
Scheduling on Two Types of Resources: a Survey

OLIVIER BEAUMONT, INRIA Bordeaux, France
LOUIS-CLAUDE CANON, FEMTO-ST, Université de Bourgogne Franche-Comté, France
LIONEL EYRAUD-DUBOIS, INRIA Bordeaux, France
GIORGIO LUCARELLI, LCOMS, University of Lorraine, Metz, France
LORIS MARCHAL, CNRS, Univ. Lyon, LIP, France
CLÉMENT MOMMESSIN, Univ. Grenoble Alpes, CNRS, INRIA, Grenoble INP, LIG, France
BERTRAND SIMON, University of Bremen, Germany
DENIS TRYSTRAM, Univ. Grenoble Alpes, CNRS, INRIA, Grenoble INP, LIG, France

The evolution in the design of modern parallel platforms leads to revisit the scheduling jobs on distributed
heterogeneous resources. The goal of this survey is to present the main existing algorithms, to classify them
based on their underlying principles and to propose unified implementations to enable their fair comparison,
both in terms of running time and quality of schedules, on a large set of common benchmarks that we made
available for the community. Beyond this comparison, our goal is also to understand the main difficulties that
heterogeneity conveys and the shared principles that guide the design of efficient algorithms.

Additional Key Words and Phrases: Scheduling – Makespan Minimization – Resource Allocation – Hetero-
geneity – Performance Evaluation – Online Scheduling

ACM Reference Format:
Olivier Beaumont, Louis-Claude Canon, Lionel Eyraud-Dubois, Giorgio Lucarelli, Loris Marchal, Clément
Mommessin, Bertrand Simon, and Denis Trystram. 2020. Scheduling on Two Types of Resources: a Survey. 1,
1 (September 2020), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A key ingredient of any computing system is the scheduler, which is responsible for handling the
tasks submitted by the users and the computing resources. Specifically, the scheduling algorithm
has to decide which task to execute first, when to start its execution, and where to allocate it (i.e.,
which resources to use). Due to the importance of these decisions, the efficiency of the scheduler is
crucial for the performance of the whole system.
Scheduling is a well understood problem in the context of homogeneous platforms composed

of identical resources, since there exist both efficient theoretical approximation algorithms [23]
and their practical counterpart implementations in actual batch schedulers, such as SLURM [53] or
Torque [39]. However, the case of heterogeneous resources, which is crucial in practice due to the
evolution of architectures, is not so well understood and it has been the focus of a vast literature in

Authors’ addresses: Olivier Beaumont, INRIA Bordeaux, France; Louis-Claude Canon, FEMTO-ST, Université de Bourgogne
Franche-Comté, France; Lionel Eyraud-Dubois, INRIA Bordeaux, France; Giorgio Lucarelli, LCOMS, University of Lorraine,
Metz, France; Loris Marchal, CNRS, Univ. Lyon, LIP, France; Clément Mommessin, Univ. Grenoble Alpes, CNRS, INRIA,
Grenoble INP, LIG, France; Bertrand Simon, University of Bremen, Germany; Denis Trystram, Univ. Grenoble Alpes, CNRS,
INRIA, Grenoble INP, LIG, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 O. Beaumont et al.

recent years [9, 15, 42, 49]. The purpose of this survey is to make an attempt to unify the results
and to provide a clear review of existing solutions. In this context, our goals are: (i) to understand
the intrinsic difficulties introduced by heterogeneity, (ii) to classify the different approaches to
deal with heterogeneity, and (iii) to provide a comprehensive way to evaluate the performance of
reviewed algorithms, both in theory and experimentally and both in terms of quality of produced
results and in terms of running time.

A good example to understand the difference between homogeneous and heterogeneous cases is
the well-known greedy List Scheduling algorithm [28], which minimizes the maximum completion
time of a parallel application (i.e., makespan) and which is arbitrarily bad in heterogeneous plat-
forms. Adapting List Scheduling algorithms in the context of heterogeneous resources to obtain
low cost algorithms whose performance can be theoretically assessed is not easy. As we will show
in the paper, it is possible to design variants of List Scheduling, but at the price of putting the
emphasis on the allocation on the right set of resources. The analysis of the complexity induced
by heterogeneity leads to the identification of the main scientific locks, and then to propose a
two-phase approach for designing efficient scheduling algorithms. In this survey, we revisit existing
algorithms within the same unified framework and we report a common experimental campaign
for comparing them. The associated benchmark and simulation framework will be of great interest
for further related studies.

We consider both off-line and on-line settings and target the most popular objective, which
is the minimization of the makespan. In the off-line setting, the whole set of tasks is known in
advance, while in the on-line setting, tasks arrive one by one and there is no a priori knowledge of
the upcoming tasks. The on-line setting is more difficult but it is of particular interest in the context
of the large scale heterogeneous platforms that we target. Indeed, in the context of heterogeneous
platforms, programmers of parallel applications, including for regular applications such as dense
linear algebra, rely of runtime dynamic systems. These schedulers, such as Quark [52], ParSeC [14],
StarSs [43] and StarPU [5], make all their allocation and scheduling decisions at runtime. These
on-line decisions are based on the state of the platform, the set of available (ready) tasks, and
possibly on static pre-allocation strategies and tasks priorities that have been computed offline.
In order to model the performance of heterogeneous resources, we consider a fully unrelated

model where processing times are provided for each (type of) task and for each (type of) resource.
We focus on the case of two types of resources since it corresponds to the widely spread setting of
machines consisting of CPU multicores and GPUs (extensions are discussed in Section 8.3). We
study parallel applications composed of tasks with or without precedence relations [22] and whose
execution times are known.

Scheduling on heterogeneous computing resources has been considered in several recent surveys,
but never in the perspective of analyzing the complexity of scheduling problems, which is the main
focus of the present survey. Mittal and Vetter [41] propose a general survey on heterogeneous
CPU-GPU computing, that covers programming languages, frameworks, development tools but
also load balancing and scheduling issues. The complexity of the scheduling problems is not
addressed in their work, but a very extensive classification of the solutions that have been proposed
to schedule applications on heterogeneous CPU-GPU resources is proposed. Applications are
classified depending on whether the schedule is computed at compile time or at runtime, and how
the relative performance of CPUs and GPUs for specific tasks is used to schedule applications.
The survey of Raju and Chiplunkar [44] covers the same issues but does not analyze either the
complexity of scheduling problems. Their work offers, with respect to the survey of Mittal and
Vetter [41], a general survey of elementary policies that can be used to decide where to schedule
tasks, rather than an application-based list of practical solutions. At last, Mei et al. [40] concentrate

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 3

Fig. 1. Notations for the execution of a task (denoted by j) on a CPU (x j = 1).

on energy issues in the context of Real-Time task scheduling, and in particular the use of Dynamic
Voltage and Frequency Scaling (DVFS) techniques.

The roadmap of the paper is as follows: the general model is described in Section 2. The method-
ology used throughout this paper to obtain a unified way to present, establish and theoretically
compare the results is presented in Section 3. The theoretical results, in particular the lower bounds
for both the off-line and the on-line cases, are given in Section 4. Section 5 is dedicated to the
special case of independent tasks, which is inherently easier than the case with dependencies.
This case, due to its interest in the context of runtime schedulers, lead to the design of low cost
algorithms that nevertheless achieve guaranteed approximation ratios. The case with dependencies
is considered in Section 6, where we discuss both the classical heuristics of the literature such as
HEFT [50] and review approximation algorithms with constant approximation ratios in the off-line
case (Section 6.1). Section 6.2 also provides approximation algorithms in the on-line case. Section 5
and Section 6 therefore establish, in a unified theoretical framework, a comprehensive survey of
the recent results of the literature and enable to understand the intrinsic difficulties introduced
respectively by resource heterogeneity and by the on-line setting. On the other hand, the goal of
Section 7 is to provide a fair experimental comparison framework of all reviewed algorithms, using
a large set of benchmark problems and platform architectures. The experiments aim at comparing
the algorithms both in terms of their actual scheduling performance and running times. Finally,
we conclude with a synthesis and discussion on both theoretical and practical results in Section 8,
with an extension to more types of resources.

2 DEFINITIONS AND NOTATIONS
As mentioned in the introduction, we focus in this paper on the case of two types of resources,
which is of special practical interest. We consider a set T of n sequential tasks that are to be
scheduled on a platform composed ofm identical processors of type 1 and k identical processors of
type 2, and we assume without loss of generality thatm ≥ k . For simplicity, we denote by CPU a
processor of type 1, and by GPU a processor of type 2. The processing of a task requires a different
amount of time when performed on a CPU or on a GPU. Let pj (resp. pj) denote the processing

time of task j when processed on a CPU (resp. GPU) and let α j =
pj
pj

be the acceleration factor of j.
Note that despite its name, this acceleration factor may well be smaller than 1 in the case of a task
that runs faster on a CPU.
Moreover, given a schedule S , let Cj denote the completion time of task j and x j be the binary

variable that indicates where j is processed (x j = 1 when j is processed on a CPU, and x j = 0
otherwise). Therefore, x j denotes the allocation of task j to a processor type. Figure 1 shows the
notations for a task executed on a CPU.
At last, let us denote byW the overall workload on CPUs for the schedule S , given byW =∑
j ∈T x jpj . Similarly, the overall workload on all GPUs is given byW =

∑
j ∈T (1 − x j)pj .

If the application tasks are linked by priority relationships, the set of tasks T is seen as a directed
acyclic graph G = (V ,E), whose vertices correspond to the tasks and arcs correspond to the
precedence relationships between the tasks. In any feasible schedule, for each arc (i, j) ∈ E, j cannot

, Vol. 1, No. 1, Article . Publication date: September 2020.

4 O. Beaumont et al.

start its execution before the completion of i . In this case, i is said to be a predecessor of j and Γ−(j)
denotes the set of all predecessors of j . Similarly, j is said to be a successor of i and Γ+(i) denotes the
set of all successors of i . A descendant of j is a task i for which there exists a path from j to i in G.

Given a schedule S , let us denote byCP the critical path of the schedule, i.e., the longest weighted
path, where the weights correspond to processing times, between any two tasks ofG . The length of
this weighted path is denoted by |CP |. Let us also define the bottom-level of a task j as the longest
weighted path between j and any of its descendants, the processing time of j being excluded, as
introduced by Yang and Gerasoulis [51]. Note that these two definitions are associated to a specific
schedule S , where the allocation of tasks on either a CPU or a GPU is done, such that the processing
times of all tasks are known. On the other hand, if the allocation of the tasks onto resources is
not yet determined, each task comes with two possible processing times and the closest notion
to the critical path is the upward rank of tasks used in the HEFT algorithm [50] (presented in
Section 6.1.1).

In this context, the goal is to build a feasible and non-preemptive schedule of minimummakespan,
denoted byCmax , that satisfies all precedence relations between tasks, if any. In other words, we are
looking for a schedule where the execution of any task cannot be interrupted and that minimizes
the completion time of the last finishing task, i.e., Cmax = maxj ∈T Cj .

Using the three-field notation for scheduling problems introduced by Graham et al. [29], these two
problems, with independent tasks and with precedence constraints, can be denoted respectively as
(Pm, Pk) | | Cmax and (Pm, Pk) | prec | Cmax . These problems are harder to solve than P | | Cmax and
P | prec | Cmax , which are known to be NP-hard [26] but admit Polynomial Time Approximation
Schemes (PTAS) [30, 32]. However, they are easier to solve than scheduling problems on unrelated
machines (R | | Cmax and R | prec | Cmax) since we consider only two types of resources. Although
several approximation algorithms and PTAS have been proposed for these scheduling problems
on unrelated machines [25, 37, 45, 46], their costs make them impractical for runtime schedulers.
Moreover, PTAS have been proposed for the problems we tackle when considering a constant
number K of processor types [13, 27], but the cost of these approaches is however prohibitive even
with K = 2. Finally, the problems we consider reduce to the scheduling problems on uniformly
related machines (Q | | Cmax andQ | prec | Cmax) if all tasks have the same acceleration factor, i.e., if
α j = α , ∀j ∈ T , and for which there exists a log(p)-approximation in presence of precedences [21].

The above scheduling problems are off-line when the set of tasks to be scheduled and their
processing times are known in advance. In this work, we also consider the clairvoyant on-line
context as defined by Leung [38, Chapter 15]. In this case, we assume that: (i) a task arrives in
the system when it becomes ready, i.e., when all its predecessors have been processed, (ii) when a
task arrives, its processing time on any type of resource is known to the scheduler, and (iii) the
scheduler must schedule a task immediately and irrevocably upon its arrival, without knowing
anything on the upcoming tasks. If multiple tasks become ready at the same time, we consider
that they arrive in the system in any order. This is the case for independent tasks that are ready at
time 0.

3 PRELIMINARIES AND METHODOLOGY
3.1 Preliminaries
Since our aim is to design scheduling algorithms with performance guarantees, we rely on the
notions of approximation ratio and competitive ratio presented by Hochbaum [31]. The approx-
imation ratio (resp. competitive ratio) ρA of an off-line (resp. on-line) algorithm A is defined as
the maximum, defined over all possible instances I of the considered problem, of the ratio Cmax (I)

C∗max (I) ,

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 5

(a) Partition of an output schedule for the 2-
appoximation proof.

(b) Example of schedule with the LPT ordering pol-
icy.

Fig. 2. Examples of output schedules of List Scheduling for independent tasks. Grey areas are idle times.

where Cmax (I) denotes the makespan of A on the instance I and C∗max (I) is the optimal off-line
makespan on this instance. In this section, we concentrate on the homogeneous setting, with only
one type of resources. Therefore, for the sake of simplicity we will denote byW the overall work
and by pmax the maximal completion time of a task.

3.1.1 List Scheduling approximation ratio without precedences. One of the first results in Scheduling
Theory concerns the List Scheduling algorithm introduced by Graham [28] for the problem of
scheduling a list of independent tasks onm identical parallel machines (P | | Cmax). List Scheduling
is built as follows: whenever a processor becomes idle, it processes the first task in the list of still
unprocessed tasks. Therefore, the time complexity of this procedure is O(n log(m)).

It is easy to establish that this algorithm achieves an approximation ratio of at most 2: consider
a schedule produced by List Scheduling of makespan Cmax . We can partition the time interval
[0,Cmax) of this schedule into two intervals [0, t) and [t ,Cmax) such that t is the earliest time when
at least one processor becomes idle, as depicted in Figure 2a. The length of the first time interval can
be upper bounded by the average load of a processor (Wm), which is itself bounded by the optimal
makespan C∗max . To bound the length of the second interval, we can notice that no task can start
its execution strictly after time t , otherwise it would have started on a processor that is idle at time
t . Thus, we can upper bound the length of the second interval by the longest execution time of any
task (pmax), which is also bounded by C∗max .

We therefore obtain the following bound,

Cmax ≤ W

m
+ pmax ≤ 2 ·C∗max ,

which concludes the proof. By carefully evaluating the contribution of the work of the last ending
task in the first phase, this upper bound can be further lowered to (2 − 1

m)C∗max .
Let us notice that, since all tasks are independent, it is possible to re-order the list of tasks

following a given policy. For example, re-ordering the tasks in the list by decreasing processing
times leads to a decrease of the length of the last time interval [t ,Cmax). This policy, denoted as
Largest Processing Time (LPT) and pictured in Figure 2b, improves the approximation ratio of List
Scheduling to 4

3 − 1
3m [28].

3.1.2 List Scheduling approximation ratio with precedences. If precedence relations between tasks
are considered, no global re-ordering of the list of tasks is possible and List Scheduling works as
follows. Whenever a processor becomes idle, it scans the list of tasks and processes the first ready
task that it finds. If no task is ready to be processed (due to precedence constraints), the processor
waits until a running task is completed by another processor and then it re-tries to schedule a newly
ready task. Therefore, a resource is idle at time t if and only if there is no ready task in the list at
time t . For each task, all successors are analyzed to determine which tasks become ready. Moreover,

, Vol. 1, No. 1, Article . Publication date: September 2020.

6 O. Beaumont et al.

Fig. 3. Construction of a chain of tasks based on the idle time intervals, denoted by grey areas.

determining the next idle processor once a task has been scheduled requires log(m) operations.
Therefore, the time complexity is O(n log(m) + |E |) where |E | is the number of dependencies.

Theorem 3.1. List Scheduling for tasks with precedence constraints is a (2 − 1
m)-approximation

algorithm.

The proof [28] follows the same principle as before by replacing the bound on pmax by a bound
on the sum of idle times in the schedule and by using a geometrical argument. Indeed, let us notice
that Cmax =

W
m +

Sidle
m , where Sidle is the sum of idle times on all processors. The first term W

m is
the same as before and can be upper bounded by C∗max . For the second term Sidle

m , let us consider
the last finishing task j in the schedule. This task must be a successor of a task executed during
the previous interval where there is an idle time, otherwise the algorithm would have scheduled j
during this idle time. Thus, we can iteratively build a chain of tasks (of total duration L) that are
being processed during each idle time interval of the schedule, as depicted in Figure 3. During
the time intervals where there are idle times, there are at mostm − 1 idle processors, leading to
Sidle ≤ (m − 1)L. Since the length L of this chain of tasks is smaller than the length of the critical
path, we obtain Sidle ≤ (m − 1)|CP | ≤ (m − 1)C∗max . Thus, using the upper bounds on both terms,
we obtain the following bound

Cmax =
W

m
+
Sidle
m
≤ C∗max +

m − 1
m

C∗max = (2 −
1
m
)C∗max ,

which concludes the proof.
In 2011, Svensson [47] showed that this result was the best possible bound by proving that, if we

consider a variant of the unique games conjecture [6], it is NP-hard to approximate this scheduling
problem (P | prec | Cmax) within a factor smaller than 2, even for unit processing times.

3.1.3 Dual approximation. Dual approximation [32] is a useful technique for designing effective
approximation algorithms, which is used in some of the scheduling strategies discussed in this
paper. In order to design a ρ-dual approximation algorithm for a general scheduling problem, the
process starts from an initial guess λ. Then, it either determines that makespan λ is not achievable
by any algorithm, or it outputs an actual schedule whose length is at most ρλ. Since above process
can be applied with any value λ, it can be incorporated into a binary search process, starting from a
lower bound Bmin and an upper bound Bmax on the optimal makespan. At each step of the binary
search, if there is no schedule with makespan λ, then λ becomes the new lower bound and if there
exists a schedule with makespan ρλ, then ρλ becomes the new upper bound. We iterate the binary
search until the gap between both bounds becomes smaller than a desired precision threshold ϵ and
the number of steps is upper bounded by log2(Bmax−Bmin

ϵ). Therefore, it is possible to turn a ρ-dual
approximation algorithm into a ρ(1 + ϵ)-approximation algorithm with the same computational
complexity bound.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 7

3.2 Methodology
We are interested in studying generic strategies generating schedules for hybrid computing systems
consisting of CPUs and GPUs that behave well in practice, i.e., when they are actually used to run
parallel applications. As stated in Section 1, we will consider several cases, namely both independent
tasks and tasks linked by precedence relations, and in both the off-line and on-line settings.
Our purpose is not only to survey or classify existing results, but to highlight the main ideas

behind these algorithms, to emphasize their differences and to analyze their actual performance.
More precisely, our methodology for each algorithm is to start by giving an insight of the key ideas
and then to present the main stages of the algorithms, where the notations and the writing styles
have been normalized to allow the reader to perform an easy comparison.
In order to prove performance guarantees, we provide in Section 4 a set of lower bounds

corresponding to the different settings and that will be used throughout the paper. As we will see,
some of these bounds can be used in the different cases. Then, for each presented algorithm in
a specific setting, we establish its worst case performance against the associated lower bounds
(Sections 5 and 6).

In order to provide another fair comparison between the different algorithms, we rely on experi-
mental results using realistic benchmarks, capturing both the characteristics of hybrid platforms
and the characteristics of the applications they process. For this purpose, we develop a shared
experimental framework under which all algorithms are evaluated, coded in a standardized way
(under the same language), on the same simulation testbed and datasets built from actual execution
traces.

4 LOWER BOUNDS
This section gathers the lower bounds from the literature for the hybrid scheduling problem,
first in the off-line context and then in the on-line context. In each case, we distinguish between
applications consisting of independent tasks and those with precedence constraints.

4.1 Lower Bounds on the Optimal Makespan
4.1.1 With independent tasks. Let us consider the problem defined in Section 2. It is possible to
derive a set of lower bounds on the best achievable makespan by any valid schedule. The first
trivial lower bound states that no schedule can be shorter than the longest task, i.e.,

max
j ∈T

min(pj ,pj) ≤ C∗max

The second lower bound to evaluate the performance of scheduling algorithms for independent
tasks is calledArea Bound and it is based on the maximal amount of work that the different resources
can perform in a given amount of time. Let us first remark that any schedule S uses at mostm
CPUs and k GPUs for a duration at most Cmax , so that the following constraints hold true:∑

j ∈T
x jpj =W ≤ m ·Cmax and

∑
j ∈T
(1 − x j)pj =W ≤ k ·Cmax .

Thus, the following Linear Program (LP) LPArea can be seen as a relaxation of the scheduling
problem, where the set ofm CPUs (resp. the set of k GPUs) is considered as a whole.

, Vol. 1, No. 1, Article . Publication date: September 2020.

8 O. Beaumont et al.

minimize CLP

subject to:
∑
j ∈T

pjx j ≤ m ·CLP∑
j ∈T

pj (1 − x j) ≤ k ·CLP

x j ∈ [0, 1],∀j ∈ T

Since any schedule S of makespan Cmax can be transformed into a solution of LPArea with
objective CLP , then the optimal solution of LPArea holds as a lower bound of the optimal makespan
C∗max. It can be proved [7] that this optimal solution has a specific structure, where all the tasks
with x j = 1 have an acceleration factor lower than all the tasks with x j = 0. In such case the
optimal solution of the LP can in fact be obtained using a greedy algorithm which sorts tasks by
non-decreasing acceleration factors and then assigns at the same rate tasks at the beginning of
the list to CPUs, and tasks at the end of the list to GPUs, until only one task remains, which is
adequately split so that the total time on CPUs and GPUs is the same. This lower bound and its
specific structure is also described by Canon et al. [17, Theorem 5]. Its closed form expression
considers the pivot task i (the one split between CPUs and GPUs) and results in the exact same
lower bound.

Theorem 4.1. Assume tasks are sorted by non-decreasing acceleration factor (αi ≤ α j for i < j).
Let i denote the task such that:

1
m

∑
j≤i

pj ≥ 1
k

∑
j>i

pj and 1
m

∑
j<i

pj ≤ 1
k

∑
j≥i

pj .

Then, the following is a lower bound on the optimal makespan:

LB =

pi
∑
j<i

pj + pi
∑
j>i

pj + pipi

kpi +mpi
.

In the (heterogeneous) case of two types of resources, many approximation results that hold
true in the homogeneous model cannot be extended. For example, the well-known List Scheduling
algorithm, which has been proved to be a 2-approximation by Graham [28] as shown in Section 3,
fails to achieve a constant approximation ratio in the heterogeneous setting. Indeed, for any integer
M > 1, let us consider an instance with exactly one resource of each type (i.e.,m = k = 1), and two
tasks with pj = M ≫ 1 and pj = 1. Clearly, an optimal schedule in this case allocates both tasks on
the GPU, and thus achieves a makespan of 2. However, any List Scheduling algorithm does not let
the CPU idle at time 0, and therefore achieves a makespanM . SinceM can be arbitrarily large, this
proves that a List Scheduling algorithm cannot achieve a constant approximation ratio.

4.1.2 With precedence constraints. Considering tasks with precedence constraints, an extension of
LParea (Section 4.1.1) was proposed by Kedad-Sidhoum et al. [36] as follows, where theCj variables
denote the completion time of tasks.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 9

minimize CLP

subject to:
∑
j ∈T

pjx j ≤ m ·CLP (1)∑
j ∈T

pj (1 − x j) ≤ k ·CLP (2)

Ci + pjx j + pj (1 − x j) ≤ Cj ∀j ∈ T , i ∈ Γ−(j) (3)

pjx j + pj (1 − x j) ≤ Cj ∀j ∈ T : Γ−(j) = ∅ (4)
Cj ≤ CLP ∀j ∈ T (5)
x j ∈ [0, 1] ∀j ∈ T (6)
Cj ≥ 0 ∀j ∈ T

Let us denote this linear program by LPprec . Constraints (1) and (2) are the same as for LParea ,
while Constraints (3), (4) and (5) describe the critical path (CP) and ensure that precedence relation
constraints between the tasks are satisfied. As for LParea , any schedule S of makespanCmax can be
turned into a solution of LPprec . Thus, any optimal solution of this linear program provides a lower
bound of the optimal makespan C∗max .

4.2 Lower Bounds in the On-line Setting
4.2.1 With independent tasks.

Theorem 4.2. There is no on-line algorithm for scheduling independent tasks with a competitive
ratio smaller than 2.

This theorem was proposed by Chen et al. [19] and the proof is based on a simple instance with
only two tasks. Consider the special case with only one CPU and one GPU. Suppose that the first
task ready for scheduling has a processing time of 1 on both types of resources and, once it has
been scheduled, a second task arrives, whose processing time on the resource where the first task
is being processed is 1 and whose processing time on the other resource is 2. Then, for any decision
of the scheduling algorithm for the second task the final makespan will be 2 while the optimal
makespan is 1, proving the theorem.

4.2.2 With precedence constraints. Intuitively, the problem of on-line scheduling with precedence
contraints on two types of processors is difficult. Indeed, without knowing the successors of a
task, how to decide whether to accelerate this task on a GPU, or to save this rare resource for a
future task? In a recent work, Canon et al. [16] confirmed this intuition by proving that there is
no constant-factor competitive algorithm for this problem, as stated in Theorem 4.3. This bound
completes the one from Theorem 4.2, which also holds with precedence constraints.

Theorem 4.3. There is no on-line algorithm for scheduling tasks with precedence constraints with a
competitive ratio smaller than

√
m/k , for any value ofm and k .

The proof is based on the use of an adversary that builds a graph consisting of several rounds of
k
√
m/k independent tasks, whose processing time on CPU (resp. GPU) is

√
m/k (resp. 1), assuming

that
√
m/k is an integer. Any on-line algorithm therefore requires a time

√
m/k to complete each

round. When a round is completed, the next one is revealed, where each new task is a successor of
the last finishing task of the previous round. After r rounds, the processing time of any on-line
algorithm is therefore at least r

√
m/k whereas in comparison, an off-line algorithm, knowing in

, Vol. 1, No. 1, Article . Publication date: September 2020.

10 O. Beaumont et al.

advance all precedence constraints, may allocate critical tasks on GPU and the others on CPU, thus
achieving a makespan asymptotically close to r , by executing the CPU tasks of

√
m/k rounds in

parallel.
This theorem may not seem very robust. Indeed, for instance, the optimal allocation is obvious

as soon as the scheduler can detect terminal tasks, and in practice, such information may well be
available to the scheduler, even if this violates the on-line setting assumptions. However, Theo-
rem 4.3 remains valid even if the upward rank of each task is known (see Section 6.1.1), except
when k = 1 in which case the lower bound is halved.

The idea behind the proof is to add a chain to the previous graph and to add a dependency from
each task to this chain, so that all tasks have the same upward rank. In the optimal schedule, this
chain can be processed on an unused GPU without increasing the makespan. Other generalizations
of the bottom-level on a heterogeneous platform may exist, as each task has several possible
computing times (see Section 2), but as all tasks are identical in our case, this result remains valid
for any generalization of the bottom-level.
Even further, even if the processing times of all the descendants of each task are available

to the scheduler, the authors prove there is no constant-factor competitive algorithm, and that
any competitive ratio is lower bounded by Θ((m/k)1/4). The authors also study the impact of
an additional flexibility given to the scheduler: if the scheduler can kill a task and migrate it
instantaneously to another node (such an operation is usually named spoliation), the results remain
unchanged. Even allowing unrealistic preemption and migration only halves the lower bounds.

5 APPROXIMATION ALGORITHMS AND HEURISTICS FOR INDEPENDENT TASKS
We review here strategies proposed to schedule independent tasks onto a heterogeneous platform,
both in off-line and on-line contexts.

5.1 Off-line Results for Independent Tasks
We start with the off-line setting, where all tasks are available at the beginning of the computation,
and their characteristics (i.e., running times on both processor types) are known to the scheduler.

5.1.1 DualHP. The DualHP algorithm [34], presented in Algorithm 1, uses the dual approximation
technique presented in Section 3.1 to obtain a guess (λ) on the optimal makespan and then to build
a schedule whose makespan is at most 2λ. This guess is used to solve a minimization knapsack
problem that assigns to GPUs tasks with a total load smaller than (k + 1)λ and assigns all remaining
tasks on CPUs. At last, List Scheduling is applied on both sets of resources and another iteration of
the dual approximation technique is performed.
At first, the initial step is a sorting which takes O(n log(n)) operations. Then, as stated in Sec-

tion 3.1.1, the time complexity of each application of List Scheduling is O(n log(m)) and there are
no more than log2(Bmax−Bmin

ϵ) iterations (Section 3.1.3).

Proposition 5.1. IfW ≤ mλ, there exists a feasible solution with a makespan at most 2λ.
Since List Scheduling is used during the second step of the algorithm, the makespan on CPUs

(Cmax) can be upper bounded as in Section 3.1,

Cmax ≤ max
j ∈T
(pjx j) +

∑
j ∈T (pjx j)

m

Then, since the processing time of all tasks assigned to a CPU is smaller than λ, thenmaxj ∈T(pjx j) ≤
λ. Furthermore, our assumption ensures that

∑
j ∈T (pjx j) ≤ mλ. Thus,

Cmax ≤ 2λ.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 11

A similar reasoning on the GPU side shows that Cmax ≤ 2λ and the following theorem holds.

Theorem 5.2. DualHP (Algorithm 1) is a 2(1 + ϵ)-approximation.

Algorithm 1: DualHP [34]

1 L = list of tasks sorted by non-increasing α j =
pj
pj

2 W ← 0
3 W ← 0
4 for each task j ∈ L do
5 if pj > λ then
6 if pj > λ then return "unfeasible guess."
7 else
8 x j ← 0
9 W ←W + pj

10 else if pj > λ then
11 x j ← 1
12 W ←W + pj
13 for each remaining task j ∈ L do
14 ifW < kλ then
15 x j ← 0
16 W ←W + pj

17 else
18 x j ← 1
19 W ←W + pj
20 ifW > mλ orW > (k + 1)λ then return "unfeasible guess."
21 else
22 Schedule all tasks using List Scheduling with respect to the assignment variables x j .
23 return the current schedule.

5.1.2 Two Families of Algorithms based on Dynamic Programming. Kedad-Sidhoum et al. [35] pro-
pose two families of algorithms that combine two techniques, namely dual approximation and dy-
namic programming. The dual approximation ratios achieved by these algorithms are ρ = 2q+1

2q +
1

2qk

for q > 0 and ρ =
2(q+1)
2q+1 +

1
(2q+1)k for q ≥ 0, which can be turned into ρ(1 + ϵ)-approximation

algorithms using binary search, where ϵ is an arbitrarily small value corresponding to the thresh-
old of the binary search. The computational complexity of these algorithms is O(n2kq+1mq) and
O(n2kq+2mq+1), respectively. Note that q is a user-defined parameter, and larger values of q lead to
better accuracy at the expense of the complexity. Moreover, algorithms from both families can be
transformed into polynomial time approximation schemes by selecting for example q = k+1

2kε and
q = 1

2kε − 1, respectively.
In the following, we explain the ideas behind these algorithms by briefly describing the algorithm

DP 3
2
which corresponds to the first family with q = 1 and a dual approximation ratio ρ = 3

2 +
1
2k .

The idea of the algorithm is, given a guess λ of the optimal makespan, to build a schedule whose

, Vol. 1, No. 1, Article . Publication date: September 2020.

12 O. Beaumont et al.

Fig. 4. Example of partitions of tasks into shelves for the algorithms of Section 5.1.2.

makespan is at most 3λ
2 . To achieve this result, tasks are partitioned into two shelves on the CPU

side (SC and S′C) and two shelves on the GPU side (SG and S′G) as shown in Figure 4. Among the
tasks assigned to a CPU, those whose processing time on a CPU is larger than λ

2 are placed in SC ,
and there cannot be more thanm of them in any solution. The shorter tasks are placed in S′C , and
the total execution time of all tasks that are assigned to CPU should be no more thanmλ. The
shelves on the GPU are built similarly, with SG containing tasks with pj > λ

2 (no more than k of
them) and S′G all other tasks.

The problem of assigning the tasks on these four shelves can thus be formulated as a minimization
multi-dimensional knapsack problem as follows (note that the objective function is strong since in
practice we only need a feasible solution).

minimize
∑
j ∈T

pjx j

subject to:
∑

j ∈T:pj> λ
2

x j ≤ m∑
j ∈T

pjx j ≤ mλ∑
j ∈T:pj> λ

2

(1 − x j) ≤ k

∑
j ∈T

pj (1 − x j) ≤ kλ

x j ∈ {0, 1} ∀j ∈ T
To solve the knapsack problem and obtain an assignment of the tasks to resources, a dynamic

programming algorithm is used. Before this, the time horizon on GPUs is discretized in time
intervals of size λ

2n . Let N be the number of these time intervals.
The dynamic programming formulation is then based on the parameters j (the number of tasks

already assigned), µ (the number of CPUs occupied in the shelf SC), κ (the number of GPUs occupied
in shelf SG) and N (the number of busy time intervals on the GPUs). This dynamic programming
approach yields a polynomial time algorithm. However, the knapsack problem can also be solved
as an Integer Linear Program, which is not guaranteed to be solved in polynomial time but is much
faster in practice.
The above idea can be generalized by partitioning the tasks into q couples of shelves on each

side. For example, the shelf SC,h , 1 ≤ h ≤ q, is composed of the tasks assigned to a CPU and such
that (2q−h)λ2q < pj ≤ (2q−h+1)λ2q , while the shelf S′C,h , 1 ≤ h ≤ q, contains the tasks assigned to a CPU

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 13

such that (h−1)λ2q < pj ≤ hλ
2q . The shelves on the GPU side (SG,h ,S′G,h for 1 ≤ h ≤ q) are defined

in a similar way. The problem of assigning the tasks into these generalized shelves can be also
described as a multi-dimensional minimization knapsack problem and it can be solved by a more
complicated dynamic programming algorithm whose complexity depends on q as described in the
beginning of this section.

5.1.3 HeteroPrio. The HeteroPrio scheduling algorithm was first introduced in a practical context
for scheduling tasks in a Fast Multipole Method computation [1], and showed good practical
performance for this application in which precedence constraints are loose enough for most of
tasks to be independent. Later, Beaumont et al. provided a theoretical analysis of the algorithm [7]
and proved approximation ratios when the tasks are independent.
The HeteroPrio algorithm is based on two main ideas. The first idea, present in the original

version [1], consists in trying to get close to the area bound solution (presented above in Section 4.1.1)
using a greedy scheduler. This is done by sorting tasks by non-decreasing acceleration factors, and
by having idle CPUs pick tasks from the beginning of the list, while idle GPUs are picking tasks
from the end of the list.

The theoretical analysis shows that the partial solution produced by this first part of the algorithm
is optimal in the following sense:

Lemma 5.3. For any instance I , if all processors are busy up to time t , then AreaBound(I) ≥
t +AreaBound(I ′(t)), where I ′(t) is the sub-instance composed of parts of tasks not completed at time
t .

This lemma is the main ingredient of the approximation proof of HeteroPrio.With the assumption
that, for all tasks j, max(pj ,pj) ≤ C∗max, this lemma alone allows one to prove a 2-approximation
ratio. Indeed, if we denote by tFI the first idle time in the resulting schedule, Lemma 5.3 shows that
tFI ≤ AreaBound . Furthermore, after time tFI, each processor computes at most one task, and thus
finishes not later than tFI +maxj (max(pj ,pj)), which concludes the proof.

However, this idea alone cannot provide an approximation guarantee in the general case. Indeed,
this strategy produces a list schedule, where no processor is left idle if a task is available, and
we have proved in Section 4.1.1 that List Scheduling can lead to arbitrarily bad results in this
heterogeneous setting.
The second idea to provide an approximation guarantee, introduced by Beaumont et al. [7],

is spoliation, which enables re-scheduling a task from a resource to an idle resource, in order
to complete it sooner. Just like in the classical List Scheduling algorithm, the schedule is built
successively by selecting one idle resource at a time (the one with the smallest available time). The
difference is that if no task from the list is available, HeteroPrio can pick an already started task and
assign it to the idle resource if the resulting completion time is shorter. They introduce a simple
greedy scheme where the first idle resource spoliates tasks scheduled to finish last, and prove that
such a greedy spoliation strategy is enough to overcome the bad performance of List Scheduling,
and to obtain a constant factor approximation ratio. Algorithm 2 presents the pseudo-code of the
complete version of HeteroPrio.
To explain the underlying idea of the approximation proof of HeteroPrio, let us first present

the worst-case example proposed by the authors and depicted in Figure 5, where x/k tends to 1,
and r tends to 3 + 2

√
3 when k approaches +∞). The instance consists of four sets of tasks. Tasks

in the set T3 have an acceleration factor of 1, and tasks in the sets T1 and T4 have an acceleration
of factor r > 1. Tasks in T1 exhibit long execution times, and tasks in T3 and T4 are small enough
so that we can concentrate on their total load only. Tasks in T2 have specially crafted execution
times on GPUs, so that there exists a list schedule for these tasks on GPUs with makespan 2 − 1

k

, Vol. 1, No. 1, Article . Publication date: September 2020.

14 O. Beaumont et al.

Algorithm 2: HeteroPrio [1, 7]

1 L← list of tasks sorted by non-decreasing α j =
pj
pj

2 while not all tasks are completed do
3 t ← first time a resource i is idle
4 if L is non empty then
5 if idle resource i is a CPU then Pop task j from the head of L.
6 else Pop task j from the tail of L.
7 Start task j on resource i at time t .
8 else
9 S ← {tasks processed by other resources at time t ,that would finish earlier if started

on i at time t}
10 if S is non empty then
11 j ← task from S with highest finish time
12 Unassign j and start it on resource i at time t .
13 else return the current schedule.

Optimal schedule
for T2

Set T3 T4

T1

m
=
k
2
CP

Us
k
GP

Us

0 k
t

(a) Optimal schedule

Set T4

Set T3

T2 (aborted)

rk
3

T1 Bad T2 schedule

0 x x + k
r x + k

r + k − 1 x + k
r + 2k − 1

t

(b) HeteroPrio when the last task can be spoliated

Fig. 5. Optimal and HeteroPrio on the worst case instance (Section 5.1.3).

times larger than the optimal, and set T2 does not contain small tasks. Tasks of T2 all have the same
execution time on CPU; their acceleration factors differ, but all are between 1 and r . The actual
execution times of tasks in the instance are chosen so that the schedule depicted on the left part of
Figure 5 is feasible with makespanC∗max = k . On the other hand, a possible schedule for HeteroPrio
is depicted on the right part of this figure: tasks of sets T3 and T4 are executed first (this takes time
x , which is almost k), then tasks of T1 start on the GPUs and tasks of T2 start on the CPUs. These
tasks from T2 have very long execution times on CPUs, so they get spoliated by the GPUs once
GPUs are done with T1 tasks. This results in a list schedule on the GPUs for tasks from T2, which
can take up to 2k units of time.
To make this instance feasible, the largest possible value for the execution time of tasks in T1

on GPUs is given by (2√3 − 1)k . This implies that the approximation ratio of HeteroPrio is at least
1+ (2√3 − 1)+ 2, where the first part comes from the work done before the first idle time, the second
part comes from executing the remaining tasks on the GPUs given their maximum acceleration
factor, and the last part comes from List Scheduling bounds. More details on this proof can be found

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 15

in the original paper [7].

The proof for the constant approximation ratio of HeteroPrio follows the same structure:
Lemma 5.3 provides a bound for the time before some resource becomes idle. The length of
tasks remaining on the GPUs is bounded, and since spoliated tasks are too long to be executed
on CPUs in any optimal schedule, the fact that HeteroPrio is a List Scheduler for them ensures
that it takes at most twice the optimal makespan. However the bound on the length of the tasks
remaining on the GPUs after the first idle time is less than in the above counter-example (

√
2 − 1

instead of 2√
3 − 1). This comes from the fact that in their proof [7], the authors have not been able

to take the amount of work left after the first idle time into account in the equations that express
the constraint over the acceleration factors of the tasks remaining on the GPUs.
Overall, the following theorem summarizes HeteroPrio’s approximation ratios in the different

cases.

Theorem 5.4. The approximation ratio of HeteroPrio (Algorithm 2) is at least 2 + 2√
3 ∼ 3.15 and at

most 2+
√
2 ∼ 3.41. In the special case when pj ≤ C∗max and pj ≤ C∗max for any task j ∈ T , HeteroPrio

is a 2-approximation algorithm.

HeteroPrio has a time complexity of O(n log(n) + n log(m) +m log(m)), where the first term is
for sorting the set of tasks at the beginning, the second is for retrieving the processor with smallest
completion time and the last term is for scheduling the spoliated tasks: sincem ≥ k , there are at
mostm candidate tasks (spoliation only occurs from one resource type to the other), and sorting
these candidate tasks in an appropriate data structure leads to a loд(m) amortized cost for finding
the best candidate.

5.1.4 BalancedEstimate and BalancedMakespan. The objective of BalancedEstimate and Balanced-
Makespan, proposed by Canon et al. [17], is very similar to the one of HeteroPrio. However, these
heuristics are based on slightly different ideas to construct the schedule. Both heuristics follow
the same principle, which consists in two main steps. For the sake of clarity, we first explain the
BalancedEstimate heuristic, and then point out the differences with BalancedMakespan. First, the
allocation x j of each task j ∈ T is computed to decide whether a task should be computed on a
CPU or on a GPU. Then, a precise schedule of the tasks allocated to each resource type is computed.
The first step, which is the most critical, is described in Algorithm 3. We present here the case

when the average load is larger on the GPU than the one on CPU (or equal). The other case behaves
symmetrically (simply exchange the role of CPUs and GPUs). BalancedEstimate starts from the
allocation where each task is put on its favorite resource type, i.e., the processor type on which it
has the minimum processing time. Then, this allocation is refined to balance the load of the two
processor types. To rebalance the load, we consider each task allocated on GPUs, starting from
the one which suffers the least from being on its non-favorite resource, that is, the task j such that
α j is minimal. Each of these tasks is iteratively moved to CPUs, and two special allocations are
remembered:
• The allocation xbest leading to the best estimated makespan Est(x) (allocation cost estimate,
defined below);
• The allocation x inv obtained where CPUs become overloaded.

During this iterative process, we also take care of special tasks that would significantly degrade the
makespan if moved to CPUs: when one of the tasks moved to CPU dominates the makespan (i.e.,
when the processing time on CPU of that task is greater than or equal to the estimated makespan),
it is moved back to GPUs.

, Vol. 1, No. 1, Article . Publication date: September 2020.

16 O. Beaumont et al.

Algorithm 3: Balanced Allocation used in BalancedEstimate (case when W (x)
m ≤ W (x)

k)
1 for j = 1 . . .n do
2 if α j =

pj
pj
< 1 then x j ← 1 else x j ← 0

3 xbest ← x

4 Sort tasks by non-decreasing α j .
5 jstart ← min{j : x j = 0}
6 for j = jstart . . .n do
7 if W (x)

m ≤ W (x)
k and W (x)+pj

m >
W (x)−pj

k then x inv ← x

8 x j ← 1
9 if Est(x) < Est(xbest) then xbest ← x

10 if Est(x) = pjmax(x) then xjmax(x) ← 0
11 if x inv is not defined then x inv ← x

12 return (xbest ,x inv)

Algorithm 4: BalancedEstimate [17]
1 Compute (xbest ,x inv) using Algorithm 3.
2 for allocation x in (xbest ,x inv) do
3 Schedule tasks {j : x j = 1} on CPUs using LPT.
4 Schedule tasks {j : x j = 0} on GPUs using LPT.
5 return the schedule that minimizes the global makespan.

Initially, tasks are allocated to their favorite resource type (Lines 1–2 of Algorithm 3). Tasks are
sorted by non-decreasing acceleration ratio (Line 4), such that the first task to move to CPUs is
jstart, as defined on Line 5.
In order to define the allocation cost estimate, we first extend the notationW andW so that

W (x) (resp.W (x)) denotes the total overall workload on all CPUs (resp. GPUs) for the allocation x .
We also define the maximum processing timeM(x) (resp.M(x)) of tasks allocated on CPUs (resp.
GPUs) as follows:

M(x) = max
j

x jpj and M(x) = max
j
(1 − x j)pj .

BalancedEstimate relies on the maximum of the four previous quantities presented above to estimate
the makespan of an allocation. More precisely, the allocation cost estimate is defined as follows:

Est(x) = max
(
W (x)
m
,
W (x)
k
,M(x),M(x)

)
.

This estimation of the makespan is used to define the best allocation seen so far, denoted xbest and
updated in Line 9 of Algorithm 3. Line 7 defines the allocation x inv leading to an inversion of the
largest load, while Line 8 moves the current task from GPUs to CPUs. jmax(x) denotes the index of
the largest task allocated to a CPU but that would be more efficient on a GPU:

jmax(x) = argmax
j :x j=1 and α j>1

pj .

Finally, a dominating task j verifies j = jmax(x) and Est(x) = pjmax(x). Line 10 of Algorithm 3 checks
if there exists a dominating task and, if any, moves it back to GPUs.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 17

m

m − 1 1
.
.
.

m − 1 1

m
CP

Us
1
GP

U

0 m
t

(a) Optimal schedule

1 + ϵ 1 + ϵ. . .

m − 1
.
.

m − 1 1
m − 1 m − 1

0 2m − 2m − 1
t

(b) Schedule built for xbest = x inv

Fig. 6. Tightness of BalancedEstimate, achieved withm > 1 CPUs, k = 1 GPU and two types of tasks:m
tasks with costs pj = 1 and pj = 1 + ϵ (with ϵ < 1

m−1), andm + 1 tasks with costs pj = m − 1 and pj = m.
After switching processor type roles, BalancedEstimate builds a schedule with makespan 2m − 2, whereas the
optimal ism (Section 5.1.4).

Algorithm 5: BalancedMakespan [17] (case when W (x)
m ≤ W (x)

k)
1 for j = 1 . . .n do
2 if α j =

pj
pj
< 1 then x j ← 1 else x j ← 0

3 xbest ← x

4 Sort tasks by non-decreasing α j .
5 jstart ← min{j : x j = 0}
6 for j = jstart . . .n do
7 x j ← 1
8 if LPT (x) < LPT (xbest) then xbest ← x

9 if Est(x) = pjmax(x) then xjmax(x) ← 0
10 if LPT (x) < LPT (xbest) then xbest ← x

11 return the schedule produced using LPT for both CPUs and GPUs on allocation xbest .

The scheduling phase (Algorithm 4) computes, for each resource type, an LPT schedule for
both xbest and x inv . The final result is the schedule with the minimum makespan. This results
in a 2-approximation algorithm, as stated below. Figure 6 presents an example which shows the
tightness of the approximation ratio.

Theorem 5.5. BalancedEstimate (Algorithm 4) is a 2-approximation, and this ratio is tight.

The most costly operation of Algorithm 3 is the computation of the allocation cost estimate
(Line 9), which is in computed in timeO(n log(n)). The time complexity of Algorithm 4 isO(n(log(m)+
log(k))), which makes the overall complexity of BalancedEstimate O(n log(nm)).

BalancedMakespan, described in Algorithm 5 is a slightlymore costly variant of BalancedEstimate:
instead of using the allocation cost estimate during the allocation phase, it simulates the LPT policy
and computes the exact resulting makespan. It has the same approximation ratio, but a larger time
complexity O(n2 log(nm)) and performs better in practice. In Algorithm 5, the makespan of the
schedule obtained using LPT for both CPUs and GPUs on allocation x is denoted by LPT (x).

, Vol. 1, No. 1, Article . Publication date: September 2020.

18 O. Beaumont et al.

5.1.5 CLB2C. Centralized Load Balancing for Two Clusters, CLB2C in short, is a low-complexity
scheduling heuristic proposed by Cheriere and Saule [20]. The algorithm first sorts tasks by
increasing acceleration factor. It then compares the allocation of the first task on the soonest
available CPU to the allocation of the last task on the soonest available GPU. The choice leading to
the smallest increase in makespan among both machines is chosen in the final schedule and the
task is removed from the list. The process continues until there is no more task to schedule.

Algorithm 6 details the steps of CLB2C, where C(i) denotes the time where all jobs of processor
i have completed.

Algorithm 6: Centralized Load Balancing for Two Clusters (CLB2C) [20]

1 Sort tasks by non-decreasing α j =
pj
pj
.

2 jmin ← 1
3 jmax ← n

4 while jmin ≤ jmax do
5 Select the CPU icpu such that C(icpu) = mini ∈CPU C(i).
6 Select the GPU igpu such that C(igpu) = mini ∈GPU C(i).
7 if C(icpu) + pjmin ≤ C(igpu) + pjmax then
8 Allocate task jmin on machine icpu.
9 jmin ← jmin + 1

10 else
11 Allocate task jmax on machine igpu.
12 jmax ← jmax − 1

In the original publication, the authors prove that CLB2C is a 2-approximation algorithm when
no task has a processing time larger than the optimal makespan. The authors argue that this is
a rather natural assumption for distributed scheduling, when there is a large number of tasks to
schedule.

Theorem 5.6. CLB2C (Algorithm 6) is a 2-approximation algorithm provided that pj ≤ C∗max and
pj ≤ C∗max for any task j ∈ T .

The proof of this approximation ratio relies on identifying the earliest completion time t at the
instant the last task is scheduled. The authors notice that all processors are busy in time interval
[0, t] and that the load balancing is optimal in this interval (moving a task can only increase the
overall work), such that t ≤ OPT . Then, they manage to upper bound the extra time between t and
the final completion time by an extra OPT .

With an appropriate data structure such as a binary heap to retrieve the CPU (resp. GPU) with
smallest completion time and update it in time O(logm) (resp. O(logk)), the total complexity of
CLB2C is O(n(log(nm))).

5.2 On-line Setting for Independent Tasks
We now move to the on-line setting: tasks are still independent, however they are submitted over
time. Recall that a task is scheduled immediately and irrevocably upon its arrival.

5.2.1 PG, LG andMG. In 2003, Imreh [33] proposed two simple heuristics and a 4−2/m-competitive
algorithm for this problem.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 19

The first heuristic, named Post Greedy (PG in short) and presented in Algorithm 7, schedules
each task on the machine where it will be finished earliest. The time complexity of this operation
is O(log(m)). This intuitive idea has often been used and it is named Earliest Finish Time (EFT) or
Earliest Completion Time (ECT) [38].

Theorem 5.7. The competitive ratio of PG (Algorithm 7) is at least ⌊mk ⌋.
The proof is as follows: Let ε > 0 be as small as desired, and consider a sequence of tasks

decomposed into ⌊m/k⌋ rounds. Each round consists of k tasks of processing times pj = 1 + ε and
pj = 1, followed bym tasks of processing times pj = 1 and pj = ε . PG schedules the first part of
each round on GPUs and the second part on CPUs, achieving a makespan equal to the number of
rounds, i.e., ⌊m/k⌋. It is however possible to achieve a makespan of 1 by scheduling each task on
the opposite resource type. The problem with this heuristic is that a task may be scheduled on
one of the rare GPUs even if its processing time is only slightly reduced. Then, tasks that could be
significantly accelerated on a GPU end up scheduled on an idle CPU if all GPUs are busy. Both
GPU and CPU are therefore not efficiently used.

Algorithm 7: Post Greedy (PG) [33] or Earliest Completion Time (ECT) [38]
1 Upon arrival of task j:
2 Schedule task j on the machine where it will be finished the earliest.

The second heuristic, named Load Greedy (LG) and presented in Algorithm 8, assigns each task
to the resource type on which the ratio of its processing time divided by the number of processors
on that resource type is the smallest. With this method, tasks are assigned to a GPU only if they are
accelerated enough, so that the throughput of GPUs is higher for many identical tasks. However, it
is obvious that the competitive ratio is larger thanm/k : a single task with pj =m/k and pj = 1 + ε
will be scheduled on CPU. Imreh proves that the competitive ratio is actually equal to 2 + m−1

k . The
most costly operation consists in finding the earliest available idle resource on Line 3, which time
complexity is O(log(m)).

Algorithm 8: Load Greedy (LG) [33]
1 Upon arrival of task j:
2 if pj/m ≥ pj/k then x j ← 0 else x j ← 1
3 Schedule j using List Scheduling with respect to the assignment variable x j .

LG has then been improved into the algorithm Modified Greedy (MG) to allocate more tasks to
GPUs. In this algorithm, detailed in Algorithm 9, the tasks that have been assigned to GPUs by MG
but not by LG are stored into a set R. Any new task whose processing time on CPU is larger than a
lower bound on the makespan needed to schedule the R tasks and this new task on GPU is then
assigned to GPU. This modification ensures that the competitive ratio is not impacted by large
tasks. Indeed, Imreh proves that MG is (4 − 2/m) - competitive [33]. The principle of this algorithm
is similar to Al4, presented in Section 5.2.2. Because of the use of the set R, MG has a slightly better
competitive ratio (4− 2/m versus 4), but its proof requires considering more cases and to perform a
tighter analysis. Hence, we only sketch in this survey the proof of the competitive ratio of Al4 and
not the one of MG. The time complexity of scheduling any task is the same as with LG because the
computation on Line 4 can be performed incrementally in constant time.

, Vol. 1, No. 1, Article . Publication date: September 2020.

20 O. Beaumont et al.

Algorithm 9:Modified Greedy (MG) [33]
1 R ← ∅
2 Upon arrival of task j:
3 if pj/m ≥ pj/k then x j ← 0

4 else if pj ≥ max
(
maxi ∈R∪{j } pi ,

∑
i ∈R∪{j } pi/k

)
then

5 x j ← 0
6 Add task j to R.
7 else x j ← 1
8 Schedule j using List Scheduling with respect to the assignment variable x j .

5.2.2 Al4 and Al5. Chen et al. [19] proposed several algorithms, both for the general case and for
the two special cases where k =m and k = 1. For the general case, the first algorithm Al4 presented
in Algorithm 10 combines two decision rules to assign a task to a CPU or a GPU and then schedules
the task using List Scheduling. Notice that τ on Line 2 of the algorithm denotes the earliest moment
when at least one GPU is idle. The time complexity of this algorithm is then O(log(m)), including
both the computation of τ and the last scheduling phase. The algorithm applies the following two
rules:

Rule 1 On Line 2, a task is assigned to GPUs if its running time on CPUs is larger than its
completion time on GPUs;

Rule 2 On line 4, a task is assigned to CPUs if its average weight is larger on GPUs, with a
similar rule than the LG algorithm.

Algorithm 10: Al4 [19]
1 Upon arrival of task j:
2 if pj ≥ τ + pj then x j ← 0
3 else
4 if pj/m ≤ pj/k then x j ← 1 else x j ← 0
5 Schedule j using List Scheduling with respect to the assignment variable x j .

Theorem 5.8. Al4 (Algorithm 10) achieves a competitive ratio of 4.

In the proof of Theorem 5.8, the authors compare on which type of machine a task is placed
in the output schedule of Al4 (denoted by SAl4 with makespan Cmax) and the optimal schedule
(denoted by SOPT with makespan C∗max). More precisely, the set of tasks is partitioned into five
disjoint subsets as follows:

- ΛC (resp. ΛG): Set of tasks scheduled on CPUs (resp. GPUs) for both SAl4 and SOPT
- UG : Set of tasks scheduled on GPUs in SAl4 by Rule 1 but on CPUs in SOPT
- VC (resp. VG): Set of tasks scheduled on CPUs (resp. GPUs) in SAl4 by Rule 2 but on GPUs
(resp. CPUs) in SOPT

Let λC , λG , uG , vC and vG denote the total processing times, according to SAl4, of tasks in sets
ΛC , ΛG ,UG , VC and VG , respectively. Moreover,

Cmax ≤ max
{
λC +vC

m
+ pmax ,

λG + uG +vG
k

+ pmax

}
(7)

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 21

where pmax (resp. pmax) is the processing time of the largest task on CPUs (resp. GPUs) in SAl4.
From the relations between processing times in the decision rules, it is possible to derive the

following bounds (more details can be found in the original paper [19]):

uG
k
≤ C∗max

λC
m
+
vG
k
≤ C∗max

λG
k
+
vC
m
≤ C∗max

It remains now to bound pmax and pmax . Let j denote the task with processing time pmax . If j is
also on a CPU in the optimal solution, then pmax ≤ C∗max . If j is on a GPU in SOPT , then pj ≤ C∗max

and since it has not been scheduled on CPUs by Rule 1, then

pmax = pj ≤ λG + uG +vG
k

+ pj ≤ λG + uG +vG
k

+C∗max

Let j ′ denote the task with processing time pmax . If j ′ is also on a GPU in SOPT , pmax ≤ C∗max . If
j ′ is on a CPU in SOPT , then we can derive from the bounds

pmax = pj′ ≤ pj′ ≤ C∗max

Finally, by plugging these bounds into Equation (7), we obtain Cmax ≤ 4C∗max , which concludes
the proof.
The authors also propose a refinement of this algorithm by adding a third decision rule and by

adding coefficients to the rules so as to achieve a better load balancing between the two sets of
resources. This improved algorithm achieves a competitive ratio at most 3.85 with the same time
complexity. We consider this improved algorithm, denoted byAl5, instead ofAl4 in the experimental
session since it provides a slightly better competitive ratio.
Moreover, for the special case where k =m, they propose a 3-competitive algorithm that can

even be improved to be (1 + √3)-competitive by adding another decision rule and coefficients in a
similar way as for the general case. For the one-sided case, where k = 1, a 3-competitive algorithm
is also provided. These special case algorithms have a time complexity similar to the one of Load
Greedy (Section 5.2.1).

6 APPROXIMATION ALGORITHMS AND HEURISTICS FOR TASKS WITH
PRECEDENCE CONSTRAINTS

Many real-life parallel computing applications consist of tasks linked with precedence relations
induced by data dependencies, which complexifies the search for efficient schedules. In this sec-
tion, we review scheduling algorithms that have been proposed for applications with precedence
constraints on heterogeneous platforms.

6.1 Off-line Setting for Tasks with Precedence Constraints
We first present existing strategies for the off-line case, that is, when both the structure of the
precedence constraints and the cost of the tasks are completely known beforehand.

, Vol. 1, No. 1, Article . Publication date: September 2020.

22 O. Beaumont et al.

6.1.1 HEFT. When scheduling tasks with precedence constraints on heterogeneous resources,
Heterogeneous Earliest Finish Time (HEFT) [50] is an unavoidable heuristic. Despite its apparent
simplicity and a non-constant approximation ratio [3, 12], it performs well in most cases and is
thus used as a reference heuristic in many recent scheduling studies.
HEFT, presented in Algorithm 11, extends the Earliest Finish Time principle to heterogeneous

platforms. It consists in two steps: (i) tasks ranking and (ii) resources selection. To rank the tasks,
HEFT generalizes the concept of bottom-level to heterogeneous platforms by using the average
computation time of a task on all machines (and the average communication time among two
machines). The rank of task j is defined as

rank(j) = w j + max
i ∈Γ−(j)

(c j,i + rank(i)),

where w j is the average processing cost of task j ((mpj + kpj)/(m + k) in our case) and c j,i the
average communication cost of arc (j, i) (assumed to be negligible in our setting). Tasks are then
sorted by decreasing values of rank(j), which provides a topological ordering. Then, ready tasks are
considered in this order to be scheduled on the resources. The first (ready) task according to this
ordering is scheduled on the resource that is able to complete this task the soonest, following EFT
principle. During this second phase, precedence constraints are considered (a task cannot start until
all its predecessors are completed) as well as resource availability: HEFT uses an insertion-based
strategy, i.e., all possible idle slots on all possible resources are considered to schedule a task. Its time
complexity is in O(n2) and results from the time to compute the ranks and this last insertion-based
strategy.
While HEFT is designed as an off-line algorithm, its task sorting policy has been transposed

to dynamic schedulers that only consider tasks at runtime once all their predecessors have been
processed. This is typically the case of the DMDA scheduler of StarPU runtime [5].

Algorithm 11: Heterogeneous Earliest Finish Time (HEFT) [49]
1 Compute the rank of each task j ∈ T .
2 L← T sorted by decreasing rank of the tasks.
3 for each task j ∈ L do
4 Schedule task j on the machine where it will be finished the earliest with an

insertion-based strategy.

6.1.2 HLP. Heterogeneous Linear Program (HLP), presented in Algorithm 12 is the first algorithm
with a proved constant approximation ratio for the problem of scheduling tasks with precedence
constraints on two types of resources [36]. It relies on the solution of the linear program (in rational
numbers) LPprec (defined in Section 4.1.2) combined with a rounding strategy of its fractional
solution, that decides on the allocation of each task. This step is followed by a variant of List
Scheduling adapted to the case of two resource types, where tasks have been sorted according
to the Earliest Starting Time (EST) strategy. In addition to solving the linear program, the time
complexity of the remaining operations is O(n log(n) + n log(m)) where the first term is for sorting
tasks by their earliest starting time and the second is for finding the first available resource.

After the resolution of the relaxed version of LPprec , x j variables end up with fractional values.
The rounding rule applied to the fractional solution is common: it consists in setting x j to 1 if the
fractional value is ≥ 1/2 and to 0 otherwise. This leads to a 2-approximation of the linear program
LPprec , as shown in Lemma 2 of the original paper [36].

Theorem 6.1. HLP (Algorithm 12) is a 6-approximation algorithm, and this ratio is tight.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 23

Algorithm 12: Heterogeneous Linear Program (HLP) [36]
1 Solve the linear program LPprec over the rational numbers.
2 Let x̃ j be the (fractional) value of the assignment of the variable j in an optimal solution of

LPprec .
3 for each task j do
4 if x̃ j ≥ 1/2 then x j ← 1 else x j ← 0
5 SA ← ∅
6 while SA , T do
7 Select the ready task j that has the earliest starting time (EST policy).
8 Schedule j using List Scheduling with respect to the assignment variable x j .
9 Add j to SA.

Let us sketch the proof of the first part of Theorem 6.1 (more details may be found in the original
paper [36]). The analysis follows the principle of List Scheduling recalled in Section 3.1. The main
difference here is that the whole span I = [0,Cmax) of time slots is decomposed into 3 subsets of
intervals instead of 2, namely ICP , I and I . ICP includes the time slots when at least one CPU and
one GPU are idle, while I (resp. I) includes the time slots when all the CPUs (resp. GPUs) are fully
occupied. Since the intersection between I and I may be non-empty, the makespan is bounded
above by the sum of the duration of the time slots in each of the three subsets. Clearly, the overall
length of ICP is upper bounded by the length of the critical path, while the length of I (resp. I) is
upper bounded by the average workload on the CPUs (resp. GPUs). Moreover, rounding x j variables
can at most double the objective value CLP of LPprec . Thus, as CLP is a lower bound of the optimal
feasible makespan we get

Cmax ≤ |ICP | + |I | + |I | ≤ 6CLP ≤ 6C∗max .

This algorithm has been further studied by Amaris et al. [3]. They propose a variant of the
scheduling policy called Ordered List Scheduling (OLS). In this policy, a ranking similar to HEFT [50]
is computed for each task and the list of tasks is sorted in decreasing order of the ranks before
using List Scheduling. The resulting algorithm is called HLP-OLS in reference to HLP-EST, the
original algorithm based on EST policy.
The authors show that, although the approximation ratio of HLP-OLS is also 6, OLS policy

performs better in practice. Moreover, they propose a worst-case example for HLP achieving a ratio
of 6 −O(1m) whatever the scheduling policy applied during the second phase, which proves the
tightness of the approximation ratio.

6.2 On-line Setting for Tasks with Precedence Constraints
Finally, let us review proposed scheduling strategies for the most difficult problem, where tasks
with precedence constraints are discovered by the scheduler as they are made available by the
completion of the tasks they depend on. Note that the heuristic PG (also named ECT) described in
Section 5.2.1 may well be applied to this scenario. As for the independent tasks case, the competitive
ratio of this algorithm is at least ⌊m/k⌋.
6.2.1 ER-LS. ER-LS [4] differs fromAl4 (presented in Section 5.2.2) in its second rule that diminishes
the role of the number of each resources by considering their square roots. This new set of rules
gives more importance to the acceleration factor and is presented in Algorithm 13.

Theorem 6.2. ER-LS (Algorithm 13) achieves a competitive ratio of 4
√m

k .

, Vol. 1, No. 1, Article . Publication date: September 2020.

24 O. Beaumont et al.

Algorithm 13: ER-LS [4]
1 Upon arrival of task j:
2 if pj ≥ τ + pj then x j ← 0
3 else if pj/

√
m ≤ pj/

√
k then x j ← 1

4 else x j ← 0
5 Schedule j using List Scheduling with respect to the assignment variable x j .

The proof of Theorem 6.2 is similar to the one of Theorem 5.8, where pmax is replaced by the
length of the critical path in the schedule, and is therefore omitted. The full proof can be found in the
original paper [4]. The result is established by proving separately the three following inequalities
on the schedule produced by ER-LS:

Cmax ≤ W

m
+
W

k
+ |CP | ; |CP | ≤

√
m/k C∗max ; W

m
+
W

k
≤ 3

√
m/k C∗max .

6.2.2 QA and mixed-ECT-QA. Quick Allocation (QA) [16] can be seen as a simplification of ER-LS
algorithm presented in Section 6.2.1, that exhibits a better competitive ratio. The first decision
rule for ER-LS is removed and the new set of rules is presented in Algorithm 14 leading to the
time complexity of scheduling a task O(log(m)) as with PG and LG. The intuitive goal of this first
rule was to complete the first large tasks as early as possible, possibly at the price of the global
optimality. This behavior was necessary in Al4 algorithm (on which ER-LS is based) as the target
approximation ratio was smaller than

√
m/k . We show here that this rule is superfluous when

scheduling tasks with precedence relations and leads to a larger competitive ratio.

Algorithm 14: Quick Allocation (QA) [16]
1 Upon arrival of task j:
2 if pj/

√
m ≤ pj/

√
k then x j ← 1 else x j ← 0

3 Schedule j using List Scheduling with respect to the assignment variable x j .

Theorem 6.3. QA(Algorithm 14) achieves a competitive ratio of 2
√m

k + 1 − 1√
mk

.

The proof of Theorem 6.3, detailed in the original publication [16], is adapted from the one of
Theorem 6.2 with tighter inequalities and is therefore omitted here. The following inequalities are
established in the proof:

Cmax ≤ W

m
+
W

k
+

(
1 − 1

m

)
|CP | ; |CP | ≤

√
m/k C∗max ; W

m
+
W

k
≤

(√
m/k + 1

)
C∗max .

The competitive ratio of the QA algorithm is almost tight as stated in the following theorem,
proved in the original paper [16].

Theorem 6.4. The competitive ratio of the QA algorithm is at least
(
2
√m

k + 1 − 1
k

)
.

The main idea to build the lower bound example is to combine many short independent tasks
of acceleration factor

√
m/k + ε with a single long task of acceleration factor

√
m/k − ε , which

depends on a small task that needs to be run on GPU. The algorithm QA schedules the first set

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 25

of tasks on the GPU and the single task on CPU afterwards, losing a time factor of
√
m/k in both

cases compared to the reversed allocation.
An advantage of ER-LS over QA is that it better schedules some easy instances, such as single task

instances, thanks to its first rule. The idea of relying on QA in order to obtain a good competitive
ratio while improving the scheduling decisions for easy instances is the motivation of the algorithm
Mixed-ECT-QA, introduced by the same authors [16] and presented in Algorithm 15. This algorithm
is parameterized by a factor γ ≥ 0 which represents a trade-off between having a strong worst-case
guarantee (for a small γ) and having a performance close to the ECT algorithm, presented in
Section 5.2.1 (high γ). Initially, it takes the same decisions as ECT. If the achieved makespan is at
least γ times longer than the one that would be achieved by QA, then all the subsequent scheduling
decisions are those QA would have made. Intuitively, this algorithm initially works like ECT since
ECT performs well on many easy instances, but if the instance is identified as being difficult, then it
switches to QA which has a better competitive ratio. Mixed-ECT-QA is therefore as efficient as ECT
on easy instances, but it achieves a smaller competitive ratio in the worst case. The time complexity
to schedule a task is dominated by the computation of the schedule that would be achieved by QA,
which is O(n logm).

Theorem 6.5. Mixed-ECT-QA(Algorithm 15) achieves a competitive ratio of (γ + 1)(2√m
k + 1).

Algorithm 15: Mixed-ECT-QA(γ) [16]
1 StayECT ← true
2 Upon arrival of task j:
3 if StayECT then
4 CEFT ← makespan obtained by scheduling task j as EFT
5 CQA ← makespan that QA would have obtained on the part of the graph known upon

the arrival of task j
6 StayECT ← (CECT ≤ γCQA)
7 if StayECT then
8 Schedule Ti (as soon as possible) on the resource which is able to complete it the earliest.
9 else

10 Schedule Ti (as soon as possible) on CPU if pi/pi ≤
√
m/k and on GPU otherwise.

7 EXPERIMENTS
This section presents experimental results to compare the behavior of all algorithms discussed in
this paper in practice. All algorithms used in this section have been implemented in C++ as part of
the pmtool project [24], and linear programs are solved using IBM CPLEX v12.7, in parallel mode
using 4 threads. All input data and experimental analysis are available in the companion repository:
https://hal.inria.fr/hal-02159005.

7.1 Independent Tasks
7.1.1 Algorithms. Almost all the algorithms presented in Section 5 have been implemented. In
particular, this includes the following off-line strategies:
• The Sorted ECT algorithm, which considers tasks with highest average execution time first.
This algorithm is actually equivalent to HEFT [49] in the case of independent tasks.
• HeteroPrio, as described in Section 5.1.3.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://hal.inria.fr/hal-02159005

26 O. Beaumont et al.

• BalancedEstimate and BalancedMakespan [17], as described in Section 5.1.4 (their names
have shortened to BalEst and BalMks in the plots).
• CLB2C [20], as described in Section 5.1.5.
• The algorithms based on dual approximation technique:
– DualHP [34], as described in Section 5.1.1.
– DP2 [12] and DP 3

2
, as described in Section 5.1.2. In practice, to accelerate the execution

times, these algorithms have not been implemented using dynamic programming, but
rather using the corresponding integer programming formulation and CPLEX.

Algorithms based on (relaxations of the) linear programming were also implemented:
• The LP algorithm solves the Integer Linear Programming formulation with CPLEX, with a
gap of at most 10% (the solver stops when it finds an integer solution provably within 10% of
the optimal solution). This algorithm has no guarantee of polynomial execution time.
• Round denotes the algorithm that solves the rational relaxation of the Linear Programming
formulation described in Section 4.1.1, and then rounds the solution as described by Tarplee
et al. [48]. Round algorithm is designed for an arbitrary number of resource types; In the case
of two resources, this corresponds to rounding to the closest integer value.

Moreover, the MinMin algorithm [15], designed for scheduling independent tasks on heteroge-
neous platforms, was also added in our set of tested algorithms. MinMin selects, over all unscheduled
tasks, the one with the minimum expected completion time over all machines and schedules it on
the corresponding machine. This process is repeated while unscheduled tasks remain.

We also included the on-line algorithms ECT, LG and MG depicted in Section 5.2.1, and Al5 from
Section 5.2.2, with its default parameters set as in the associated publication [19] (Al4 was not
implemented as it has a slightly lower competitive ratio).
Furthermore, since the exact computation of an optimal solution is costly, we used for each

instance the lower bounds given in Section 4.1.1 to normalize the makespan of all above algorithms.
In particular, we computed the area bound, which is the optimal value of the rational solution of
the Linear Program solved by Round.

7.1.2 Benchmarks and Results. We consider two different families of instances. The first family
consists of randomly generated instances, which allows us to explore a wide variety of scenarios
and assess an average behavior of all algorithms. The second family contains benchmarks from
real-life linear algebra kernels, in order to analyze the practical behavior of algorithms.

Random instances. These tasks are generated with the same procedure as in the original publi-
cation of BalancedEstimate and BalancedMakespan [17]: each task duration on a CPU follows a
Gamma distribution of expected value 15, and durations on GPU follow a Gamma distribution of
expected value 1. The durations of the different tasks are independent, and the respective durations
on both types of resources for a given task are independent as well. The coefficient of variation
of these distributions can be either 0.2 (low) or 1 (high). This yields to four different cases. Each
instance contains 300 tasks, and for each setting 100 instances are generated. The number of CPUs
is either 10 or 40, and the number of GPUs is either 2 or 8.

Figure 7 depicts the quality of the schedules produced by all algorithms. As mentionned above,
the quality of a schedule is assessed through the ratio of the makespan to a lower bound of the
optimal makespan.
On this plot (and on all the following plots in this section), the results are represented using

boxplots: for a group of values, the bottom and the top of the rectangle correspond to the first and
third quartile, and the line inside corresponds to the median measurement. Whiskers extend to the
extreme values, but no further than 1.5 times the inter-quartile range (which is the height of the

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 27

rectangle). Values beyond the end of the whiskers are plotted individually. Since the results do not
exhibit a significant correlation with the number of resources, all the results for a given case are
grouped together. We can make the following observations:
• As expected, on-line algorithms achieve worse performance than off-line algorithms. ECT is
on par with the worst off-line algorithms; Al5 achieves the best results among all on-line
algorithms with a performance guarantee.
• Sorted ECT and MinMin are significantly worse than other off-line algorithms. In particular,
sorting the tasks does not significantly improve the performance of ECT. On another hand,
BalancedMakespan consistently achieves the best performance in all cases. HeteroPrio and
CLB2C are based on very close ideas, and indeed behave very similarly.
• All algorithms based on dual approximation exhibit similar behaviors, despite their different
performance guarantees. On instances with low variation on the distribution of execution
times on the CPUs, their performance is significantly worse than with higher variation.
BalancedEstimate exhibits the same behavior. In this case, we believe that this comes from a
low quality of the approximation of the makespan of an allocation as the ratio of the total
load to the number of resources.
• There is a high variation of the execution times of tasks on the GPUs (CV_GPU=1) for the
most difficult instances: the ratios for all algorithms are higher than in the low variation
cases.

Figure 8 presents the running times of all algorithms. Since the running time does not depend
significantly on the instance types, all the results are grouped together, and a logscale is used in
order to properly display the results. As expected, on-line algorithms are the fastest, and the longest
running times correspond to algorithms relying on the solution of an LP. The good performance
of BalancedMakespan actually requires a larger computation time than for other heuristics, since
it requires recomputing a whole schedule at each allocation decision. The dual approximation
approach is also costly, because it requires solving the allocation problem (either by Dynamic or
Linear Programming).

Linear Algebra Kernels. We consider instances introduced by Beaumont et al. [8] in a previous
work on HeteroPrio. In order to obtain a representative mix of different kernels, applications from
the chameleon suite [18] (Cholesky, LU, QR) have been executed on the sirocco platform with tile
size 960. Each of these applications consists in many calls to a few linear algebra kernels, which
correspond to the individual tasks of the applications. Although there are precedence constraints
among these tasks in actual applications, we first remove them in order to test the quality of all
discussed scheduling strategies for independent tasks. We measure the average running time of
each kernel, as well as the number of times it is ran in each application, for a number of (960 × 960)
tiles varying from 6 to 20. This results in a total number of tasks in these instances varying from
124 to 2874. As before, these instances are simulated on platforms with either 10 or 40 CPUs, and
with either 2 or 8 GPUs.

Figure 9 depicts the quality of the schedules. Since the results are similar when considering
different number of tiles and of resource, as well as different applications, we group all the results
corresponding to the same given strategy in a single boxplot. For better readability, plots are
truncated beyond 2 (the only impacted algorithms are LG and Al5, for which the maximum value
is 2.3, and MG, Round, and DualHP, for which the maximum value is around 3), and a black dot is
added to show the average ratio. Note that even though DualHP is a 2-approximation, its makespan
is larger than twice the lower bound on a few instances, in particular when there are only a few
tasks. This is due to the fact that we compare with a lower bound and not with the real optimal
solution as in the analysis of the approximation ratio.

, Vol. 1, No. 1, Article . Publication date: September 2020.

28 O. Beaumont et al.

Online Heuristic Lin.Prog. DualApprox

C
V_G

PU
: 0.2

C
V_C

PU
: 0.2

C
V_G

PU
: 1

C
V_C

PU
: 0.2

C
V_G

PU
: 0.2

C
V_C

PU
: 1

C
V_G

PU
: 1

C
V_C

PU
: 1

ECT LG MG Al5

Sort
ed

 ECT

Hete
roP

rio
BalE

st

BalM
ks

CLB
2C

MinM
in LP

Rou
nd DP2

DP3/2

Dua
lHP

1.00

1.25

1.50

1.75

1.2

1.6

2.0

1.0

1.2

1.4

1.6

1.8

1

2

3

4

Algorithm

M
ak

es
pa

n
ra

tio
 to

 lo
w

er
 b

ou
nd

Fig. 7. Experimental results for the Random Independent case. Column labels show the type of algorithms,
row labels show the coefficients of variation of the distributions.

Online Heuristic Lin.Prog. DualApprox

ECT LG MG Al5

Sort
ed

 ECT

Hete
roP

rio
BalE

st

BalM
ks

CLB
2C

MinM
in LP

Rou
nd DP2

DP3/2

Dua
lHP

10

1000

Algorithm

Ti
m

e
(m

s)

Fig. 8. Computation time for the Random Independent case. Column labels show the number of GPUs, row
labels show the number of CPUs.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 29

Online Heuristic Lin.Prog. DualApprox

ECT LG MG Al5

Sort
ed

 ECT

Hete
roP

rio
BalE

st

BalM
ks

CLB
2C

MinM
in LP

Rou
nd DP2

DP3/2

Dua
lHP

1.00

1.25

1.50

1.75

2.00

Algorithm

M
ak

es
pa

n
ra

tio
 to

 lo
w

er
 b

ou
nd

Fig. 9. Experimental results for the Linear Algebra Independent case.

Online Heuristic Lin.Prog. DualApprox

ECT LG MG Al5

Sort
ed

 ECT

Hete
roP

rio
BalE

st

BalM
ks

CLB
2C

MinM
in LP

Rou
nd DP2

DP3/2

Dua
lHP

1

100

Algorithm

Ti
m

e
(m

s)

Fig. 10. Computation time for the Linear Algebra Independent case.

We observe the same trends as with the previous benchmarks: on-line algorithms achieve poor
performance except for ECT; CLB2C and HeteroPrio achieve very close results; BalancedMakespan
produces the best schedules among all algorithms. These instances allow us to further differentiate
between the various dual approximation algorithms: the sophisticated formulations obtain better
solutions in some cases. Sorted ECT is, as expected, not well adapted to independent tasks.
Figure 10 presents the running times of all algorithms, once again with a logarithmic scale.

Despite these instances have a larger number of tasks, the fact that they contain a small number (4
or 5 depending on the application) of task types induces shorter computation times than in the
Random case depicted above. Regardless, roughly the same behavior can be observed, except that
the LP algorithm takes comparatively less time on this type of instances.

, Vol. 1, No. 1, Article . Publication date: September 2020.

30 O. Beaumont et al.

7.2 Tasks With Precedence Constraints
7.2.1 Algorithms. As in the case of independent tasks, almost all strategies presented in Section 6
have been implemented. As for off-line algorithms, we consider:
• HEFT, as described in Section 6.1.1.
• An off-line ECT variant (Off-line ECT) adapted to precedence constraints that computes
priorities from the task graph instead of considering tasks in an arbitrary order. The priority
of a task corresponds to its distance (in terms of number of tasks) to any of its descendants.
• HeteroPrio, as described in Section 5.1.3, can easily be extended to the case with precedence
constraints [8]: whenever a resource is idle, a ready task is assigned to it from the list of
ready tasks using the HeteroPrio policy. If no task is ready, an idle GPU is allowed to spoliate
a task from one of the CPUs if it can finish it earlier. This version of HeteroPrio makes use of
priorities (computed in a similar way as for HEFT) for two different purposes: (i) in order to
break ties for tasks with the same acceleration factor, and (ii) in order to decide which task a
GPU spoliates when it is idle.
• The HLP algorithm, as described in Section 6.1.2, has been implemented in two flavors: as
described in Algorithm 12 (a 6-approximation) and with an additional spoliation strategy.
Indeed, it makes sense to include spoliation in the list scheduling phase of this algorithm: if
some GPU is idle while there exists a task assigned to the CPU in the assignment phase, then
the GPU is allowed to spoliate this task if it can finish it earlier.

We also implemented the on-line algorithms ECT (as described in Section 5.2.1), ER-LS (as
described in Section 6.2.1), which is an extension of Al4, and QA (as described in Section 6.2.2),
which is a simplification of ER-LS with stronger approximation ratio.

For each instance, we use as a lower bound the rational solution of the Linear Program presented
in Section 4.1.2. This lower bound is used to normalize the makespan of all algorithms, as we did in
the independent tasks case.

7.2.2 Benchmarks and Results. In order to consider realistic instances, we use the applications
from the chameleon suite [18]. However, in this section, we consider the applications described
with their dependency graph. The number of tiles varies from 4 to 60. We consider that the number
of CPUs is either 10 or 40, and that the number of GPUs is either 2 or 8.
Figure 11 depicts the corresponding results. These plots show the results for each individual

instance, where each column corresponds to a different application, and each row corresponds to a
different amount of resources. In all plots, the x axis shows the size of the matrix (expressed as
number of tiles). These graphs are hard to interpret, so we also provide an average view in the top
plot of Figure 12, where all results for each matrix size are averaged over the different applications
and platform sizes. This allows us to make the following observations:
• With this type of instances, scheduling becomes easier when the number of tiles is very small
or very large. Indeed, when the number of tiles is small, the graph is very small and simply
scheduling (almost) all tasks close to the critical path on the GPU is enough to achieve low
makespan. On another hand, when the number of tiles is large, the overall work is dominated
by a large number of a particular type of tasks (matrix products in many cases), so that the
area bound dominates the schedule length. Of course, the middle ground depends on the
number of resources: from 8 to 20 tiles on a small platform, and from 16 to 32 on a large
platform.
• Concerning on-line algorithms, only the ECT algorithm has a “reasonable” behavior for large
size instances: the two other algorithms behave very similarly and their performance does
not converge to an almost optimal one when the problem size becomes large. The reason is

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 31

Cholesky LU QR
2 10

8 10

2 40

8 40

4 12 20 28 36 44 52 60 4 12 20 28 36 44 52 60 4 12 20 28 36 44 52 60

1.00

1.25

1.50

1.75

1.0

1.2

1.4

1.0

1.5

2.0

1.00

1.25

1.50

1.75

Number of tiles

M
ak

es
pa

n
ra

tio
 to

 lo
w

er
 b

ou
nd

Algorithm
ECT

ER-LS

HEFT

QA

HeteroPrio

HLP+spoliation

HLP Type Offline Online

Fig. 11. Experimental results for Linear Algebra with dependencies. Column labels show the application, row
labels show the number of CPUs (10-40) and GPUs (2-8).

that these algorithms target a given approximation ratio, without trying to obtain a better
solution if available. The comparatively better performance of ECT also explains why we do
not include Mixed-ECT-QA in the results: it actually would achieve the same results as ECT,
since there is no reason to switch to another algorithm.
• Spoliation does improve the performance of the HLP algorithm on these instances, and makes
it the best performing algorithm. However, as we will see later, this comes at the price of a
very high computational cost.
• Among the low-cost heuristics, HeteroPrio achieves the best results, followed by Off-line
ECT and HEFT. The difficult instances for HeteroPrio are when the numbers of CPUs and
GPUs are close, because there are fewer opportunities for spoliation.

Figure 12 presents the running times of all algorithms, gathered and averaged over all the
instances with the same number of tiles, and with a logarithmic scale on both axes. We see that all
on-line algorithms have the same computational cost, and the same observation holds for off-line
algorithms, except for HLP which requires the solution of the linear program used to obtain the
lower bound, and thus has a much higher computational cost. On all instances, the number of tasks
is of the order of the cube of the number of tiles, and we indeed see a polynomial dependency on
the graph.

, Vol. 1, No. 1, Article . Publication date: September 2020.

32 O. Beaumont et al.

1.0

1.2

1.4

1.6

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of tiles

Av
er

ag
e

M
ak

es
pa

n
ra

tio
 to

 lo
w

er
 b

ou
nd

Type
Offline

Online

Algorithm
ECT

ER-LS

HEFT

QA

HeteroPrio

HLP+spoliation

HLP

1

100

10000

4 8 16 32 64
Number of tiles

Ti
m

e
(m

s)

Type
Offline

Online

Bound

Algorithm
Lower Bound

ECT

ER-LS

HEFT

QA

HeteroPrio

HLP+spoliation

HLP

Fig. 12. Normalized performance and computation times for Linear Algebra with dependencies, averaged
over different numbers of processors and different applications.

8 CONCLUSION
8.1 Synthesis
We presented a comprehensive survey with the objective of questioning how to efficiently schedule
the tasks of a parallel application on hybrid computing platforms composed of multi-cores and
accelerators. A first and obvious output of this study is to provide a clear synthesis of all the
existing algorithms addressing this question. We have revisited all published algorithms in the area
within the same unified framework. They have been presented with both an emphasis on their
key underlying ideas and with a systematic analysis of the theoretical worst-case performance.

, Vol. 1, No. 1, Article . Publication date: September 2020.

Scheduling on Two Types of Resources: a Survey 33

Another output is the design of a common testbed for comparing the various algorithms, both in
terms of the quality of resulting schedule and in terms of the actual running time to compute it.
The benchmark used to perform the comparison is composed of a variety of random instances and
several realistic data extracted from actual applications. We encourage the community to use this
benchmark for further investigations.

8.2 Lessons learned
There are several lessons that can be learned from this study. First, and not surprisingly, there is no
straightforward conclusion in term of determining what is the best scheduling policy whatever
the instances. The choice of an algorithm is always a matter of trade-offs. Second, we showed that
the problem of designing generic scheduling on hybrid parallel platforms is tractable, assuming a
reasonably simple computational model. This survey should be considered as a useful study that
provides solid arguments to the users of such platforms. On the practical side, the old, cheap and
robust HEFT algorithm still behaves well. It is a good competitor but it does not have theoretical
guaranties that would prevent too bad executions on some instances.

8.3 Extensions
This study provides a full picture of the existing scheduling algorithms for hybrid platforms
under the restricted assumptions that correspond to today’s platforms. There are several research
directions for extending the algorithms.
The first generalization is to consider the case with K > 2 types of computing components, for

which several PTAS have been designed for the case of independent tasks [13, 27]. We believe that
many algorithms presented in this paper can be adapted for these new problems and most of them
will keep constant approximation guaranties (depending on the number of processor types, as it is
the case for HLP [4]). Even though they are still rare, we can envision the development of many
devices dedicated to specific use, such as TPUs or FPGAs. The setting with more than one type of
accelerator is therefore expected to become of practical interest soon.

A second direction is to extend the model of sequential tasks to parallel tasks. A first attempt has
been proposed by considering moldable executions on the CPU part [11], which does not change
significantly the approximation results. Another challenging extension is to take into account the
communication cost and the congestion on the network between CPUs and GPUs that has been
neglected in most existing algorithms, except for an extension of HLP proposed by Aba et al. [2].
The problem for obtaining useful results under any communication model is that the analysis
are closely related to the underlying architecture, and are therefore hard to generalize. Finally, a
(2 + α)-dual approximation has been proposed [10] to take into account affinity scores between
tasks and processors that may represent data locality. Other approaches to tackle such locality
issues may lead to lower approximation ratios.

REFERENCES
[1] Emmanuel Agullo, Berenger Bramas, Olivier Coulaud, Eric Darve, Matthias Messner, and Toru Takahashi. Task-based

FMM for heterogeneous architectures. Concurrency and Computation: Practice and Experience, 28(9), June 2016.
[2] Massinissa Ait Aba, Lilia Zaourar, and Alix Munier. Approximation algorithm for scheduling applications on hybrid

multi-core machines with communications delays. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 36–45, May 2018.

[3] Marcos Amaris, Giorgio Lucarelli, Clément Mommessin, and Denis Trystram. Generic algorithms for scheduling
applications on hybrid multi-core machines. In Euro-Par: 23rd International Conference on Parallel and Distributed
Computing, pages 220–231, Sept 2017.

[4] Marcos Amaris, Giorgio Lucarelli, Clément Mommessin, and Denis Trystram. Generic algorithms for scheduling
applications on heterogeneous platforms. Concurrency and Computation: Practice and Experience, 2018.

, Vol. 1, No. 1, Article . Publication date: September 2020.

34 O. Beaumont et al.

[5] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computation: Practice and Experience,
Special Issue: Euro-Par 2009, 23:187–198, February 2011.

[6] Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, pages 453–462, Oct 2009.

[7] Olivier Beaumont, Lionel Eyraud-Dubois, and Suraj Kumar. Approximation Proofs of a Fast and Efficient List Scheduling
Algorithm for Task-Based Runtime Systems on Multicores and GPUs. In IEEE International Parallel & Distributed
Processing Symposium (IPDPS), Orlando, United States, May 2017.

[8] Olivier Beaumont, Lionel Eyraud-Dubois, and Suraj Kumar. Fast Approximation Algorithms for Task-Based Runtime
Systems. Concurrency and Computation: Practice and Experience, 30(17), September 2018.

[9] Luiz F. Bittencourt, Rizos Sakellariou, and Edmundo R. M. Madeira. Dag scheduling using a lookahead variant of
the heterogeneous earliest finish time algorithm. In 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, pages 27–34, Feb 2010.

[10] Raphaël Bleuse, Thierry Gautier, João VF Lima, Grégory Mounié, and Denis Trystram. Scheduling data flow program in
XKaapi: A new affinity based algorithm for heterogeneous architectures. In European Conference on Parallel Processing,
pages 560–571. Springer, 2014.

[11] Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and Denis Trystram. Sched-
uling independent moldable tasks on multi-cores with gpus. IEEE Transactions on Parallel and Distributed Systems,
28(9):2689–2702, 2017.

[12] Raphaël Bleuse, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and Denis Trystram. Scheduling independent
tasks on multi-cores with GPU accelerators. Concurrency and Computation: Practice and Experience, 27(6):1625–1638,
2015.

[13] Vincenzo Bonifaci and Andreas Wiese. Scheduling unrelated machines of few different types. arXiv preprint
arXiv:1205.0974, 2012.

[14] George Bosilca, Aurélien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Hérault, and Jack J. Dongarra. PaRSEC:
A programming paradigm exploiting heterogeneity for enhancing scalability. Computing in Science and Engineering,
15(6):36–45, November 2013.

[15] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Bölöni, Muthucumaru Maheswaran, Albert I. Reuther, James P.
Robertson, Mitchell D. Theys, Bin Yao, Debra Hensgen, and Richard F. Freund. A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and
Distributed Computing, 61(6):810 – 837, 2001.

[16] Louis-Claude Canon, Loris Marchal, Bertrand Simon, and Frédéric Vivien. Online scheduling of task graphs on
heterogeneous platforms. IEEE Transactions on Parallel and Distributed Systems, 2019.

[17] Louis-Claude Canon, Loris Marchal, and Frédéric Vivien. Low-cost approximation algorithms for scheduling indepen-
dent tasks on hybrid platforms. In Euro-Par: 23rd International Conference on Parallel and Distributed Computing, pages
232–244. Springer, Sept 2017.

[18] Chameleon: A dense linear algebra software for heterogeneous architectures. https://project.inria.fr/chameleon (last
visited on June 2019), 2014.

[19] Lin Chen, Deshi Ye, and Guochuan Zhang. Online scheduling of mixed CPU-GPU jobs. International Journal of
Foundations of Computer Science, 25(06):745–761, 2014.

[20] Nathanael Cheriere and Erik Saule. Considerations on Distributed Load Balancing for Fully Heterogeneous Machines:
Two Particular Cases. In 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, pages 6–16,
May 2015.

[21] Fabián A Chudak and David B Shmoys. Approximation algorithms for precedence-constrained scheduling problems
on parallel machines that run at different speeds. Journal of Algorithms, 30(2):323–343, 1999.

[22] Michel Cosnard and Denis Trystram. Parallel Algorithms and Architectures. Thomson Learning, 1994.
[23] Maciej Drozdowski. Scheduling for Parallel Processing. Springer Publishing Company, 2009.
[24] Lionel Eyraud-Dubois. pmtool: Post-mortem analysis tool for starpu scheduling studies. https://gitlab.inria.fr/eyrauddu/

pmtool (last visited on June 2019, commit 78cc9963).
[25] Martin Gairing, BurkhardMonien, andAndreasWoclaw. A faster combinatorial approximation algorithm for scheduling

unrelated parallel machines. Theoretical Computer Science, 380(1):87–99, 2007.
[26] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H.

Freeman & Co., New York, NY, USA, 1990.
[27] Jan Clemens Gehrke, Klaus Jansen, Stefan EJ Kraft, and Jakob Schikowski. A PTAS for scheduling unrelated machines

of few different types. In SOSFEM: Theory and Practice of Computer Science, pages 290–301. Springer, 2016.
[28] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal On Applied Mathematics, 17(2):416–429,

1969.

, Vol. 1, No. 1, Article . Publication date: September 2020.

https://project.inria.fr/chameleon
https://gitlab.inria.fr/eyrauddu/pmtool
https://gitlab.inria.fr/eyrauddu/pmtool

Scheduling on Two Types of Resources: a Survey 35

[29] Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: a survey. In Discrete Optimization II, volume 5 of Annals of Discrete
Mathematics, pages 287 – 326. Elsevier, 1979.

[30] Leslie A. Hall and David B. Shmoys. Approximation schemes for constrained scheduling problems. In 30th Annual
Symposium on Foundations of Computer Science, pages 134–139, Oct 1989.

[31] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing Co., Boston, MA, USA,
1997.

[32] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling problems theoretical
and practical results. J. ACM, 34(1):144–162, January 1987.

[33] Csanád Imreh. Scheduling problems on two sets of identical machines. Computing, 70(4):277–294, Aug 2003.
[34] Safia Kedad-Sidhoum, Fernando Machado Mendonca, Florence Monna, Grégory Mounié, and Denis Trystram. Fast

biological sequence comparison on hybrid platforms. In 43rd International Conference on Parallel Processing, ICPP 2014,
Minneapolis, MN, USA, September 9-12, 2014, pages 501–509, 2014.

[35] Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and Denis Trystram. A Family of Scheduling Algorithms for
Hybrid Parallel Platforms. International Journal of Foundations of Computer Science, 29(1):63–90, 2018.

[36] Safia Kedad-Sidhoum, Florence Monna, and Denis Trystram. scheduling tasks with precedence constraints on hybrid
multi-core machines. In HCW - IPDPS Workshops, pages 27–33, 2015.

[37] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation algorithms for scheduling unrelated parallel
machines. Mathematical programming, 46(1-3):259–271, 1990.

[38] Joseph YT Leung. Handbook of scheduling: algorithms, models, and performance analysis. CRC Press, 2004.
[39] Torque Resource Manager. http://www.adaptivecomputing.com/products/torque/ (last visited on June 2019).
[40] Xinxin Mei, Xiaowen Chu, Hai Liu, Yiu-Wing Leung, and Zongpeng Li. Energy efficient real-time task scheduling on

cpu-gpu hybrid clusters. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pages 1–9. IEEE, 2017.
[41] Sparsh Mittal and Jeffrey S Vetter. A survey of cpu-gpu heterogeneous computing techniques. ACM Computing Surveys

(CSUR), 47(4):69, 2015.
[42] Aline de P. Nascimento, Alexandre da C. Sena, Cristina Boeres, and Vinod E. F. Rebello. On the feasibility of dynamically

scheduling dag applications on shared heterogeneous systems. In Henk Sips, Dick Epema, and Hai-Xiang Lin, editors,
Euro-Par 2009 Parallel Processing, pages 191–202, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[43] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. Hierarchical task-based programming with StarSs.
International Journal of High Performance Computing Applications, 23(3):284–299, 2009.

[44] K Raju and Niranjan N Chiplunkar. A survey on techniques for cooperative cpu-gpu computing. Sustainable Computing:
Informatics and Systems, 19:72–85, 2018.

[45] Evgeny V Shchepin and Nodari Vakhania. An optimal rounding gives a better approximation for scheduling unrelated
machines. Operations Research Letters, 33(2):127–133, 2005.

[46] David B Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment problem. Mathematical
programming, 62(1-3):461–474, 1993.

[47] Ola Svensson. Hardness of precedence constrained scheduling on identical machines. SIAM J. Comput., 40(5):1258–1274,
September 2011.

[48] Kyle M. Tarplee, Ryan Friese, Anthony A. Maciejewski, and Howard Jay Siegel. Scalable linear programming based
resource allocation for makespan minimization in heterogeneous computing systems. Journal of Parallel and Distributed
Computing, 84:76 – 86, 2015.

[49] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Task scheduling algorithms for heterogeneous processors. In
Heterogeneous Computing Workshop (HCW), pages 3–14, 1999.

[50] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-Effective and Low-Complexity task Scheduling for
Heterogeneous Computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274, Mar 2002.

[51] Tao Yang and Apostolos Gerasoulis. DSC: Scheduling Parallel Tasks on an Unbounded Number of Processors. IEEE
Transactions on Parallel and Distributed Systems, 5(9):951–967, Sep 1994.

[52] Azim YarKhan, Jakub Kurzak, and Jack J. Dongarra. QUARK Users’ Guide: QUeueing And Runtime for Kernels. UTK ICL,
2011.

[53] Andy B. Yoo, Morris A. Jette, and Mark Grondona. SLURM: simple linux utility for resource management. In Job
Scheduling Strategies for Parallel Processing, 9th International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003,
Revised Papers, pages 44–60, 2003.

, Vol. 1, No. 1, Article . Publication date: September 2020.

http://www.adaptivecomputing.com/products/torque/

	Abstract
	1 Introduction
	2 Definitions and Notations
	3 Preliminaries and Methodology
	3.1 Preliminaries
	3.2 Methodology

	4 Lower Bounds
	4.1 Lower Bounds on the Optimal Makespan
	4.2 Lower Bounds in the On-line Setting

	5 Approximation Algorithms and Heuristics for Independent Tasks
	5.1 Off-line Results for Independent Tasks
	5.2 On-line Setting for Independent Tasks

	6 Approximation Algorithms and Heuristics for Tasks with Precedence Constraints
	6.1 Off-line Setting for Tasks with Precedence Constraints
	6.2 On-line Setting for Tasks with Precedence Constraints

	7 Experiments
	7.1 Independent Tasks
	7.2 Tasks With Precedence Constraints

	8 Conclusion
	8.1 Synthesis
	8.2 Lessons learned
	8.3 Extensions

	References

