
A Comparison of Random Task Graph
Generation Methods for Scheduling Problems

Louis-Claude Canon, Mohamad El Sayah, and Pierre-Cyrille Héam

FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, France
{louis-claude.canon,mohamad.el sayah,pierre-cyrille.heam}@univ-fcomte.fr

Abstract. How to generate instances with relevant properties and with-
out bias remains an open problem of critical importance to compare
heuristics fairly. When scheduling with precedence constraints, the in-
stance is a task graph that determines a partial order on task executions.
To avoid selecting instances among a set populated mainly with trivial
ones, we rely on properties such as the mass, which measures how much
a task graph can be decomposed into smaller ones. This property and
an in-depth analysis of existing random instance generators establish the
sub-exponential generic time complexity of the studied problem.

1 Introduction

How to correctly evaluate the performance of computing systems has been a
central question for a long time [15]. Among the arsenal of available evaluation
methods, relying on random instances allows comparing strategies in many diverse
situations. However, random generation methods are prone to bias, which prevents
a fair empirical assessment. Studying the problem characteristics to constrain
the uniform generation on a category of difficult instances is thus critical.

In the context of parallel systems, instances for numerous multiprocessor
scheduling problems contain the description of an application to be executed on
a platform [17]. This study focuses on scheduling problems requiring a Directed
Acyclic Graph (DAG) as part of the input. Such a DAG represents a set of tasks
to be executed in a specific order given by precedence constraints. While this
work studies the DAG structure for several scheduling problems, it illustrates
and analyzes existing generators in light of a specific problem with unitary costs
and no communication. This simple yet difficult problem emphasizes the effect of
the DAG structure on the performance of scheduling heuristics.

After exposing related works in Section 2, Section 3 lists DAG properties
and covers scheduling and random generation concepts. Section 4 analyzes the
proposed properties on a set of special DAGs. Section 5 provides an in-depth
analysis of existing random generators supported by consistent empirical obser-
vations. Finally, Section 6 studies the impact of these methods and the DAG
properties on scheduling heuristics. A more detailed version of these results is
also available in the extended version [4].

2 Related Work

Our approach is similar to the one followed in [6], which consists in studying
the properties of randomly generated DAGs before comparing the performance
of scheduling heuristics. Three properties are measured and analyzed for each
studied generator: the length of the longest path, the distribution of the output
degrees and the number of edges. The authors consider five random generators:
two variants of the Erdős-Rényi algorithm, one layer-by-layer variant, the random
orders method and the Fan-in/Fan-out method. Finally, for each generator, the
paper compares the performance of four scheduling heuristics. The results are
consistent with the observations done in Section 5 (Figures 1, 3 and 4) for the
length and the number of edges.

Many tools have been proposed in the literature to generate DAGs in the
context of scheduling in parallel systems. TGFF (Task Graphs For Free) is the
first tool proposed for this purpose [7]. This tool relies on a number of parameters
related to the task graph structure. The task graph is constructed by creating a
single-vertex graph and then incrementally augmenting it. Until the number of
vertices in the graph is greater than or equal to the minimum number of vertices,
this approach randomly alternates between two phases: the expansion of the
graph and its contraction. The main goal of TGFF is to gain more control over
the input and output degrees of the tasks.

DAGGEN was later proposed to compare heuristics for a specific problem [8].
This tool relies on a layer-by-layer approach with four parameters in addition to
the number of vertices. The number of elements per layer is uniformly drawn in
an interval determined by the width parameter and with a range determined by
the regularity parameter. Lastly, edges are added between layers separated by a
maximum number of layers determined by the jump parameter. For each vertex,
the method adds a uniform number of predecessors in an interval determined by
the density parameter.

GGen has been proposed to unify the generation of DAGs by integrating exist-
ing methods [6]. The tool implements two variants of the Erdős-Rényi algorithm,
one layer-by-layer variant, the random orders method and the Fan-in/Fan-out
method. It also generates DAGs derived from classical parallel algorithms such
as the recursive Fibonacci function, the Strassen multiplication algorithm, etc.

The Pegasus workflow generator1 can be used to generate DAGs from several
scientific applications [16] such as Montage, CyberShake, Broadband, etc. XL-
STaGe2 produces layer-by-layer DAGs using a truncated normal distribution to
distribute the vertices to the layers [3]. This tool inserts edges with a probability
that decreases as the number of layers between two vertices increases. A tool
named RandomWorkflowGenerator3 implements a layer-by-layer variant [12].

1 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
2 https://github.com/nizarsd/xl-stage
3 https://github.com/anubhavcho/RandomWorkflowGenerator

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://github.com/nizarsd/xl-stage
https://github.com/anubhavcho/RandomWorkflowGenerator

3 Background

Directed Acyclic Graphs Let D = (V,E) be a Directed Acyclic Graph (DAG),
where V is a finite set of vertices and E ⊆ V × V is the set of edges, such that
there is no cycle in the graph. The length of a DAG is defined as the maximum
number of vertices in any path in this DAG and is noted len or k. The depth of a
vertex v in a DAG is inductively defined by: if v has no predecessor, then its depth
is 1; otherwise, the depth of v is one plus the maximum depth of its predecessors.
The shape decomposition of a DAG is the tuple (X1, X2, . . . , Xk) where Xi is the
set of vertices of depth i. The shape of the DAG is the tuple (|X1|, . . . , |Xk|). The
maximum (resp. minimum) value of the |Xi| is called the maximum shape (resp.
minimum shape) of the DAG. Computing the shape decomposition and the shape
of a DAG is easy. If |Xi| = 1, the unique vertex of Xi is called a bottleneck vertex.
A block is a subset of vertices of the form ∪i<j<i+`Xj with ` > 1 where Xi is
either a singleton or i = 0, Xi+` is either a singleton or i+ ` = k+ 1, and for each
i < j < i+`, |Xj | 6= 1. We denote by massabs(B) the cardinal of B = ∪i<j<i+`Xj

and by massabs(D) = max{massabs(B) | B is a block} the absolute mass of D.

The relative mass, or simply the mass, is given by mass(D) = massabs(D)
n .

The transitive reduction of a DAG D [2] is the DAG DT for which: DT has
a directed path between u and v iff D has a directed path between u and v;
there is no graph with fewer edges than DT that satisfies the previous property.
Intuitively, this operation consists in removing redundant edges.

Among dozens of DAG properties, we measure the following ones on the
transitive reduction of each DAG D: the number of edges m, maximum degree
degmax and degree Coefficient of Variation4 degCV. For these properties, we
specify they are measured on a transitive reduction (e.g. m(DT) for the number
of edges). Moreover, we measure the length, the mean shape shmean, the shape
CV shCV and the mass. The last measured property is the number of edges in D.

Scheduling We consider a classic problem in parallel systems noted P |pj =
1, prec|Cmax in Graham’s notation [11]. The objective consists in scheduling a set
of tasks on homogeneous processors such as to minimize the overall completion
time. The dependencies between tasks are represented by a precedence DAG:
before starting its execution, all the predecessors of a task must complete their
executions. The execution cost pj of task j on any processor is unitary and there
are no costs on the edges (i.e. no communication). A schedule defines on which
processor and at which date each task starts executing such that no processor
executes more than one task at any time and all precedence constraints are met.
The problem consists in finding the schedule with the minimum makespan.

This problem is strongly NP-hard [25], while it is polynomial when there are no
precedence constraints, which means the difficulty comes from the dependencies.
Many polynomial heuristics have been proposed for this problem (see Section 6).
With specific instances, such heuristics may be optimal. This is the case when
the width does not exceed the number of processors, which leads to a potentially

4 The CV is the ratio of the mean degree to the degree standard deviation.

large length. Any task can thus start its execution as soon as it becomes available.
This paper explores how DAG properties are impacted by the generation method
with the objective to control them to avoid easy instances.

Although this paper studies random DAGs with heuristics for the specific
problem P |pj = 1, prec|Cmax, generated DAGs can be used for many scheduling
problems with precedence constraints. While avoiding specific instances depending
on their width and length is relevant for many scheduling problems, it is not
necessary the case for all of them. For instance, with non-unitary processing costs,
instances with large width and small length are difficult because the problem is
strongly NP-Hard even in the absence of precedence constraints (P ||Cmax) [10].

Mass and Scheduling Consider a DAG D = (V,E) whose minimum shape
is 1; there exists a bottleneck vertex v such that the shape of the DAG is of
the form (X1, . . . , X`, {v}, X`+1, . . . , Xk). The scheduling problem for D can be
decomposed into two subproblems. Using recursively this decomposition, the
initial problem can be decomposed into nc + 1 independent scheduling problems,
where nc is the number of bottleneck vertices.

Applying a brute force algorithm for the scheduling problems computes the
optimal results in a time T ≤ ncTm, where Tm is the maximum time required to
solve the problem on a DAG with massabs(D) vertices. Since exponential brute
force exact approaches exist, it follows that if massabs(D) = O(logk n) for a
constant k, then an optimal solution of the scheduling problem can be computed
in sub-exponential time. Consequently, scheduling heuristics are irrelevant for task
graph with polylogarithmic absolute mass. Similarly, the same arguments work
to claim that interesting instances for the scheduling problem must have quite
a large absolute mass (not in o(n)). It is therefore preferable to have instances
with no or few bottleneck vertices, that is a unitary mass.

The relevance of the mass property is limited to the class of scheduling
problems that contains all problems for which the instance can be cut into
independent subinstances.

4 Analysis of special DAGs

To analyze the properties described in the previous section, we introduce in
Table 1 a collection of special DAGs. The first three DAGs (Dempty, Dcomplete

and Dchain) constitutes extreme cases in terms of precedence. The next two
DAGs (Dout-tree and Dcomb), to which we can add the reversal of the complete
binary tree (Din-tree = DR

out-tree), are examples of binary tree DAGs. The last
three DAGs (Dbipartite, Dsquare and Dtriangular) are denser with more edges and
with a compromise between the length and the width for these last two DAGs.

Table 2 illustrates the properties for these special DAGs. The most extreme
values are reached with the empty and complete DAGs for the length, number
of edges, mass and mean shape. When considering only transitive reductions
(i.e. when discarding the complete DAG), the maximum value for the maximum
degree is n with a fork or a join (the bipartite DAG reaches half this value).

Table 1. Special DAGs.

Name description representation

Empty (Dempty) no edge

Complete (Dcomplete) maximum number of edges

Chain (Dchain)
transitive reduction of the com-
plete DAG

Complete binary tree
(Dout-tree)

each non-leaf/non-root vertex
has a unique predecessor and
two successors

Comb (Dcomb)
a chain where each non-leaf ver-
tex has an additional leaf succes-
sor

Complete bipartite
(Dbipartite)

n
2

vertices connected to n
2

ver-
tices

Complete layer-by-
layer square (Dsquare)

similar to the complete bipartite
with

√
n layers of size

√
n

Complete layer-
by-layer triangular
(Dtriangular)

similar to the complete layer-by-
layer square but the size of each
new layer increases by 1

Proposition 1 states that the maximum number of edges among all transitive

reductions is
⌊
n2

4

⌋
(reached with the bipartite DAG).

Proposition 1. The maximum number of edges among all transitive reductions

of size n is
⌊
n2

4

⌋
.

Proof. Transitive reductions do not contain triangle (i.e. clique of size three),
otherwise there is either a cycle or a redundant edge. By Mantel’s Theorem [20],

the maximum number of edges in a n-vertex triangle-free graph is
⌊
n2

4

⌋
. This

is the case for the complete bipartite DAG because the number of edges is
n2

4 =
⌊
n2

4

⌋
when n is even and n2−1

4 =
⌊
n2

4

⌋
when n is odd.

5 Analysis of Existing Generators

Table 2. Approximate properties of special DAGs (negligible terms are discarded for
clarity). The exact properties are given in the extended version [4].

DAG len m m(DT) mass shmean shCV degmax(DT) degCV

Dempty 1 0 0 1 n 0 0 0

Dcomplete n n2

2
n 0 1 0 2 1√

2n

Dchain n n n 0 1 0 2 1√
2n

Dout-tree

Din-tree
log2(n) n n 1 n

log2(n)

√
log2(n+1)

3
3 1

2

Dcomb
n
2

n n 1 2 1√
2n

3 1
2

DR
comb

n
2

n n 1
2

2
√

n
8

3 1
2

Dbipartite 2 n2

4
n2

4
1 n

2
0 n

2
0

Dsquare
√
n n

√
n n

√
n 1

√
n 0 2

√
n 1√

2
√
n

Dtriangular

√
2n 2n

√
2n

3
2n

√
2n

3
1

√
n
2

1√
3

2
√

2n 1

2
√
2

Random Generation of Triangular Matrices This approach is based on
the Erdős-Rényi algorithm [9] with parameter p: an upper-triangular adjacency
matrix is randomly generated. For each pair of vertices (i, j) with i < j, there
is an edge from i to j with an independent probability p. The approach is not
uniform. For instance, a random generator that is uniform over all the DAGs
generates the empty DAG with probability 1/25. With p = 0.5, the Erdős-Rényi
algorithm generates the empty DAG with probability 1/8.

Figure 1 shows the effect of the probability parameter p on the properties of
the generated DAGs. The most remarkable effect can be seen for the number

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

0
0.
25 0.

5
0.
75 1 0

0.
25 0.

5
0.
75 1 0

0.
25 0.

5
0.
75 1 0

0.
25 0.

5
0.
75 1

0.0

0.4

0.8

1.2

0
1
2
3
4
5

0
100
200
300
400

2.5
5.0
7.5
10.0
12.5

0
1000
2000
3000
4000
5000

0.0
0.3
0.6
0.9

0
25
50
75
100

0
10
20
30
40
50

Probability p

V
al
u
e

Fig. 1. Properties of 300 DAGs of size n = 100 generated with probability p uniformly
drawn between 0 and 1 (Erdős-Rényi algorithm). Red lines correspond to formal bounds.

of edges in the transitive reduction m(DT). This property shows that after a
maximum around p = 0.10, adding more edges with higher probabilities leads to
redundant dependencies and simplifies the structure of the DAG by making it
longer. A formal result in the extended version [4, Proposition 4] confirms this
effect. DAGs generated with a probability below 5% are almost empty and most
edges are not redundant. These DAGs lead to a simplistic scheduling process
that consists in starting each task on a critical path as soon as possible and then
distributing a large number of independent tasks. Analogously, DAGs generated
with probabilities p greater than 15% contain many edges that simplify the DAG
structure by increasing the length and thus reducing the mean shape (recall that
with a small width, the problem is easy). At the same time, the mass decreases
continuously, allowing the problem to be divided into smaller problems.

The effect of probability p illustrates the compromise between the length and
mean shape to avoid simplistic instances that are easily tackled.

Uniform Random Generation One way to uniformly generate elements
consists in using a classical recursive/counting approach [22] based on generating
functions. This counting approach relies on recursively counting the number of
DAGs with a given number of source vertices, that is vertices with no in-going
edges. See [4, Section 5.2] for a complete algorithm that uniformly generates
random DAGs with this approach.

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

50 10
0
15
0
20
0 50 10

0
15
0
20
0 50 10

0
15
0
20
0 50 10

0
15
0
20
0

0.1
0.2
0.3
0.4

0.20
0.25
0.30
0.35
0.40
0.45

0

100

200

300

3
4
5
6
7

0
2500
5000
7500
10000

0.2

0.3

0.4

0.5

0

50

100

1.2

1.4

1.6

Number of vertices n

V
al
u
e

Fig. 2. Properties of DAGs generated by the recursive algorithm for each size n between
10 and 200. Red lines correspond to formal results.

Figure 2 depicts the effect of the number of vertices on the selected DAG
properties. The length closely follows the function 3n

2 . This effect is consistent
with a theoretical result stating that the expected number of source vertices

sh1 in a uniform DAG is asymptotically 1.488 as n→∞ [19]. This implies that
the expected value for each shape element is close to this value by construction
of the shape, which makes the DAG an easy instance for scheduling problems.
Moreover, the number of edges m is almost indistinguishable from the function
n2

4 , which is indeed the average number of edges in a uniform DAG [21, Theorem
2]. We finally observe that the mass decreases as the size n increases. This is
confirmed by the following result (proved in the extended version [4]):

Theorem 1. Let D be a DAG uniformly and randomly generated among the
labeled DAGs with n vertices. One has P(massabs(D) ≥ log4(n)) → 0 when
n→ +∞.

Therefore, the mass converges to zero as the size n tends to infinity. As shown
in Section 3, such instances can be decomposed into independent problems and
efficiently solved with a brute force strategy. This leads to a sub-exponential
generic time complexity with uniform instances.

Random Orders The random orders method derives a DAG from randomly
generated orders [26]. The first step consists in building K random permutations
of n vertices. Each of these permutations represents a total order on the vertices,
which is also a complete DAG with a random labeling. Intersecting these complete
DAGs by keeping an edge iff it appears in all DAGs with the same direction
leads to the final DAG.

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

2 4 6 8 10 1
2

14 2 4 6 8 10 12 14 2 4 6 8 10 12 1
4 2 4 6 8 10 1
2

14

0.875
0.900
0.925
0.950
0.975
1.000

0

2

4

6

0
100
200
300
400
500

0
10
20
30
40

0

1000

2000

0.0

0.3

0.6

0.9

5

10

15

20

25

50

75

100

Number of permutations K

V
al
u
e

Fig. 3. Properties of 420 DAGs of size n = 100 generated by the random orders
algorithm for each K between 2 and 15. Red lines correspond to formal results.

Figure 3 shows the effect of the number of permutations K on the DAG
properties with boxplots5. The extreme cases K = 1 and K →∞ are discarded
from the figure for clarity. They correspond to the chain and the empty DAG,
respectively. The number of permutations quickly constrains the length. For
instance, the length is already between 15 and 20 when K = 2 and at most
5 when K ≥ 5. A formal analysis suggests that the length is almost surely in
O(n1/K) [26, Theorem 3], which is consistent with our observation. Moreover,
the mass is always close to one for K > 1.

Layer-by-Layer The layer-by-layer method was first proposed by [1] but popu-
larized later by the introduction of the STG data set [23]. This method produces
DAGs in which vertices are distributed in layers and vertices belonging to the
same layer are independent. This section analyzes the effect of three parameters
(size n, number of layers k and connectivity probability p) using the following
variant inspired from [6, 12]. First, k vertices are affected to distinct layers to
prevent any empty layer. Then, the remaining n − k vertices are distributed
to the layers using a balls into bins approach (i.e. a uniformly random layer is
selected for each vertex). For each vertex not in the first layer, a random parent
is selected among the vertices from the previous layer to ensure that the layer of
any vertex equals its depth. Finally, random edges are added by connecting any
pair of vertices from distinct layers from top to bottom with probability p.

This method always generates DAGs with a length equal to k and mean shape
equal to n/k. Moreover, when all layers have the same size n/k, the expected
number of edges is E(m) = n

(
1− 1

k

) (
p
(
n
2 − 1

)
+ 1
)

and the expected number of

edges in the transitive reduction is E(m(DT)) ≥ p(k− 1)
(
n
k

)2
+ (1− p)n

(
1− 1

k

)
.

Figure 4 represents the effect of the number of layers k. The numbers of edges
in the DAG and its transitive reduction are close to the expected values for the
case when all layers have the same size n/k. Finally, the mass is unitary when
there are at least two balls in each bin. Since there is initially one ball per bin,
this occurs when there is at least one of the n− k additional balls in each of the
k bin. Using a bound for the coupon collector problem [18, Proposition 2.4], this
occurs with probability greater than 0.5 when dk log(2k)e+ k < n, which is the
case for k ≤ 20 when n = 100. This is consistent with Figure 4 where the mass
becomes non-unitary around this value.

To avoid non-unitary mass, the layer-by-layer method can be adapted to
ensure that each layer has two vertices initially. For instance, we can rely on a
uniform distribution between two and a maximum value, or on a balls into bins
approach with two balls per bin initially.

5 Each boxplot consists of a bold line for the median, a box for the quartiles, whiskers
that extend at most to 1.5 times the interquartile range from the box and additional
points for outliers.

shmean shCV degmax(DT) degCV(DT)

len m m(DT) mass

1 10 100 1 10 100 1 10 100 1 10 100

0.00
0.25
0.50
0.75
1.00

0.1
0.2
0.3
0.4
0.5

0

500

1000

0
10
20
30
40
50

0

1000

2000

0.0

0.2

0.4

0.6

0

25

50

75

100

0

25

50

75

100

Number of layers k

V
al
u
e

Fig. 4. Properties of 300 DAGs of size n = 100 generated by the layer-by-layer
algorithm with probability p = 0.5 and a number of layers k randomly drawn between 1
and 100 (uniformly on the logarithmic scale). Red lines correspond to formal results.

6 Evaluation on Scheduling Algorithms

Generating random task graphs allows the assessment of existing scheduling
algorithms in different contexts. Numerous heuristics have been proposed for the
problem denoted P |pj = 1, prec|Cmax or generalizations of this problem. Such
heuristics rely on different principles. Some simple strategies, like MinMin [14,
Algorithm D], execute available tasks on the processors that minimize completion
time without considering precedence constraints. In contrast, many heuristics
sort tasks by criticality and schedule them with the Earliest Finish Time (EFT)
policy. This is the case for both HEFT [24] and HCPT [13]. HEFT first computes
the upward rank of each task, which can be seen as a reverse depth, and then
consider tasks by decreasing order of their upward ranks. Backfilling is performed
following an insertion policy. In contract, HCPT starts by considering any task
on a critical path by decreasing order of their depth. The objective is to prioritize
the ancestors of such tasks and in particular when their depths are large.

Figure 5 shows the absolute difference between MinMin, HEFT and HCPT for
each generator covered in Section 5. Despite guaranteeing an unbiased generation,
instances built with the recursive algorithm fail to discriminate heuristics except
when there are two processors. Recall that the mean shape is close to 1.5 for such
DAGs and few processors are sufficient to obtain a makespan equal to the DAG
length (i.e. an optimal schedule). In contrast, instances built with the random
orders algorithm lead to different performance for each scheduling heuristics.
However, this generator has no uniformity guarantee and its discrete parameter
K limits the diversity of generated DAGs. Finally, the last two algorithms fail
to highlight a significant difference between MinMin and HEFT even though

|P | = 2 |P | = 3 |P | = 5 |P | = 7 |P | = 10

E
rd

.-R
.

R
ecu

r.
R

.
o
rd

.
L

ayered

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

HEFT
MinMin

HCPT

Absolute makespan difference

H
eu

ri
st

ic

Fig. 5. Difference between the makespan obtained with any heuristic and the best value
among the three heuristics for each instance. Each boxplot represents the results for
300 DAGs of size n = 100 built with the following algorithms: Erdős-Rényi (p = 0.15),
recursive, random orders (K = 3) and layer-by-layer (p = 0.5 and k = 10). Costs are
unitary and |P | represents the number of processors.

the former scheduling heuristic can be expected to be inferior to the latter as it
discards the DAG structure.

To support these observations, we analyze below the maximum difference
between the makespan obtained with HEFT and the ones obtained with the
other two heuristics. Because it lacks any backfilling mechanism, HCPT performs
worse than HEFT with an instance composed of the following two elements. First,
a chain of length k with |P | − 1 additional tasks with predecessor the (k − 2)th
task of the chain and successor the kth task of the chain. The second element is a
chain of length k − 1. HCPT schedules the first element and then the second one
afterward, leading to a makespan of 2k − 1 whereas the optimal one is k. With
our settings, the difference from HEFT with this instance is greater than or equal
to 45. Moreover, MinMin also performs worse with specific instances. Consider
the ad hoc instances considered in [5] each consisting of one chain of length k and
a set of k(|P | − 1) independent tasks. Discarding the information about critical
tasks prevents MinMin from prioritizing tasks from the chain. With n = 100
tasks and with |P | ≤ 10, the worst-case absolute difference can be greater than or
equal to 9. It is interesting to analyze the properties of these difficult instances for
MinMin. Each DAG is characterized by a length equal to len = n

|P | and a number

of edges in the transitive reduction m(DT) = len−1. Moreover, worst-case DAGs
for HCPT are characterized by a large length and width.

These experiments illustrate the need for better generators that control mul-
tiple properties while avoiding any generation bias. In particular, they highlight
the need for a generator that uniformly samples all existing DAGs with a given
size n, number of edges m, m(DT), length, width, and with a unitary mass.

7 Conclusion

This work contributes in multiple ways to the final objective of uniformly gener-
ating random DAGs belonging to a category of instances with desirable charac-
teristics. First, we select eight DAG properties, among which the mass quantifies
how much an instance can be decomposed into smaller ones. Second, existing
random generators are formally analyzed and empirically assessed with respect
to the selected properties. Establishing the sub-exponential generic time complex-
ity for decomposable scheduling problems with uniform DAGs constitutes the
most noteworthy result of this paper. Last, we study how the generators impact
scheduling heuristics with unitary costs.

The relevance of many other properties such as the number of critical tasks
need to be investigated further. Moreover, extending current results to instances
with communications represents a challenging perspective. Finally, adapting
properties to instances with non-unitary costs is left to future work.

Data Availability Statement

The datasets generated and/or analyzed during the current study are available
in the Figshare repository: https://doi.org/10.6084/m9.figshare.8397623.

References

1. Adam, T.L., Chandy, K.M., Dickson, J.: A comparison of list schedules for parallel
processing systems. Communications of the ACM 17(12), 685–690 (1974)

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM Journal on Computing 1(2), 131–137 (1972)

3. Campos, P., Dahir, N., Bonney, C., Trefzer, M., Tyrrell, A., Tempesti, G.: Xl-stage:
A cross-layer scalable tool for graph generation, evaluation and implementation. In:
Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS),
2016 International Conference on. pp. 354–359. IEEE (2016)

4. Canon, L.C., El Sayah, M., Héam, P.C.: A comparison of random task graph
generation methods for scheduling problems. arXiv preprint arXiv:1902.05808
(2019)

5. Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Online scheduling of task graphs
on hybrid platforms. In: Euro-Par. pp. 192–204. Springer (2018)

6. Cordeiro, D., Mounié, G., Perarnau, S., Trystram, D., Vincent, J.M., Wagner, F.:
Random graph generation for scheduling simulations. In: ICST. p. 60 (2010)

7. Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: task graphs for free. In: International
workshop on Hardware/software codesign. pp. 97–101. IEEE (1998)

https://doi.org/10.6084/m9.figshare.8397623

8. Dutot, P.F., N’takpé, T., Suter, F., Casanova, H.: Scheduling parallel task graphs on
(almost) homogeneous multicluster platforms. IEEE TPDS 20(7), 940–952 (2009)

9. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
10. Garey, M., Johnson, D.: Strong NP-completeness results: motivation, examples,

and implications. J. Assoc. Comput. Mach. 25(3), 499–508 (1978)
11. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of
Discrete Mathematics 5, 287–326 (1979)

12. Gupta, I., Choudhary, A., Jana, P.K.: Generation and proliferation of random di-
rected acyclic graphs for workflow scheduling problem. In: International Conference
on Computer and Communication Technology. pp. 123–127. ACM (2017)

13. Hagras, T., Janecek, J.: A simple scheduling heuristic for heterogeneous computing
environments. In: ISPDC. p. 104. IEEE (2003)

14. Ibarra, O.H., Kim, C.E.: Heuristic Algorithms for Scheduling Independent Tasks
on Nonidentical Processors. Journal of the ACM 24(2), 280–289 (Apr 1977)

15. Jain, R.: The art of computer systems performance analysis: techniques for experi-
mental design, measurement, simulation, and modeling. John Wiley (1990)

16. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Charac-
terizing and profiling scientific workflows. Future Generation Computer Systems
29(3), 682–692 (2013)

17. Leung, J.Y.: Handbook of scheduling: algorithms, models, and performance analysis.
CRC Press (2004)

18. Levin, D.A., Peres, Y.: Markov chains and mixing times, vol. 107. American
Mathematical Society (2017)

19. Liskovets, V.: On the number of maximal vertices of a random acyclic digraph.
Theory Probab. Appl. 20(2), 401–409 (1975)

20. Mantel, W.: Problem 28. Wiskundige Opgaven 10(60-61), 320 (1907)
21. Melançon, G., Dutour, I., Bousquet-Mélou, M.: Random generation of directed

acyclic graphs. Electronic Notes in Discrete Mathematics 10, 202–207 (2001)
22. Robinson, R.W.: Counting labeled acyclic digraphs. In: Harray, F. (ed.) New

Directions in the Theory of Graphs. pp. 239–273. Academic Press, New York (1973)
23. Tobita, T., Kasahara, H.: A standard task graph set for fair evaluation of multipro-

cessor scheduling algorithms. Journal of Scheduling 5(5), 379–394 (2002)
24. Topcuoglu, H., Hariri, S., Wu, M.y.: Performance-effective and low-complexity task

scheduling for heterogeneous computing. IEEE TPDS 13(3), 260–274 (2002)
25. Ullman, J.: NP-complete scheduling problems. J. Comput. System Sci. 10, 384–393

(1975)
26. Winkler, P.: Random orders. Order 1(4), 317–331 (1985)

	A Comparison of Random Task Graph Generation Methods for Scheduling Problems

