is
stable according to the size of the target shape.

Figure 13 shows how many modules are converging by time
step on average—the higher, the better. From this figure, we
draw two conclusions:

• As the size of the shape increases, its performance in terms
of module placement also increases. It is easily explained
by the ability of the algorithm to move more modules in
parallel with a wider base.

16

https://youtu.be/DjLwsrzA0MI?t=89

 0

 20

 40

 60

 80

 100

 120

 140

 160

 3 4 5 6 7 8 9R
e
co

n
fi
g

u
ra

ti
o
n
 t

im
e
 (

ti
m

e
 s

te
p

s
p

e
r

h
 u

n
it

)

Size (tiles count)

Performance comparison of base shapes, related to height

Half-Sphere
Pyramid
Cylinder

Cube

Figure 12: Reconfiguration speed in time steps per height level.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 3 4 5 6 7 8 9R
e
co

n
fi
g

u
ra

ti
o
n
 t

im
e
 (

m
o
d

u
le

s
p

e
r

ti
m

e
 s

te
p

)

Size (tiles count)

Performance comparison of base shapes, related to module count

Pyramid
Half-Sphere

Cylinder
Cube

Figure 13: Reconfiguration speed in modules per time step.

• The ranking of the shapes reverses with the cube being
first and the pyramid being last. It is partly bound to the
fact that, for a given size, the cube contains many more
modules than the pyramid. Even though the full cube re-
configuration takes longer, its per-module performance is
better. The second part of this behavior is the parallel na-
ture of the cube when compared to the pyramid: both start
with a d × d base, but as the tiles are stacked, the pyramid
size decreases, while the cube continues to build d×d lay-
ers, therefore it remains strongly parallel. The same goes
when comparing the cylinder to the half-sphere.

Figure 14 shows the convergence rate of our 4 canonical

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600

M
o
d

u
le

s
p

la
ce

d

Time

Canonical shapes (modules reaching final place per time step)

Cube
Cylinder
Pyramid

Half Sphere

Figure 14: Instant modules placement for canonical shapes with d = 6.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800

M
o
d
u
le

s
p

la
ce

d

Time

Stacked and simple cylinder (modules reaching final place per time step)

Cylinder, radius=3, height=12
Cylinder, radius=3, height=6

Figure 15: Instant modules placement: comparing simple and stacked cylinder.
Both curves overlap until t = 380 time steps.

shapes as a number of modules in place given current simu-
lation time. In this figure, we use as parameter d = 6. Several
observations are interesting:

• The point where each curve stops marks the end of the
simulation, i.e. when the shape is completely built. It
shows the differences in terms of modules required to build
a given shape as well as the corresponding reconfiguration
time.

• The trend of the curve reflects the amount of parallelism
in the reconfiguration. The higher the trend, the more par-
allel. Without surprise, it shows that the cube is the most
parallel shape, followed by the cylinder, then the pyramid
and last the half-sphere.

• We also observe a 3-step progression for all shapes: first, a
steady increase of the parallelism, then a peak or a plateau,
followed by a steady decrease until the end of the recon-
figuration. The second step is a peak for the half-sphere
and the pyramid, while it is a plateau for the cylinder and
the cube, confirming the previous observation.

Figure 15 compares the parallelism between a cylinder of
size d = 6 and h =

√
2

2 d, and a cylinder twice as high (di-
mensions: d = 6, h =

√
2d). We clearly see a longer plateau

for the highest cylinder, whose stable section lasts longer than
the shorter one.

In the previous experiments, we studied various metrics to
quantify the performance of our reconfiguration method on
canonical shapes. We showed that our algorithms scale well:
although the full reconfiguration time is asymptotic to a linear
equation relative to d, it must be considered that when d in-
creases, it actually increases the volume of the shapes by an
order of d3. These results support the theoretical analysis per-
formed in Section 5.3. We also show that some shapes (i.e.,
cubes and cylinders) are inherently more parallel than others
(i.e., pyramid and half-sphere) since they keep the same build-
able section almost from start to end. Nonetheless, if we were
to express parallelism as a function of the number of modules
in the target shape, it would appear that all semi-convex shapes
have an equal useful parallelism, as our method consistently

17

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200

M
o
d

u
le

s
re

a
ch

in
g

 d
e
st

in
a
ti

o
n

Time

Sandcastle parallelism (modules reaching final state per time step)

Sandcastle

Figure 16: Sandcastle reconfiguration speed, modules in place per time step.

provides the optimal throughput to all the tiles of the shape
since module flows are never divided from the sandbox to their
destination.

5.4.2. Complex and composite shape
In this section, we study a complex shape composed of

canonical shapes to build an actual object. The case study is a
sandcastle, whose complete shape contains around 32,000 mod-
ules.

Figure 16 shows the reconfiguration speed as the instanta-
neous number of modules placed at each time step. We observe
the same global behavior than with canonical shapes, i.e. a slow
start when the building starts and is limited by the current sec-
tion size. Then, the reconfiguration speeds up to a peak before
slowly decreasing. We also see that, although there are far more
modules than in a cube (5,000 modules), the overall time is lim-
ited: only 1,200 time steps for the sandcastle against nearly 600
time steps for the cube. That’s a 3× speedup per module on av-
erage. We explain this by two factors: first, as we showed in the
study of the canonical shapes, our algorithm is very scalable in
terms of modules placed. Second, this shape can be viewed as
two disconnected parts: the central tower on the one hand, and
the cornering towers and their attached walls on the other hand.
These shapes are independent and do not need to synchronize.

6. Generalization

The main limitation of this reconfiguration method in its cur-
rent state remains its narrow scope in terms of the shapes it can
build, as the semi-convex class of shapes—even though it can
produce complex shapes as shown in Section 5.4.2—is still too
restricted for most objects that a user may want to represent.
Nonetheless, it is still worth mentioning that there may not be
a single best solution for all self-reconfiguration cases, as the
preferable solution to general self-reconfiguration might con-
sist of a set of highly specialized algorithms.

While this is still ongoing work at the time of writing, we
detail in this section how the previous method can be fully gen-
eralized to any shape, by dropping the constraint on the absence
of concavities (both within the shape and between the sandbox
and the shape) from the last section.

6.1. Motivations and Challenges

The full generalization again raises a number of problems,
which have been briefly mentioned previously, and that are fur-
ther discussed below:

1. Tiles can now have no ingoing upward branches. As these
were previously the only way of feeding modules into the
tile, new solutions must be found for that purpose.

2. While the restricted generalization from Section 5 intro-
duced reverse growth for horizontal branches and tiles,
new cases now emerge that will require vertical reverse
growth—i.e., growing previously upward branches from
the top down (which thus makes them now downward out-
going branches), and feeding modules to the tiles below.

3. The previously studied class of shapes did not allow in-
termediate configurations that could threaten the mechan-
ical stability of the system (e.g., a line or mass of modules
hanging in the air), but this could now happen. An ideal
planning method would take mechanical constraints into
account.

4. Current algorithmic complexities are unlikely to be main-
tained for all shapes, as the current class of shapes guar-
antees the maximum transfer rate across all branches of
the scaffold due to the one-to-one match between upward
ingoing and outgoing branches, as well as exclusive verti-
cal feeding. New reconfiguration cases might now involve
splitting the flow of modules from one branch into several
ones, each time dividing the module transfer rate.

6.2. Updated Assumptions

Our proposed solutions to the challenges of generalization
are briefly introduced in this section.

Firstly, in order to address the feeding of tile with no ingo-
ing upward branches, we propose to use the ingoing horizontal
branches to feed the modules. For this purpose, we introduce
8 new entry points to the existing 4 vertical EPLs, whose exact
location is shown in Figure 8c.

Furthermore, and in the same manner as done previously for
the OppX and OppY branches, we introduce 4 new outgoing
branches to the set of outgoing branches of the tile: OppZ, Op-
pRevZ, OppLZ, and OppRZ, following axes (0, 0,−1), (1, 1,−1),
(1,−1,−1), and (−1, 1,−1), respectively. Again, these are prac-
tically the same as the ingoing upward branches, but they be-
long to and are grown from the tile above instead of the tile be-
low them. Also, note that incomplete versions of these branches
already appeared in semi-convex cases, though they were not
grown, for the sake of simplicity and at the cost of a lesser
amount of details in the shape.

Besides, regarding the mechanical aspect of self-
reconfiguration, we assume for now that all intermediate
configurations are stable, as efficiently ensuring the mechan-
ical stability of reconfiguration is an ongoing intractable
problem (Hołobut and Lengiewicz, 2017).

18

6.3. Main Idea

Most of the self-reconfiguration process would remain un-
changed, except for portions of the goal shape whose growth
was not previously supported. Indeed, it would now be needed
to add rules to detect tiles that could not be constructed previ-
ously: if a tile has no ingoing upward branch, then it will need
to be constructed from either the top tiles or through the lateral
tiles. If a tile has a lateral neighbor that is opposite to the growth
direction of this portion of the shape then it will be constructed
from this tile, or from the tile above otherwise.

If a tile detects that it has to feed the growth of a lateral
neighbor through a horizontal branch, it would then send mod-
ules from one of its vertical EPLs to a target horizontal EPL.
This means that again the set of local rules needs to be greatly
expanded to cover all possible cases, which shows the current
limits of this local motion method and points at the necessity to
find a better alternative, so as to avoid the tedious design work
and overloading the memory of modules. In addition, a new tile
construction scheduling would need to be carefully designed for
these new cases.

Once a tile receives a module through one of its horizontal
ingoing branches, it will direct this module to one of its vertical
EPLs. We decided to proceed that way so as to reuse our previ-
ous tile construction method. It might nonetheless be required
to design a novel coordination strategy in order to avoid col-
lisions between modules moving from horizontal EPLs to the
vertical ones below.

Again, this process and the earlier ones are to be repeated
until the shape is complete.

7. Discussion

Through the various formal analyses from Sec-
tions 4.4 and 5.3 and simulation results presented in Sec-
tions 4.5 and 5.4, we aimed to give an account of capabilities
and significance of our algorithm, which are further discussed
here.

With the sandcastle, a complex shape consisting of nearly
40,000 modules, we have shown that our method was able to
correctly converge into complex objects even given a massive
robotic ensemble. This ability to converge is a crucial aspect
of a self-reconfiguration algorithm, and even if we are unable
to provide a formal proof of convergence for the algorithm due
to its complexity, it can be known exactly for which classes of
shapes the method will converge (semi-convex cases), and for
which it will fail. Furthermore, we have hinted at what could
be done to transcend this limitation in Section 6.

It appears that the total duration of the reconfiguration
strongly correlates with the height of the target shape. This
is indeed very intuitive, as adding height to the shape does not
add any new module sources from the sandbox, as enlarging the
other dimensions would—in semi-convex shapes at least. The
width of the object matters also insofar as synchronization is
required to respect the bridging constraint. In the general case,
however, it is not just the width of the object that will mat-
ter, but more importantly the size of its base, which connects

it to the sandbox. Indeed, the entire module rate of the self-
reconfiguration will be determined by the number of tiles that
are connected to the sandbox, much like now, but this time this
total traffic might have to be split in order to feed different con-
nected sub-parts of the shape. Consequently, the placement of
the shape regarding the sandbox is a very important parameter
of self-reconfiguration, and will be even more in the general
case, as this determines its maximum throughput.

Furthermore, we have highlighted that the other driving fac-
tor of the reconfiguration time of our method is related to syn-
chronization points (in the form of waiting times for the con-
struction of parents in new tiles to be grown), their amount,
and specific environment. The impact of synchronization on
the self-assembly of 3D Catoms systems has been further stud-
ied in (Tucci et al., 2018).

Finally, while this method breaks away from previous work
in self-reconfiguration and swarm self-assembly by modular
robots due to the presence of a sandbox environment and the
geometrical complexity of the model, which makes compari-
son difficult, a number of pertinent observations can be made.
It has been mentioned in Section 2 that this precise module ge-
ometry could be reconfigured in linear time from a flat disk
of modules into various other shapes (Yim et al., 2001), but at
the cost of a lack of a guarantee of convergence. Furthermore,
the fastest results in self-reconfiguration using scaffolding could
also achieve linear time reconfiguration with simpler module
geometries (Støy and Nagpal, 2007; Lengiewicz and Holobut,
2019), and leveraging translation motions through narrow tun-
nels to achieve such speeds. However, self-reconfiguring from
a prebuilt shape into another rather than from a sandbox-like re-
serve raises the additional problem of resource allocation—i.e.,
where to pick modules that will be used in a particular area of
the goal shape from—and adds complexity to the task. There-
fore, while our current result cannot be directly compared to
these other solutions, we considered that reaching a sub-linear
cubic-square reconfiguration time with such a level of paral-
lelism is already an admirable achievement, and we are confi-
dent that extending this method to shape-to-shape reconfigura-
tion will yield results that can rival with those and open new
frontiers in term of scalability for self-reconfiguring modular
robotic systems.

8. Conclusion

We have introduced a novel way of representing objects
made of a micro-modular-robot swarm arranged in an FCC-
lattice structure, by discretizing the object into a set of regu-
lar and porous tiles that can be deterministically constructed
and leave holes in the structure for motion. Moreover, we
have proposed a framework for constructing these scaffolded
shapes from an underneath reserve of modules, in sub-linear
time and with high parallelism, using a deterministic construc-
tion scheduling, local-rules-based motion planning, and colli-
sion avoidance through distributed messaging. This sort of self-
reconfiguration task by a massive swarm of autonomous and
independent agents would traditionally have required advanced

19

optimization methods. Still, this work shows that deterministic,
rule-based methods can be equally suited for this task.

The performance of this self-reconfiguration method has
been evaluated through analyses and simulations for a num-
ber of case studies with increasing complexity, showing that an
O(N1/3) reconfiguration time could be achieved for a large class
of shapes that do not have concavities—with N the number of
modules in the system. Expanding this method to all remaining
shapes is an ongoing work, but the associated challenges have
been introduced, and a number of solutions have been proposed
in this paper nonetheless.

Overall, this work stands as proof that large-scale reconfig-
uration can be performed in a reasonable time (relative to the
number of modules, hardware capabilities will define it in ab-
solute terms) using adequate methods and supporting systems
such as our sandbox. It also shows that scaffolds with complex
geometries can be considered, at least in theory, and confirms
once again that it is a very powerful tool to facilitate the self-
reconfiguration of massive modular robots.

9. Future Work

There are a number of areas for improvement in the current
version of this work that have been identified in this paper, as
well as perspectives for extending it; they are reminded and
commented below:

First, the current framework needs to be extended to all
classes of shapes to truly be on par with other general recon-
figuration methods. This raises a number of challenges raised
in Section 6. Current complexity results are unlikely to remain
as they are now for all shapes due to the decreasing module
throughput of the reconfiguration with increasing shape com-
plexity and the number and size of concavities.

Generalization is likely to require improvements on the cur-
rent local-rule-based local motion planning solution, with the
rules required for generalization becoming too numerous, po-
tentially filling the scarce memory of modules, and rendering
the hand-design of rules laborious and troublesome. This could
either be replaced by an alternative and better-suited motion
planning method or benefit from improvements in design and
compactness.

Then, reuniting with traditional self-reconfiguration meth-
ods, this framework will be extended to shape-to-shape recon-
figuration. Resource allocation is likely to proceed both by ex-
changes between the initial and goal shapes as well as between
the sandbox and the goal shape. It would also allow for recon-
figuration between shapes with different cardinalities, another
previously unstudied aspect of the self-reconfiguration prob-
lem.

Regarding the scaffold itself, a rigorous mechanical analy-
sis will have to be performed in order to validate the current
tile and scaffold models, along with providing a definite upper
bound on the length of branches. Similarly, further research and
engineering work is required for designing all the procedures
and algorithms necessary for the sandbox to operate.

Finally, the chief issue with scaffolding in its current state
is that it deteriorates the external aspect of the object. Thus,

we would like to add one or several layers of modules on the
external surface of the scaffold during reconfiguration so that
it would look no different than a compact object. A coating
algorithm is therefore required, that would guide modules to
goal locations on the surface of the shape according to a strict
construction plan.

10. Acknowledgments

Acknowledgment

This work was partially supported by the ANR (ANR-16-
CE33-0022-02), the French Investissements d’Avenir program,
the ISITE-BFC project (ANR-15-IDEX-03), and the EIPHI
Graduate School (contract ANR-17-EURE-0002).

References

Ahmadzadeh, H., Masehian, E., Asadpour, M., 2016. Modular Robotic
Systems: Characteristics and Applications. Journal of Intelligent &
Robotic Systems 81, 317–357. URL: https://doi.org/10.1007/

s10846-015-0237-8, doi:10.1007/s10846-015-0237-8.
Bäck, T., Fogel, D.B., Michalewicz, Z., 1997. Handbook of evolutionary com-

putation. CRC Press.
Barraquand, J., Latombe, J.C., 1991. Robot Motion Planning: A

Distributed Representation Approach. The International Journal of
Robotics Research 10, 628–649. URL: https://doi.org/10.1177/

027836499101000604, doi:10.1177/027836499101000604.
Beni, G., 2005. From Swarm Intelligence to Swarm Robotics, in: Şahin, E.,

Spears, W.M. (Eds.), Swarm Robotics, Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 1–9.

Bie, D., Wang, Y., Zhang, Y., Liu, C., zhao, J., Zhu, Y., 2018. Para-
metric L-systems-based modeling self-reconfiguration of modular robots
in obstacle environments. International Journal of Advanced Robotic
Systems 15, 1729881418754477. URL: https://doi.org/10.1177/
1729881418754477, doi:10.1177/1729881418754477.

Butler, Z., Kotay, K., Rus, D., Tomita, K., 2002. Generic decentralized control
for a class of self-reconfigurable robots, in: Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on, IEEE. pp. 809–
816.

Chung, H., Shin, K.s., 2019. Genetic algorithm-optimized multi-channel con-
volutional neural network for stock market prediction. Neural Computing
and Applications , 1–18.

Dewey, D.J., Ashley-Rollman, M.P., Rosa, M.D., Goldstein, S.C., Mowry,
T.C., Srinivasa, S.S., Pillai, P., Campbell, J., 2008. Generalizing metamod-
ules to simplify planning in modular robotic systems, in: Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp.
1338–1345. doi:10.1109/IROS.2008.4651094.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man and
Cybernetics, Part B (Cybernetics) 26, 29–41. URL: http://ieeexplore.
ieee.org/document/484436/, doi:10.1109/3477.484436.

Fitch, R., Butler, Z., Rus, D., 2003. Reconfiguration planning for heterogeneous
self-reconfiguring robots, in: Intelligent Robots and Systems, 2003. (IROS
2003). Proceedings. 2003 IEEE/RSJ International Conference on, pp. 2460–
2467. doi:10.1109/IROS.2003.1249239.

Fitch, R., McAllister, R., 2013. Hierarchical Planning for Self-reconfiguring
Robots Using Module Kinematics, in: Distributed Autonomous Robotic
Systems 10, pp. 477–490. doi:10.1007/978-3-642-32723-0_34.

Goldberg, D.E., Holland, J.H., 1988. Genetic Algorithms and Machine Learn-
ing. Machine Learning 3, 95–99. URL: https://doi.org/10.1023/A:
1022602019183, doi:10.1023/A:1022602019183.

Hołobut, P., Lengiewicz, J., 2017. Distributed computation of forces in
modular-robotic ensembles as part of reconfiguration planning, in: Robotics
and Automation (ICRA), 2017 IEEE International Conference on, pp. 2103–
2109. doi:10.1109/ICRA.2017.7989242.

20

https://doi.org/10.1007/s10846-015-0237-8
https://doi.org/10.1007/s10846-015-0237-8
http://dx.doi.org/10.1007/s10846-015-0237-8
https://doi.org/10.1177/027836499101000604
https://doi.org/10.1177/027836499101000604
http://dx.doi.org/10.1177/027836499101000604
https://doi.org/10.1177/1729881418754477
https://doi.org/10.1177/1729881418754477
http://dx.doi.org/10.1177/1729881418754477
http://dx.doi.org/10.1109/IROS.2008.4651094
http://ieeexplore.ieee.org/document/484436/
http://ieeexplore.ieee.org/document/484436/
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1109/IROS.2003.1249239
http://dx.doi.org/10.1007/978-3-642-32723-0_34
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1109/ICRA.2017.7989242

Kawano, H., 2015. Complete reconfiguration algorithm for sliding cube-
shaped modular robots with only sliding motion primitive, in: Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on,
pp. 3276–3283. doi:10.1109/IROS.2015.7353832.

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings
of ICNN’95 - International Conference on Neural Networks, IEEE, Perth,
WA, Australia. pp. 1942–1948. URL: http://ieeexplore.ieee.org/
document/488968/, doi:10.1109/ICNN.1995.488968.

Kotay, K.D., Rus, D.L., 2000. Algorithms for self-reconfiguring molecule
motion planning, in: Intelligent Robots and Systems, 2000. (IROS 2000).
Proceedings. 2000 IEEE/RSJ International Conference on, pp. 2184–2193.
doi:10.1109/IROS.2000.895294.

Kurokawa, H., Murata, S., Yoshida, E., Tomita, K., Kokaji, S., 1998. A 3-
D Self-Reconfigurable Structure and Experiments, in: Proceedings. 1998
IEEE/RSJ International Conference on Intelligent Robots and Systems. In-
novations in Theory, Practice and Applications, p. 6.

Lengiewicz, J., Holobut, P., 2019. Efficient collective shape shifting and lo-
comotion of massively-modular robotic structures. Auton. Robots 43, 97–
122. URL: https://doi.org/10.1007/s10514-018-9709-6, doi:10.
1007/s10514-018-9709-6.

Naz, A., Piranda, B., Bourgeois, J., Goldstein, S.C., 2016. A distributed self-
reconfiguration algorithm for cylindrical lattice-based modular robots, in:
Network Computing and Applications (NCA), 2016 IEEE 15th International
Symposium on, IEEE. pp. 254–263. URL: http://ieeexplore.ieee.
org/abstract/document/7778628/.

Park, M., Chitta, S., Teichman, A., Yim, M., 2008. Automatic Con-
figuration Recognition Methods in Modular Robots. The Interna-
tional Journal of Robotics Research 27, 403–421. URL: http://

journals.sagepub.com/doi/10.1177/0278364907089350, doi:10.
1177/0278364907089350.

Piranda, B., 2016. VisibleSim: Your simulator for Programmable Matter, in:
Römer, K., Scheideler, C., Fekete, S.P., Richa, A.W. (Eds.), Algorithmic
Foundations of Programmable Matter (Dagstuhl Seminar 16271). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. volume 6
of Dagstuhl Reports, p. 12. URL: http://drops.dagstuhl.de/opus/
volltexte/2016/6759. doi:10.4230/DagRep.6.7.1.

Piranda, B., Bourgeois, J., 2018. Designing a quasi-spherical module for a
huge modular robot to create programmable matter. Autonomous Robots 42,
1619–1633. URL: https://doi.org/10.1007/s10514-018-9710-0,
doi:10.1007/s10514-018-9710-0.

Piranda, B., Laurent, G.J., Bourgeois, J., Clévy, C., Möbes, S., Fort-
Piat, N.L., 2013. A new concept of planar self-reconfigurable
modular robot for conveying microparts. Mechatronics 23, 906–
915. URL: http://linkinghub.elsevier.com/retrieve/pii/

S0957415813001633, doi:10.1016/j.mechatronics.2013.08.009.
Rajasekhar, A., Lynn, N., Das, S., Suganthan, P.N., 2017. Computing with

the collective intelligence of honey bees – A survey. Swarm and Evolution-
ary Computation 32, 25 – 48. URL: http://www.sciencedirect.com/
science/article/pii/S221065021630027X, doi:https://doi.org/
10.1016/j.swevo.2016.06.001.

Rubenstein, M., Ahler, C., Nagpal, R., 2012. Kilobot: A low cost scalable robot
system for collective behaviors, in: 2012 IEEE International Conference
on Robotics and Automation, IEEE, St Paul, MN, USA. pp. 3293–3298.
URL: http://ieeexplore.ieee.org/document/6224638/, doi:10.
1109/ICRA.2012.6224638.

Ser, J.D., Osaba, E., Molina, D., Yang, X.S., Salcedo-Sanz, S., Camacho, D.,
Das, S., Suganthan, P.N., Coello, C.A.C., Herrera, F., 2019. Bio-inspired
computation: Where we stand and what’s next. Swarm and Evolutionary
Computation 48, 220 – 250. URL: http://www.sciencedirect.com/
science/article/pii/S2210650218310277, doi:https://doi.org/
10.1016/j.swevo.2019.04.008.

Strumberger, I., Tuba, E., Bacanin, N., Jovanovic, R., Tuba, M., 2019. Con-
volutional Neural Network Architecture Design by the Tree Growth Al-
gorithm Framework, in: 2019 International Joint Conference on Neural
Networks (IJCNN), IEEE, Budapest, Hungary. pp. 1–8. URL: https:
//ieeexplore.ieee.org/document/8851755/, doi:10.1109/IJCNN.
2019.8851755.

Støy, K., 2006. Using cellular automata and gradients to control
self-reconfiguration. Robotics and Autonomous Systems 54, 135 –
141. URL: http://www.sciencedirect.com/science/article/

pii/S0921889005001521, doi:https://doi.org/10.1016/j.robot.

2005.09.017.
Støy, K., Nagpal, R., 2007. Self-Reconfiguration Using Directed

Growth, in: Distributed Autonomous Robotic Systems 6, pp. 3–12.
URL: https://doi.org/10.1007/978-4-431-35873-2_1, doi:10.
1007/978-4-431-35873-2_1.

Sung, C., Bern, J., Romanishin, J., Rus, D., 2015. Reconfiguration plan-
ning for pivoting cube modular robots, in: 2015 IEEE International
Conference on Robotics and Automation (ICRA), IEEE. pp. 1933–1940.
URL: http://ieeexplore.ieee.org/document/7139451/, doi:10.
1109/ICRA.2015.7139451.

Thalamy, P., Piranda, B., Bourgeois, J., 2019a. Distributed Self-
Reconfiguration using a Deterministic Autonomous Scaffolding Structure,
in: Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, Montreal QC, Canada. pp. 140–148.
doi:10.5555/3306127.3331685.

Thalamy, P., Piranda, B., Bourgeois, J., 2019b. A survey of autonomous self-
reconfiguration methods for robot-based programmable matter. Robotics
and Autonomous Systems 120, 103242. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0921889019301459, doi:10.1016/j.
robot.2019.07.012.

Thalamy, P., Piranda, B., Lassabe, F., Bourgeois, J., 2019c. Scaffold-Based
Asynchronous Distributed Self-Reconfiguration By Continuous Module
Flow, in: 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4840–4846. doi:10.1109/IROS40897.2019.
8967775.

Tuba, M., Bacanin, N., Beko, M., 2015. Multiobjective RFID Network Plan-
ning by Artificial Bee Colony Algorithm with Genetic Operators, in: Tan, Y.,
Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (Eds.), Advances
in Swarm and Computational Intelligence, Springer International Publish-
ing, Cham. pp. 247–254.

Tucci, T., Piranda, B., Bourgeois, J., 2017. Efficient Scene Encoding for
Programmable Matter Self-reconfiguration Algorithms, in: Proceedings
of the Symposium on Applied Computing, pp. 256–261. URL: http:
//doi.acm.org/10.1145/3019612.3019706, doi:10.1145/3019612.
3019706.

Tucci, T., Piranda, B., Bourgeois, J., 2018. A Distributed Self-Assembly
Planning Algorithm for Modular Robots, in: International Conference on
Autonomous Agents and Multiagent Systems) (AAMAS), Association for
Computing Machinery (ACM), Stockholm, Sweden. pp. 550–558.

Yim, M., Zhang, Y., Lamping, J., Mao, E., 2001. Distributed Control for 3D
Metamorphosis. Autonomous Robots 10, 41–56. URL: https://doi.
org/10.1023/A:1026544419097, doi:10.1023/A:1026544419097.

Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., Kokaji, S., 1998. A dis-
tributed method for reconfiguration of a three-dimensional homogeneous
structure. Advanced Robotics 13. doi:10.1163/156855399X00234.

Zhu, L., El Baz, D., 2019. A programmable actuator for combined motion
and connection and its application to modular robot. Mechatronics 58,
9–19. URL: https://linkinghub.elsevier.com/retrieve/pii/

S0957415819300029, doi:10.1016/j.mechatronics.2019.01.002.
Zhu, Y., Bie, D., Wang, X., Zhang, Y., Jin, H., Zhao, J., 2017. A distributed and

parallel control mechanism for self-reconfiguration of modular robots using
L-systems and cellular automata. Journal of Parallel and Distributed Com-
puting 102, 80 – 90. URL: http://www.sciencedirect.com/science/
article/pii/S0743731516301824, doi:https://doi.org/10.1016/
j.jpdc.2016.11.016.

Ünsal, C., kilivççöte, H., Patton, M.E., Khosla, P.K., 2000. Motion Plan-
ning for a Modular Self-Reconfiguring Robotic System, in: Parker, L.E.,
Bekey, G., Barhen, J. (Eds.), Distributed Autonomous Robotic Systems 4,
Springer Japan, Tokyo. pp. 165–175. URL: https://doi.org/10.1007/
978-4-431-67919-6_16, doi:10.1007/978-4-431-67919-6_16.

21

http://dx.doi.org/10.1109/IROS.2015.7353832
http://ieeexplore.ieee.org/document/488968/
http://ieeexplore.ieee.org/document/488968/
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/IROS.2000.895294
https://doi.org/10.1007/s10514-018-9709-6
http://dx.doi.org/10.1007/s10514-018-9709-6
http://dx.doi.org/10.1007/s10514-018-9709-6
http://ieeexplore.ieee.org/abstract/document/7778628/
http://ieeexplore.ieee.org/abstract/document/7778628/
http://journals.sagepub.com/doi/10.1177/0278364907089350
http://journals.sagepub.com/doi/10.1177/0278364907089350
http://dx.doi.org/10.1177/0278364907089350
http://dx.doi.org/10.1177/0278364907089350
http://drops.dagstuhl.de/opus/volltexte/2016/6759
http://drops.dagstuhl.de/opus/volltexte/2016/6759
https://doi.org/10.1007/s10514-018-9710-0
http://dx.doi.org/10.1007/s10514-018-9710-0
http://linkinghub.elsevier.com/retrieve/pii/S0957415813001633
http://linkinghub.elsevier.com/retrieve/pii/S0957415813001633
http://dx.doi.org/10.1016/j.mechatronics.2013.08.009
http://www.sciencedirect.com/science/article/pii/S221065021630027X
http://www.sciencedirect.com/science/article/pii/S221065021630027X
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2016.06.001
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2016.06.001
http://ieeexplore.ieee.org/document/6224638/
http://dx.doi.org/10.1109/ICRA.2012.6224638
http://dx.doi.org/10.1109/ICRA.2012.6224638
http://www.sciencedirect.com/science/article/pii/S2210650218310277
http://www.sciencedirect.com/science/article/pii/S2210650218310277
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2019.04.008
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2019.04.008
https://ieeexplore.ieee.org/document/8851755/
https://ieeexplore.ieee.org/document/8851755/
http://dx.doi.org/10.1109/IJCNN.2019.8851755
http://dx.doi.org/10.1109/IJCNN.2019.8851755
http://www.sciencedirect.com/science/article/pii/S0921889005001521
http://www.sciencedirect.com/science/article/pii/S0921889005001521
http://dx.doi.org/https://doi.org/10.1016/j.robot.2005.09.017
http://dx.doi.org/https://doi.org/10.1016/j.robot.2005.09.017
https://doi.org/10.1007/978-4-431-35873-2_1
http://dx.doi.org/10.1007/978-4-431-35873-2_1
http://dx.doi.org/10.1007/978-4-431-35873-2_1
http://ieeexplore.ieee.org/document/7139451/
http://dx.doi.org/10.1109/ICRA.2015.7139451
http://dx.doi.org/10.1109/ICRA.2015.7139451
http://dx.doi.org/10.5555/3306127.3331685
https://linkinghub.elsevier.com/retrieve/pii/S0921889019301459
https://linkinghub.elsevier.com/retrieve/pii/S0921889019301459
http://dx.doi.org/10.1016/j.robot.2019.07.012
http://dx.doi.org/10.1016/j.robot.2019.07.012
http://dx.doi.org/10.1109/IROS40897.2019.8967775
http://dx.doi.org/10.1109/IROS40897.2019.8967775
http://doi.acm.org/10.1145/3019612.3019706
http://doi.acm.org/10.1145/3019612.3019706
http://dx.doi.org/10.1145/3019612.3019706
http://dx.doi.org/10.1145/3019612.3019706
https://doi.org/10.1023/A:1026544419097
https://doi.org/10.1023/A:1026544419097
http://dx.doi.org/10.1023/A:1026544419097
http://dx.doi.org/10.1163/156855399X00234
https://linkinghub.elsevier.com/retrieve/pii/S0957415819300029
https://linkinghub.elsevier.com/retrieve/pii/S0957415819300029
http://dx.doi.org/10.1016/j.mechatronics.2019.01.002
http://www.sciencedirect.com/science/article/pii/S0743731516301824
http://www.sciencedirect.com/science/article/pii/S0743731516301824
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2016.11.016
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2016.11.016
https://doi.org/10.1007/978-4-431-67919-6_16
https://doi.org/10.1007/978-4-431-67919-6_16
http://dx.doi.org/10.1007/978-4-431-67919-6_16

	1 Introduction
	2 Related Work
	3 Fundamentals
	3.1 Modular Robotic Model
	3.1.1 3D Catom
	3.1.2 Module Assumptions and Critical Constraints

	3.2 Scaffold Anatomy
	3.2.1 Structure of a Scaffold Tile
	3.2.2 Parameters and Conditional Structure
	3.2.3 Tile Construction Ordering
	3.2.4 Connecting Tiles
	3.2.5 Entry Points into the Tile
	3.2.6 Sandbox

	3.3 Self-Reconfiguration
	3.3.1 Module States
	3.3.2 High-level Planning: Tile Construction Scheduling
	3.3.3 Low-level Planning: Module Navigation
	3.3.4 Motion Coordination Algorithm

	4 Building Simple Pyramids
	4.1 Motivations
	4.2 Assumptions
	4.3 Self-Reconfiguration
	4.3.1 Surplus Modules Management

	4.4 Analysis
	4.4.1 Number of modules
	4.4.2 Complexity Analysis

	4.5 Experiments

	5 Semi-Convex Generalization
	5.1 Motivations and Challenges
	5.2 Updated Model and Assumptions
	5.2.1 Specifying Shapes
	5.2.2 Addition of Reversed Horizontal Branches
	5.2.3 Handling a Variable Number of Ingoing Branches

	5.3 Analyses
	5.3.1 Cube Case Study
	5.3.2 Generalization to Semi-convex Shapes

	5.4 Experiments
	5.4.1 Comparison between canonical shapes
	5.4.2 Complex and composite shape

	6 Generalization
	6.1 Motivations and Challenges
	6.2 Updated Assumptions
	6.3 Main Idea

	7 Discussion
	8 Conclusion
	9 Future Work
	10 Acknowledgments

