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Abstract
This paper discusses scheduling strategies for the problem of maximizing the expected number of tasks that can be
executed on a cloud platform within a given budget and under a deadline constraint. The execution times of tasks
follow IID probability laws. The main questions are how many processors to enroll and whether and when to interrupt
tasks that have been executing for some time. We provide complexity results and an asymptotically optimal strategy
for the problem instance with discrete probability distributions and without deadline. We extend the latter strategy for
the general case with continuous distributions and a deadline and we design an efficient heuristic which is shown to
outperform standard approaches when running simulations for a variety of useful distribution laws.
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1 Introduction

This paper deals with the following problem: given an
infinite bag of stochastic tasks, and an infinite set of
available Virtual Machines (VMs, or processors*), how
to successfully execute as many tasks as possible in
expectation, under both a budget and a deadline constraint?
The execution times of the tasks are IID (independent
and identically distributed) random variables that follow
a common probability distribution. The amount of budget
spent during the execution of a given task is proportional
to the length of its execution. At each instant, the scheduler
can decide whether to continue the execution (until success)
or to interrupt the task and start a new one. Intuitively, the
dilemma is the following: (i) continuing execution means
spending more budget, and taking the risk of waiting very
long until completion, but it capitalizes on the budget already
spent for the task; (ii) interrupting the task wastes the budget
already spent for the task, but enables starting afresh with
a new, hopefully shorter task. Of course there is a big risk
here, since the new task could turn out to have an even longer
execution than the interrupted one.

This task model assumes that some tasks may not be
executed in the end. In fact, there are three cases: (i) some
tasks are launched and reach completion, meaning that they
are successfully executed: (ii) some tasks are launched but
they are interrupted before completion, meaning that their
execution has failed; and (iii) some tasks are not launched at
all. The objective is to maximize the number of successful
tasks given the deadline and budget constraints.

This task model is very closely related to imprecise
computations (Chung et al. (1990); Liu et al. (1991);
Amirijoo et al. (2006)), particularly in the context of
real-time computations. In imprecise computations, it is
not necessary for all tasks to be completely processed to
obtain a meaningful result. Most often, tasks in imprecise
computations are divided into a mandatory and an optional

part: while the execution of all mandatory parts is necessary,
the execution of optional parts is decided by the user. Often
the user has not the time or the budget to execute all optional
parts, and she must select which ones to execute. Our work
perfectly corresponds to the optimization of the processing
of the optional parts. Among domains where tasks may have
optional parts (or some tasks may be entirely optionals),
one can cite recognition and mining applications (Meng
et al. (2009)), robotic systems (Hassan et al. (2001)), speech
processing (Feng and Liu (1993)), and (Kobayashi and
Yamasaki (2004)) also cites multimedia processing, planning
and artificial intelligence, and database systems. In these
applications, the processing times of the optional parts are
heavily data-dependent, hence the need to estimate them via
a probability distribution.

In addition to imprecise computations, this scheduling
problem naturally arises with many applications in the
context of information retrieval (see Section 2 for a detailed
discussion). Informally, the goal is to extract as much
information as possible, by launching analysis tasks whose
execution time strongly depends upon the nature of the
data sample being processed. A typical example is a set of
image files, whose processing times heavily depend upon the
elements that are present (or not) within each image. Not all
data sample must be processed, but the larger the number of
data samples successfully processed, the more accurate the
analysis.
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The scheduler must decide which tasks to interrupt and
when, but it must also decide how many processors to enroll
(this is the resource provisioning problem). There is again a
trade-off here. On the one hand, enrolling many processors
is mandatory when the deadline is small and the budget is
large, and it allows us to make better scheduling decisions,
because we can dynamically observe many events taking
place in parallel†. On the other hand, enrolling too many
processors increases the risk of having many unfinished tasks
when budget runs out and/or when deadline strikes.

The main contribution of this work are the following:
• We provide a comprehensive set of theoretical results
for the problem instance with discrete distributions and no
deadline. These results show the difficulty of the general
scheduling problem under study, and lay the foundations for
its analysis;
• We design an asymptotically optimal scheduling strategy
for the above problem instance (discrete distribution, no
deadline);
• We design an efficient heuristic, OPTRATIO, for the
general problem. This heuristic extends the asymptotically
optimal scheduling strategy for discrete distributions to
continuous ones, and accounts for the deadline constraint by
enrolling the adequate number of processors. The heuristic
computes a threshold at which tasks should be interrupted,
which we compute for a variety of standard probability
distributions (exponential, uniform, beta, gamma, inverse-
gamma, Weibull, half-normal, and lognormal);
• We report a set of simulation results for three widely
used probability distributions (exponential, uniform, and
lognormal) that demonstrate both the superiority of the
OPTRATIO heuristic over other approaches, and its good
performance with short deadlines.

2 Related work
This work falls under the scope of cloud computing since it
targets the execution of sets of independent tasks on a cloud
platform under a deadline and a budget constraints. However,
because we do not assume to know in advance the execution
time of tasks (we are in a non-clairvoyant setting), this work
is also closely related to the scheduling of bags of tasks.
We survey both topics in Sections 2.1 and 2.2. Finally, in
Section 2.3, we survey task models that are closely related to
our model.

2.1 Cloud computing
There exists a huge literature on cloud computing, and
several surveys review this collection of work (Singh
and Chana (2016b,a); Bokhari et al. (2018)). Singh and
Chana published a recent survey devoted solely to cloud
resource provisioning (Singh and Chana (2016a)), that
is, the decision of which resources should be enrolled
to perform the computations. Resource provisioning is
often a separate phase from resource scheduling. Resource
scheduling decides which computations should be processed
by each of the enrolled resources and in which order they
should be performed.

Resource provisioning and scheduling are key steps to the
efficient execution of workflows on cloud platforms. The
multi-objective scheduling problem that consists in meeting

deadlines and either respecting a budget or minimizing
the cost (or energy) has been extensively studied for
deterministic workflows (Calheiros and Buyya (2014); Fard
et al. (2013); Arabnejad et al. (2016); Wu et al. (2015);
Malawski et al. (2015); Abrishami et al. (2013); Byun et al.
(2011); Malawski et al. (2012); Gao et al. (2013)), but
has received much less attention in a stochastic context.
Indeed, most of the studies assume a clairvoyant setting:
the resource provisioning and task scheduling mechanisms
know in advance, and accurately, the execution time of all
tasks. A handful of additional studies also consider that tasks
may fail (Liu et al. (2010); Poola et al. (2014)). Among
these articles, Poola et al. (Poola et al. (2014)) differ as they
assume that tasks have uncertain execution times. However,
they assume they know these execution times with a rather
good accuracy (the standard deviation of the uncertainty is
10% of the expected execution time). They are thus dealing
with uncertainties rather than a true non-clairvoyant setting.
The work in (Caniou et al. (2018)) targets stochastic tasks
but is limited to taking static decisions (no task interruption).

Some works are limited to a particular type of application
like MapReduce (Hwang and Kim (2012); Tian and Chen
(2011)). For instance, Tian and Chen (Tian and Chen (2011))
consider MapReduce programs and can either minimize the
financial cost while matching a deadline or minimize the
execution time while enforcing a given budget.

Our task model applies to compute-bound tasks because
we do not account for communication times and instead
assume that they are negligible in front of computation times.
However, we refine the classical deterministic model by
adding stochasticity to task execution times.

2.2 Bags of tasks
A bag of tasks is an application comprising a set of
independent tasks sharing some common characteristics:
either all tasks have the same execution time or they are
instances coming from a same distribution. Several works
devoted to bag-of-tasks processing explicitly target cloud
computing (Grekioti and Shakhlevich (2014); Oprescu et al.
(2012)). Some of them consider the classical clairvoyant
model (Grekioti and Shakhlevich (2014)) (while (Casanova
et al. (2010)) targets a non-clairvoyant setting). A group
of authors including Oprescu and Kielmann have published
several studies focusing on budget-constrained makespan
minimization in a non clairvoyant settings (Oprescu et al.
(2012); Oprescu and Kielmann (2010); Oprescu et al.
(2011)). They do not assume they know the distribution of
execution times but try to learn it on the fly (Oprescu and
Kielmann (2010); Oprescu et al. (2011)). This work differs
from ours as these authors do not consider deadlines. For
instance, in (Oprescu et al. (2012)), the objective is to try
to complete all tasks, possibly using replication on faster
machines, and, in case the proposed solution fails to achieve
this goal, to complete as many tasks as possible. The implied
assumption is that all tasks can be completed within the
budget. We implicitly assume the opposite: there are too
many tasks to complete all of them by the deadline, and

†See the examples of Section 4.1 for an illustration.
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therefore we attempt to complete as many as possible; we
avoid replication, which would be a waste of resources.

Vecchiola et al. (Vecchiola et al. (2012)) consider a single
application comprising independent tasks with deadlines but
without any budget constraints. In their model tasks are
supposed to have different execution times but they only
consider the average execution time of tasks rather than
its probability distribution (this is left for future work).
Moreover, they do not report on the amount of deadline
violations; their contribution is therefore hard to assess.
Mao et al. (Mao et al. (2010)) consider both deadline and
budget constrained provisioning and assume they know the
tasks execution times up to some small variation (the largest
standard deviation of a task execution time is at most 20% of
its expected execution time). Hence, this work is more related
to scheduling under uncertainties than to non-clairvoyant
scheduling.

2.3 Task model
Our task model assumes that some tasks may not be executed
in the end. As mentioned in the introduction, this framework
is very closely related to imprecise computations (Chung
et al. (1990); Liu et al. (1991); Amirijoo et al. (2006)).
Furthermore, this task model also corresponds to the
overload case of (Buttazzo (2012)) where jobs can be
skipped or aborted. Another, related model, is that of anytime
tasks (Jumel and Simonot-Lion (2003)) where a task can be
interrupted at any time, with the assumption that the longer
the running, the higher the quality of its output. Such a model
requires a function relating the time spent to a notion of
reward. Finally, we note that the general problem related to
interrupting tasks falls into the scope of optimal stopping, the
theory which consists in selecting a date to take an action, in
order to optimize a reward (Ferguson (2008)).

Altogether, the present study appears to be unique because
it is non-clairvoyant and assumes an overall deadline in
addition to a budget constraint. Our main result is to
characterize a distribution-dependent threshold at which
all tasks should be interrupted, and to show the excellent
behavior of this approach in practice.

3 Problem definition
This section details the framework and scheduling objective.

Tasks. We aim at scheduling a set of independent tasks
whose execution times are IID (independent and identically
distributed) random variables. The common probability
distribution of the execution time is denoted as D. We
consider both discrete and continuous distributions in this
work. Discrete distributions are used to better understand the
problem. Continuous distributions are those typically used in
the literature, namely exponential, uniform, and lognormal.

Platform. The execution platform is composed of identi-
cal VMs, or processors. Without loss of generality, we as-
sume unit speed and unit cost for each VM, and we scale the
task execution times when we aim at changing granularity.
Execution time and budget are expressed in seconds. There
is an unlimited number of VMs that can be launched by the
user.

Constraints and optimization objective. The user has
a limited budget b and an execution deadline d. The
optimization problem is to maximize the expected number of
tasks that can be completed until: (i) the deadline is reached;
and (ii) the totality of the budget is spent. More precisely:

• The scheduler decides how many VMs to launch and
which VMs to stop at each second;

• Each VM executes a task as soon as it is started;
• Each VM is interrupted as soon as the deadline or the

budget is exceeded, whichever comes first;
• Each task can be deleted by the scheduler at any

second before completion;
• The execution of each task is non-preemptive, except

in Section 4.2 that summarizes complexity results. In
a non-preemptive execution, interrupted tasks cannot
be relaunched, and the time/budget spent computing
until interruption is completely lost. On the contrary,
in a preemptive execution, a task can be interrupted
temporarily (e.g., for the execution of another task, or
until some event on another VM) and resumed later
on.

4 Discrete distributions
This section provides theoretical results when execution
times follow a discrete probability distribution D =
{(pi, wi)}1≤i≤k. There are k possible execution times w1 <
w2 < · · · < wk (expressed in seconds) and a task has an
execution time wi with probability pi, where

∑k
i=1 pi = 1.

The wi are also called thresholds, because they represent
instants at which we should take decisions: if the current
task did not complete successfully, then either we continue
its execution (if the remaining budget allows for it), or
we interrupt the task and start a new one. Of course
the discrete distribution of the thresholds is somewhat
artificial: in practice, we have continuous distributions for the
execution times of the tasks. With continuous distributions,
at any instant, we do not know for sure that the task will
continue executing until some fixed delay. On the contrary
with discrete distributions, we know that the execution
will continue (at least) until the next threshold. However,
any continuous distribution can be approximated by a
discrete distribution, and the more threshold values, the
more accurate the approximation. In Section 5, we use the
results obtained for discrete distributions to design efficient
strategies for continuous distributions.

In this section, we further assume that there is no
scheduling deadline d, or equivalently, that the deadline
is equal to the budget: d = b. We re-introduce deadlines
when dealing with continuous distributions in Section 5. To
help the reader apprehend the difficulty of the problem, we
start with an example in Section 4.1. We discuss problem
complexity without deadline in Section 4.2, providing
pseudo-polynomial optimal algorithms and comparing three
scenarios: sequential, sequential with preemption, and
parallel. Then in Section 4.3, we focus on cases where the
budget is large and design an asymptotically optimal strategy.
This strategy determines the optimal threshold at which to
interrupt all yet unsuccessful tasks. This result is key to the
design of an efficient heuristic for continuous distributions in
Section 5.1.
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4.1 Example
We consider the following example with k = 3 thresholds:
D = {(0.4, 2), (0.15, 3), (0.45, 7)}. In other words, with a
probability of 40% the execution time of a task is 2 seconds,
with a probability of 15% it is 3 seconds, and with a
probability of 45% it is 7 seconds. We assume that we have
a total budget b = 6 (and recall that there is no deadline, or
equivalently d = 6). Because b = 6 < w3 = 7, no task will
ever be executed up to its third threshold. We first define and
evaluate the optimal policy with a single processor. Then,
we exhibit a policy for two processors that achieves a better
performance.

With a single processor. Let E(b) denote the optimal
expected number of completed tasks when the total budget
is equal to b. To define the optimal policy for a budget of
6, we first compute E(b) for the lower values of b that will
appear recursively in the expression of E(6):
• E(1) = 0, because w1 = 2.
• E(2) = p1 × 1 + (p2 + p3)× 0 = 0.4: when the budget
is equal to 2, the only thing we can do is run the task for two
units of time and check whether it completed, which happens
with probability p1. Otherwise, no task is completed.
• E(3) = (p1 + p2)× 1 + p3 × 0 = 0.55. Once again, we
execute the task for two units of time. If it has not succeeded,
it would be pointless to kill it because the remaining budget
is 1 and E(1) = 0 (and if it has succeeded, we cannot take
advantage of the remaining budget). Hence, if the task
has not completed after two units of time, we continue
its computation for the remaining unit of time and check
whether it has succeeded.
• E(4) = max{p1 + E(2), p1(1 + E(2)) + p2(1 +
E(1)) + p3(0 + E(1))} = 2p1 = 0.8. Here, two policies
can be envisioned. Either, we decide to kill the first task if
it has not completed by time 2 or, if it has not completed,
we let it continue up to time 3 where we kill it if it has not
completed (we do not have the budget to let it run up to w3).
In the second case, we distinguish two sub-cases depending
on the actual task duration. The reasoning will be the same
for E(6).
• E(6) = max{p1 + E(4), p1(1 + E(4)) + p2(1 +
E(3))} = 3p1 = 1.2. Once again, two policies can be
envisioned. Either, we decide to kill the first task if it has
not completed by time 2 or, if it has not completed, we let it
pursue up to time 3 where we kill it if it has not completed
(we do not have the budget to let it run up to w3).
Therefore, the optimal expectation with a single processor
is to complete 1.2 tasks. The principle used to design the
optimal policy will be generalized to obtain Algorithm 1.

With two processors. We consider the following policy:
(i) we start two tasks in parallel; (ii) if none of them
completes by time 2, we let them run up to time 3; (iii)
otherwise, we kill at time 2 any not-yet completed task and
start a new task instead. The following case analysis displays
the expected number of completed tasks for each case of
execution time of the two tasks initially started:

w1 w2 w3

w1 2 + p1 1 + p1 1 + p1

w2 1 + p1 2 1
w3 1 + p1 1 0

For instance, the square at the intersection of the column w1

and the row w2 corresponds to the case where the task on
the first processor completes in two units of time, where the
task on the second processor would have needed 3 units of
time. Because of our policy, this second task is killed and at
time 2 and we have completed a single task. There remain 2
units of time and we start a third task, which will complete in
this budget with probability p1. Therefore, the total expected
number of completed tasks in this configuration is 1 + p1,
and this configuration happens with probability p1p2.

The total expected number of completed tasks is:

E′ = p2
1(2 + p1) + 2p1(p2 + p3)(1 + p1)

+ 2p2
2 + 2p2p3 = 1.236.

Therefore, this two-processor policy is more efficient than
the optimal single processor policy! Even in the absence of
deadline parallelism may help to achieve better performance.

This example helps comprehend the difficulty of the
scheduling problem under study. The reader may feel
frustrated that in the above example, the performance is only
improved by 3%. In fact, one of the conclusions of our work
is that, in the absence of deadlines, using several processors
only marginally improves performance.

4.2 Complexity results
This section is the only one in the paper where we allow
preemption. We compare the performance of sequential
scheduling, without or with preemption, to that of parallel
scheduling, for the problem instance without deadline.

We first present optimal algorithms to solve in pseudo-
polynomial time the sequential case without preemption
(Algorithm 1) and with preemption (Algorithm 2), as
well as an exponential algorithm to solve the parallel
case (Algorithm 3). We then show (Lemma 4) that
the performance of the first two algorithms bound the
performance of the optimal parallel algorithm.

Algorithm 1 is a dynamic programming algorithm that
computes in pseudo-polynomial time the expected number
of tasks that can be completed on a single processor (without
preemption) for a given budget. To ease its writing (and that
of Algorithm 2 for the case with preemption), we choose
to present it as a recursive algorithm without memoization.
Nevertheless, it can easily be transformed into a classical
dynamic programming algorithm.

Lemma 1. Algorithm 1 computes the optimal expected
number of tasks that can be completed on a single processor
(without preemption) for a given budget b in time O(kb).

Proof. The main property guiding the design of Algo-
rithms 1 and 2 is that the only times at which knowledge
is gained is when the execution time of a task reaches one of
its k thresholds w1, ..., wk. (Note that, by definition, a task
can only complete at one of these thresholds.) Therefore, it
can never be beneficial to stop a non-completed task when
its execution time is not equal to a threshold. Therefore,
without loss of generality, we focus on algorithms that kill
non-completed tasks only at threshold times. Then, the only
decision that such an algorithm can take is, when a task
reaches a threshold without completing, whether to kill it
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and start a new task, or continue its execution until the next
threshold, where either the task will succeed or a new deci-
sion will have to be taken. This is exactly what Algorithm 1
encodes. This algorithm contains at most kb different calls to
the function SeqSched ; hence, the complexity.

Algorithm 1: Dynamic programming algorithm to
compute the optimal expected number of tasks
completed within the budget b on a single processor
without preemption.

Function SeqSched(β, s)
Data: The budget β
The threshold s at which the last executed task
stopped (s = 0 if the execution was sucessful)
bestExpectation ← 0
/* If the budget allows it, we

can attempt to start a new
task */

if β ≥ w1 then
bestExpectation ←
p1(1 + SeqSched(β − w1, 0)) + (1−
p1)(SeqSched(β − w1, 1))

/* If there was a task preempted
at threshold s and if the
budget allows it, we can try
to continue executing this
task */

if s > 0 and ws+1 − ws ≤ β then
if s = k − 1 then

expectation ←
1 + SeqSched(β − (ws+1 − ws), 0)

else
expectation ← ps+1

1−
∑s
i=1 ps

(1 +

SeqSched(β − (ws+1 − ws), 0)) +
1−ps+1

1−
∑s
i=1 ps

(SeqSched(β − (ws+1 −
ws), s+ 1))

bestExpectation ←
max{bestExpectation, expectation}

return bestExpectation

return SeqSched(b, 0)

Algorithm 2 is a generalization of Algorithm 1 to the
case with preemption. In this context, algorithms no longer
kill non-completed tasks, but can preempt them with the
possibility to restart them later (or not). In the writing of
this algorithm, when S is an array, the notation “S + a1s”
means “add a to the entry s of array S”. Algorithm 2 has a
pseudo-polynomial complexity only if the maximum number
of thresholds, k, is fixed.

Lemma 2. Algorithm 2 computes the optimal expected
number of tasks that can be completed on a single
processor with preemption for a given budget b in time
O
(∏k−1

s=1

(
1 + b

ws

))
.

Proof. The proof of correctness and optimality of Algo-
rithm 2 both come directly from that of Algorithm 1. A task
preempted at threshold s was executed for a time ws and,
therefore, there can be at most b

ws
such tasks in an execution.

Therefore, there are at most
∏k−1
s=1

(
1 + b

ws

)
possible values

for the array S (a task always completes when it reaches the
threshold k). Hence, the complexity.

Algorithm 2: Dynamic programming algorithm to
compute the optimal expected number of tasks
completed within the budget b on a single processor
with preemption.

Function PSeqSched(β, S)
Data: The budget β
An array S of size k: S[i] is the number of tasks
preempted at state i
bestExpectation ← 0
/* If the budget allows it, we

can attempt to start a new
task */

if β ≥ w1 then
bestExpectation ←
p1(1 + PSeqSched(β − w1, S)) + (1−
p1)(PSeqSched(β − w1, S + 11))

for s = 1 to k − 1 do
/* If there was a task

preempted at threshold s and
if the budget allows it, we
can try to restart one such
task */

if S[s] > 1 and ws+1 − ws ≤ β then
if s = k − 1 then

expectation ← (1 +
PSeqSched(β − ws+1, S − 1s))

else
expectation ← ps+1

1−
∑s
i=1 ps

(1 +

PSeqSched(β − ws+1, S − 1s)) +
1−ps+1

1−
∑s
i=1 ps

(PSeqSched(β −
ws+1, S − 1s + 1s+1))

bestExpectation ←
max{bestExpectation, expectation}

return bestExpectation

Let S be an array of size k − 1 with S[i] = 0 for all i
return PSeqSched(b, S)

Algorithm 3 computes for parallel machines the optimal
expected number of tasks that can be completed within
the budget, without preemption. We call progress of a
task the total execution time so far of that task. Let
ParSchedDecision(β, T1, T2) be the expected number
of tasks that can be completed with a budget β, knowing the
progress of the tasks in the task sets T1 and T2 where 1)
tasks belonging to T1 may be interrupted, 2) tasks belonging
to T2 cannot be interrupted at this time step, and 3) if the
progress of a task is equal to a threshold, that task did
not complete at that threshold. Let ParSchedJump(β, T)
be the expected number of tasks that can be completed
with a budget β, knowing the progress of the tasks in the
task set T . Finally, let ParSchedState(β, T1, T2) be
the expected number of tasks that can be completed with
a budget β, knowing the progress of the tasks in the task
sets T1 and T2, where 1) the progress of each task in T1
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is equal to a threshold where the task may have succeeded
(we have not yet looked whether this is the case), and 2) the
progress of a task in T2 can only be equal to a threshold
if the task failed to complete at that threshold. Intuitively,
ParSchedDecision specifies whether to continue, stop
or start tasks, while ParSchedJump advances the progress
of the tasks, and ParSchedState determines which tasks
succeed when a threshold is reached.

Lemma 3. Algorithm 3 computes the optimal expected
number of tasks that can be completed on parallel processors
without preemption for a given budget b in time O((b+
k)b3wbk).

Proof. The proof of correctness and optimality of Al-
gorithm 3 also comes from that of Algorithm 1.
Any time a threshold is reached, ParSchedState
is called and determines which tasks succeed or not.
Then, ParSchedDecision decides which tasks to con-
tinue and whether new tasks must be started. There
are at most q = bb/w1c concurrent running tasks. Thus,
ParSchedDecision can be called with bq2wqk different
arguments. Each call requires q calls to ParSchedJump,
which can take bqwqk different arguments and takes qk
operations. Finally, ParSchedState costs less than
ParSchedDecision. Hence, the time complexity is
b(q + k)q2wqk = O((b+ k)b3wbk) and the space complexity
is bq2wqk = O(b3wbk).

Relations between problems Lemma 4 formally states that
any algorithm for p processors (using or not preemption) can
be simulated on a single processor with preemption. From
this property, it immediately follows that the performance of
the optimal parallel algorithm on p processors (Algorithm 3)
is upper bounded by the performance of Algorithm 2 and
lower bounded by the performance of Algorithm 1.

Lemma 4. Any algorithm designed to be executed on p
processors with or without preemption can be simulated
on a single processor with preemption with the same
performance.

Proof. Consider any algorithm A designed to be executed
on p processors with preemption. As already stated in the
proof of Lemma 1, any meaningful algorithm only takes
decisions when a task reaches a threshold. Of course, in a
parallel algorithm, a task may be stopped in between two
of its thresholds if, at that time, another task reaches one
of its own thresholds. On the contrary, no knowledge is
gained at a time when no task reaches a threshold, and it
is thus suboptimal to kill or to preempt a task at such a time.
Without loss of generality, we thus assume that A only kills
or preempts tasks at their thresholds.

Without loss of generality, we also assume that all
thresholds are integers (otherwise, we just scale the
thresholds). Then, we simulate A as follows to obtain a
sequential algorithmA∗. Assume we have simulatedA from
time 0 to t. Then A∗ ran from time 0 to t∗ (where 0 ≤
t∗ ≤ t× p) and spent the same amount of time processing
the very same tasks than A. We now simulate the work
of A for the time-interval [t; t+ 1]. Let P1, ..., Pp′ be the
p′ ≤ p processors, numbered arbitrarily, that process some
work under A during the interval [t; t+ 1]. Let T be the

Algorithm 3: Dynamic programming algorithm to
compute the optimal expected number of tasks
completed within the budget b in parallel.

Function ParSchedDecision(β, T1, T2)
Data: The budget β
A set T1: T1[i] is the progress of a task that may
be interrupted
A set T2: T2[i] is the progress of a task that cannot
be interrupted
if β = 0 then return 0
if T1 = ∅ then

q ← bβ/w1c
/* In addition to the current

progressing tasks, we can
start new ones */

return
max0≤i≤q ParSchedJump(β, T2 ∪ {0}i)

else
/* Task 1 in T1 is either

interrupted or not */
return max(ParSchedDecision(β, T1 \
{T1[1]}, T2),
ParSchedDecision(β, T1 \
{T1[1]}, T2 ∪ {T1[1]}))

Function ParSchedJump(β, T)
Data: The budget β
A set T : T [i] is the progress of a task
if T = ∅ then return 0
d← mint∈T (min1≤i≤k,wi>t wi − t)
if d× |T | > β then return 0
/* Jump to the next time step at

which at least one task
reaches a threshold */

return ParSchedState(β − d× |T |, {T [i] +
d}1≤i≤|T |,∃l s.t.T [i]+d=wl , {T [i] +
d}1≤i≤|T |,6∃l s.t.T [i]+d=wl)

Function ParSchedState(β, T1, T2)
Data: The budget β
A set T1: T1[i] is the progress of a task that has
just reached a threshold and may complete
A set T2: T2[i] is the progress of a task, the
progress is either not equal to a threshold or it is
equal to one but the task did not complete at that
threshold
if T1 = ∅ then

return ParSchedDecision(β, T2, ∅)
else

Let l be such that wl = T1[1]
/* Either task 1 succeeds or

not */
return pl

1−
∑l−1
i=1 pi

(1 +

ParSchedState(β, T1 \ {T1[1]}, T2)) +
(1− pl

1−
∑l−1
i=1 pi

)

ParSchedState(β, T1 \ {T1[1]}, T2 ∪
{T1[1]})

return ParSchedDecision(b, ∅, ∅)
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task processed by Pi during that time under A. Then A∗
processes T during [t∗ + (i− 1); t∗ + i]. A∗ can take this
decision because at time t∗,A∗ has processed the exact same
work than A at time t. Therefore, at time t∗ + (i− 1), A∗
has all the necessary knowledge. At time t∗ + p′, A∗ has
processed the exact same work than A at time t+ 1 and we
can conclude by an immediate induction.

Note that the proof also holds if the parallel algorithm is
allowed to start using some new processors in the middle of
the computation, or is allowed to restart a processor that it
previously left idle.

Lemma 5. ParSched is never worse than SeqSched, and
can achieve strictly better performance on some problem
instances.

Proof. Given Lemma 4, ParSched is least as good as
SeqSched. A sequential execution without preemption on
a single processor is a special case of a parallel execution
where the number of processors is one. Thus, ParSched is at
least as good as SeqSched. Now, consider the instance D =
{(0.4, 2), (0.15, 3), (0.45, 7)}. The optimal expected number
of tasks that can be completed on a single processor with
b = 6 is 1.2 without preemption, whereas it is 1.236 on
multiple processors. This result was obtained through the
study in Section 4.1 and can be checked using Algorithms 1
and 2 on the instance. Hence, there exist instances where
ParSched is strictly better than SeqSched.

Lemma 6. PSeqSched is never worse than ParSched, and
can achieve strictly better performance on some problem
instances.

Proof. Given Lemma 4, PSeqSched is always as least
as good as ParSched. Consider the instance D =
{(0.15, 1), (0.6, 2), (0.15, 3), (0.1, 5)}. The optimal ex-
pected number of tasks that can be completed on multiple
processors with b = 6 is 2.4372 without preemption, whereas
it is 2.4497 with preemption. This result is obtained by
executing Algorithms 2 and 3 on the instance.

4.3 Asymptotic behavior
In this section, we derive an asymptotically optimal strategy
when letting the budget tend to infinity. Because the
scheduling strategy described below is applied independently
on each processor, we can assume that p = 1 throughout
this section without loss of generality. As stated earlier,
recall that we assume that there is no deadline. Note that
a fixed deadline would make no sense when b→ +∞ and
p = 1. We first describe the strategy in Section 4.3.1. We
show its asymptotic optimality in Sections 4.3.2 and 4.3.3.
More precisely, we show the asymptotic optimality among
a restricted set of strategies in Section 4.3.2, and then
among all possible strategies in Section 4.3.3. The idea is to
use Section 4.3.2 as an introduction to the technical proof
of Section 4.3.3. Throughout this section, we are given a
discrete distribution D = {(pi, wi)}1≤i≤k.

4.3.1 Optimal fixed-threshold strategy Consider a dis-
crete distribution D = {(pi, wi)}1≤i≤k. For 1 ≤ i ≤ k, the
i-th fixed-threshold strategy, or FTSi , interrupts every un-
successful task at threshold wi, i.e., when the task has been
executing for wi seconds without completing. There are k
such strategies, one per threshold. Informally, our criterion
to select the best one is to maximize the ratio

R =
expected number of tasks completed

budget

=
expected number of tasks completed

total time spent

Indeed, this ratio measures the success rate per time unit, or
equivalently, per budget unit (since we have unit execution
speed). Formally, we would like to compute

Ri(b) =
Ni(b)

b
(1)

where Ni(b) is the expected number of tasks that are
successfully completed when using strategy FTSi that
interrupts all unsuccessful tasks after wi seconds, and
proceeds until the budget b has been spent. It turns out that
we can compute the limit Ri of Ri(b) when the budget b
tends to infinity:

Proposition 1.

lim
b→∞

Ri(b) = Ri
def
=

∑i
j=1 pj∑i

j=1 pjwj + (1−
∑i
j=1 pj)wi

Proof. Consider an execution using strategy FTSi and with
budget b. We execute n tasks during at most wi seconds
until there remains some budget, and maybe there exists a
last task that is truncated due to budget exhaustion before it
completes. Let bleft be the sum of the unused budget and of
the budget spent for the truncated task (if any). The execution
of the n tasks lasts b− bleft seconds, where 0 ≤ bleft ≤ wi.
For 1 ≤ j ≤ i, let nj denote the number of tasks that have
completed successfully in exactly wj seconds. Then n−∑i
j=1 nj tasks have been unsuccessful and interrupted, and

we have

b− bleft = n1w1 + · · ·+ niwi + (n−
i∑

j=1

nj)wi.

Note that n, nj for 1 ≤ j ≤ i, and bleft are random variables
here. With the notation of Equation 1, we have Ni(b) =

E(
∑i
j=1 nj) and we aim at showing the existence of the limit

lim
b→∞

Ni(b)

b

and at computing its value.
When the budget b tends to infinity, so does n, because

n ≥
⌊
b
wi

⌋
. We now show that n1

n converges almost surely

to the value p1: we write n1

n

a.s.→ p1. This means that the
convergence to that limit is true, except maybe over a set
of measure zero. To see this, for the i-th task, let X(1)

i be
the random variable whose value is 1 if the task completes
in w1 seconds, and 0 otherwise. By definition n1 = X

(1)
1 +
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X
(1)
2 + · · ·+X

(1)
n . The X(1)

i are IID and have expectation
E(X

(1)
i ) = 1.p1 + 0.(1− p1) = p1, hence

X
(1)
1 +X

(1)
2 + · · ·+X

(1)
n

n

a.s.→ p1

according to the strong law of large numbers (Nelson
(1995)), hence the result. We prove similarly that njn

a.s.→ pj
for 1 ≤ j ≤ i.

Then, we have:∑i
j=1 nj

b
=

∑i
j=1 nj∑i

j=1 njwj + (n−
∑i
j=1 nj)wi + bleft

=

∑i
j=1

nj
n∑i

j=1
nj
n wj + (1−

∑i
j=1

nj
n )wi +

bleft

n

a.s.→ Ri

(whereRi is defined in Proposition 1), because nj
n

a.s.→ pj for
1 ≤ j ≤ i, bleft

n

a.s.→ 0 (that convergence is even deterministic
because bleft is bounded by a constant), and the finite union
of sets of measure zero has measure zero. A fortiori when
taking the expectations, we have deterministic convergence:

Ri(b) =
E(
∑i
j=1 nj)

b
→ Ri,

which concludes the proof.

The optimal fixed-threshold strategy FTSopt is defined as
the strategy FTSi whose ratio Ri is maximal. If several
strategies FTSi achieve the maximal ratio Ropt, we pick
the one with smallest wi (to improve success rate when the
budget is limited and truncation must occur). Formally:

Definition 1. FTSopt is the strategy FTSi0 where i0 =
min1≤i≤k{i

∣∣Ri = min1≤j≤kRj}.

To conclude this section, we work out a little example.
Consider a distribution D = {(pi, wi)}1≤i≤3 with 3 thresh-
olds. We have

R1 =
p1

w1
, R2 =

p1 + p2

p1w1 + (1− p1)w2
, and

R3 =
p1 + p2 + p3

p1w1 + p2w2 + (1− p1 − p2)w3

=
1

p1w1 + p2w2 + p3w3
·

We pick the largest of these three values to derive FTSopt.

4.3.2 Asymptotic optimality of FTSopt among mixed-
threshold strategies A scheduling strategy makes the
following decisions for each task: when a new threshold
is reached, and if the task is not successful at this point,
decide whether either to continue execution until the next
threshold, or to interrupt the task. In the most general case,
these decisions may depend upon the remaining available
budget. However, when the budget is large, it makes sense
to restrict to strategies where such decisions are taken
independently of the remaining budget, independently to past
history, and either deterministically or non-deterministically
but according to some fixed probabilities. We formally define
such strategies as follows:

Definition 2. A mixed-threshold strategy
MTS (q1, q2, . . . , qk−1), where 0 ≤ qj ≤ 1 for
1 ≤ j ≤ k − 1 are fixed probabilities, makes the following
decision when the execution of a task reaches threshold wi,
for 1 ≤ i ≤ k − 1, without success: it decides randomly to
continue execution until the next threshold with probability
qi, and to interrupt the task otherwise, hence with probability
1− qi.

Of course, the fixed-threshold strat-
egy FTSi coincides with MTS (1, . . . ,
1, 0, . . . , 0) where the last 1 is in position i− 1: qj = 1 for
j < i et qj = 0 for j ≥ i. In this section, we prove our main
result for discrete distributions:

Theorem 1. FTSopt is asymptotically optimal among all
mixed-threshold strategies.

Proof. Theorem 1 applies to any fixed number of processors
p, but recall that we assume p = 1 w.l.o.g. in this
section, because the rate per time/budget unit is computed
independently for each processor. Given an arbitrary strategy
MTS (q1, q2, . . . , qk−1), consider an execution with budget
b and where we execute n tasks according to the strategy
until the last seconds, i.e., until some instant b− bleft, where
0 ≤ bleft ≤ wk. As before, when the budget b tends to infinity,

so does n, because n ≥
⌊
b
wk

⌋
. In the execution, let ni be the

number of tasks whose execution has lasted wi seconds, let
mi be the number of tasks whose execution was successful
and lastedwi seconds; scaling by n, letαi = ni

n and βi = mi
n

for 1 ≤ i ≤ k. As in the proof of Proposition 1, using the
strong law of large numbers, we prove the following:

β1
a.s.→ β∞1 = p1

β2
a.s.→ β∞2 = p2

1−p1 (1− α∞1 )

β3
a.s.→ β∞3 = p3

1−p1−p2 (1− α∞1 − α∞2 )

. . .

βk−1
a.s.→ β∞k−1 = pk−1

1−
∑k−2
j=1 pj

(1−
∑k−2
j=1 α

∞
j )

βk
a.s.→ β∞k = pk

1−
∑k−1
j=1 pj

(1−
∑k−1
j=1 α

∞
j )

and

α1
a.s.→ α∞1 = p1 + (1− p1)(1− q1)

α2
a.s.→ α∞2 =

(
p2

1−p1 + (1− p2
1−p1 )(1− q2)

)
(1− α∞1 )

α3
a.s.→ α∞3 =

(
p3

1−p1−p2 + (1− p3
1−p1−p2 )(1− q3)

)
(1− α∞1 − α∞2 )

. . .

αk−1
a.s.→ α∞k−1 =

( pk−1

1−
∑k−2
j=1 pj

+ (1− pk−1

1−
∑k−2
j=1 pj

)

(1− qk−1)
)
× (1−

∑k−2
j=1 α

∞
j )

αk
a.s.→ α∞k = 1−

∑k−1
j=1 α

∞
j

We also prove just as before that

b

n

a.s.→
k∑
j=1

α∞j wj

so that the success rate per budget unit does have the
following limit when the budget tends to infinity:∑k

j=1 βj∑k
j=1 αjwj

b→∞→ R(α∞1 , α
∞
2 , . . . , α

∞
q−1)

def
=

∑k
j=1 β

∞
j∑k

j=1 α
∞
j wj
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The rest of the proof is pure algebra: we have to show
that the maximum value of R(α∞1 , α

∞
2 , . . . , α

∞
q−1) over all

values 0 ≤ α∞j ≤ 1 for 1 ≤ j ≤ k − 1, is Ropt, obtained
when the strategy is some FTSi (i.e., when there exists iwith
α∞j = 1 if j < i and α∞j = 0 if j ≥ i). Note that below, to
ease the writing, we simply use αj instead of α∞j ’s of the
above equations, and we obtain:

PROBLEM PB[k](D) :
MAXIMIZE R(α1, α2, . . . , αk−1) =∑k

i=1
pi

1−
∑i−1
j=1

pj

(1−
∑i−1
j=1 αj)∑k−1

i=1 αiwi+(1−
∑k−1
i=1 αi)wk

SUBJECT TO


p1 ≤ α1 ≤ 1
p2

1−p1 (1− α1) ≤ α2 ≤ 1

. . .
pk−1

1−
∑k−2
j=1 pj

(1−
∑k−2
j=1 αj) ≤ αk−1 ≤ 1

AND
∑k
i=1 pi ≤ 1

(2)
We proceed by induction on k to show that the maximum

value of the optimization problem PB[k](D) is Ropt. Note
that we do not assume that

∑k
i=1 pi = 1 when stating

PB[k](D) but only
∑k
i=1 pi ≤ 1. For the base case k = 1,

we have a single value p1
w1

, which is the ratio Ropt of FTS1 .
For the case k = 2, we have a single variable α1, where

p1 ≤ α1 ≤ 1, and R(α1) =
p1+

p2
1−p1

(1−α1)

α1w1+(1−α1)w2
. We note that

the derivative of the function x→ f(x) = ax+b
cx+d has constant

sign (that of ad− bc); hence, the maximum of R(α1) is
obtained for one of the two bounds, either α1 = p1, with
value p1+p2

p1w1+(1−p1)w2
, or α1 = 1, with value p1

w1
. The first

value is the ratio R2 of FTS2 , and the second value is the
ratioR1 of FTS1 , which concludes the proof for k = 2.

Assume that we have shown the result for PB[k′](D′) for
2 ≤ k′ ≤ k − 1 and all distributions D’ with k′ thresholds,
and consider the problem PB[k](D). First we fix the values
of αj , 1 ≤ j ≤ k − 2, and view R(α1, α2, . . . , αk−1) as a
function of αk−1. It is again of the form x→ f(x) = ax+b

cx+d ;
hence, the maximum is obtained for one of the two bounds,
either αk−1 = pk−1

1−
∑k−2
j=1 pj

(1−
∑k−2
j=1 αj), or αk−1 = 1−∑k−2

j=1 αj .

First case If αk−1 = pk−1

1−
∑k−2
j=1 pj

(1−
∑k−2
j=1 αj), then,

1−
∑k−1
j=1 αj = (1− pk−1

1−
∑k−2
j=1 pj

)(1−
∑k−2
j=1 αj).

Hence, pk
1−

∑k−1
j=1 pj

(1−
∑k−1
j=1 αj) = pk

1−
∑k−2
j=1 pj

(1−∑k−2
j=1 αj). Thus

R(α1, α2, . . . , αk−2,
pk−1

1−
∑k−2
j=1 pj

(1−
k−2∑
j=1

αj)) =

∑k−1
i=1

pi

1−
∑i−1
j=1

pj

(1−
∑i−1
j=1 αj)+

pk

1−
∑k−1
j=1

pj

(1−
∑k−1
j=1 αj)

∑k−2
i=1 αiwi+(1−

∑k−2
j=1 αj)

pk−1wk−1+(1−
∑k−1
j=1

pj)wk

1−
∑k−2
j=1

pj

.

Consider the distribution D′ = {p′i, w′i}1≤i≤k−1 such
that p′i = pi and w′i = wi for 1 ≤ i ≤ k − 2, p′k−1 =

pk−1 + pk and w′k−1 =
pk−1wk−1+(1−

∑k−1
j=1 pj)wk

1−
∑k−2
j=1 pj

.

The distribution D’ has k − 1 thresholds. The
optimization problem PB[k − 1](D′) writes

MAXIMIZE R′(α′1, α′2, . . . , α′k−2) =∑k−1
i=1

p′i
1−

∑i−1
j=1

p′
j

(1−
∑i−1
j=1 α

′
j)∑k−2

i=1 α
′
iw
′
i+(1−

∑k−2
i=1 α

′
i)w
′
k−1

.

SUBJECT TO
p′i

1−
∑i−1
j=1 p

′
j

(1−
∑i−1
j=1 α

′
j) ≤ α′i ≤ 1,

∀i ∈ {1, . . . , k − 2}
AND

∑k−1
i=1 p

′
i ≤ 1

Replacing p′k−1 and w′k−1 by their values, we see that
PB[k](D) when αk−1 = pk−1

1−
∑k−2
j=1 pj

(1−
∑k−2
j=1 αj)

reduces to PB[k − 1](D′). By induction hypothesis,
PB[k − 1](D′) achieves its maximum for some fixed-
threshold strategy FTS ′i , where 1 ≤ i ≤ k − 1. The
task-to-budget ratiosR′i for D’ are the following:

• R′i = Ri for 1 ≤ i ≤ k − 2

• R′k−1 =
∑k−1
j=1 p

′
j∑k−2

j=1 p
′
jw
′
j+(1−

∑k−2
j=1 p

′
j)w
′
k−1

=∑k−2
j=1 pj+pk−1+pk∑k−2

j=1 pjwj+pk−1wk−1+(1−
∑k−1
j=1 pj)wk

= Rk.

This is the desired result and concludes the analysis for
the first case.

Second case If αk−1 = 1−
∑k−2
j=1 αj , then

R(α1, α2, . . . , αk−2, 1−
k−2∑
j=1

αj) =

∑k−1
i=1

pi
1−

∑i−1
j=1 pj

(1−
∑i−1
j=1 αj)∑k−2

i=1 αiwi + (1−
∑k−2
j=1 αj)wk−1

.

Consider the distribution D′ = {p′i, w′i}1≤i≤k−1 such
that p′i = pi and w′i = wi for 1 ≤ i ≤ k − 1.
The distribution D’ has k − 1 thresholds. The
optimization problem PB[k](D) when αk−1 = 1−∑k−2
j=1 αj directly reduces to PB[k − 1](D′). By

induction hypothesis, PB[k − 1](D′) achieves its
maximum for some fixed-threshold strategy FTS ′i ,
where 1 ≤ i ≤ k − 1. The task-to-budget ratios forD’
are the same as for D: R′i = Ri for 1 ≤ i 5 k − 2.
This is the desired result and concludes the analysis
for the second case.

Altogether, we have solved the optimization problem
PB[k](D). This concludes the proof of the theorem.

4.3.3 Asymptotic optimality of FTSopt In this section, we
extend Theorem 1 to arbitrary strategies and show a much
stronger result:

Theorem 2. FTSopt is asymptotically optimal among all
possible strategies.

Proof. The proof of this theorem is quite technical and the
reader may want to skip it. We deal with all scheduling
strategies that never interrupt a task before it reaches its first
state w1, because such strategies are obviously dominant.
We define an outcome in the sample space as an infinite
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sequence of execution times for the tasks associated to an
infinite sequence of decisions for the scheduling strategy, and
we introduce the following random variables:

• NS (b): number of successful tasks per unit of budget
for a given b

• Si(b): random variable, number of successful tasks at
state i for a given b

• Ni(b): number of terminating tasks between state i
(included) and state i+ 1 (excluded) for a given b

• N(b) =
∑k
j=0Ni(b): number of started tasks for a

given b
• αi(b) = Ni(b)/N(b): proportion of tasks terminating

between state i (included) and state i+ 1 (excluded)
for a given b

For any such outcome, we have:

NS (b) =
S1(b) + . . .+ Sk(b)

b
≤ S1(b) + . . .+ Sk(b)

N1(b)w1 + . . .+Nk(b)wk

Convergence of NS (b). We know that the
probability of success of any task at state i knowing
that there was no termination until this state is
Pr[success at state i|no termination until i− 1 included] =

pi
1−

∑i−1
j=1 pj

. There are Si(b) such successes out of

N(b)−
∑i−1
j=0Nj(b) tasks. Thus, by strong law of large

numbers:

Pr

[
limN(b)−

∑i−1
j=0Nj(b)→∞

Si(b)

N(b)−
∑i−1
j=0Nj(b)

= pi
1−

∑i−1
j=1 pj

]
= 1

(3)

Thus

Pr
[
∀ε > 0,∃n0,∀N(b)−

∑i−1
j=0Nj(b) ≥ n0,

Si(b)
N(b) <

pi
1−

∑i−1
j=1 pj

(1−
∑i−1
j=0Nj(b)/N(b)) + ε

]
= 1

because 1−
∑i−1
j=0Nj(b)/N(b) ≤ 1 (by definition ofN(b)),

which is thus bounded.
We now show that

Pr [∀ε > 0,∃b0,∀b ≥ b0,
Si(b)
N(b) <

pi
1−

∑i−1
j=1 pj

(1−
∑i−1
j=0Nj(b)/N(b)) + ε

]
= 1

Indeed, assume by contradiction that it is false, then

Pr [∃ε > 0,∀b0,∃b ≥ b0,
Si(b)
N(b) ≥

pi
1−

∑i−1
j=1 pj

(1−
∑i−1
j=0Nj(b)/N(b)) + ε

]
6= 0

(4)
Let Ω′ be the subset of the sample space where the

previous event occurs (Pr[Ω′] 6= 0). For any given
outcome ω ∈ Ω′, let b(l) be a sequence of b such
that Si(b)

N(b) ≥
pi

1−
∑i−1
j=1 pj

(1−
∑i−1
j=0Nj(b)/N(b)) + ε.

This gives ∃l0,∀l ≥ l0, Si(b
(l))

N(b(l))
≥ pi

1−
∑i−1
j=1 pj

(1−∑i−1
j=0Nj(b

(l))/N(b(l))) + ε for a given nonzero ε.
For any outcome, limb→∞N(b) =∞ because

N(b) =
∑k
i=0Ni(b) ≥ b

b
wk
c. Thus, for any

outcome ω ∈ Ω′, liml→∞ Si(b
(l)) =∞. With

Si(b) ≤ Ni(b) ≤ N(b)−
∑i−1
j=0Nj(b), we have

liml→∞N(b(l))−
∑i−1
j=0Nj(b

(l)) =∞ for any outcome
ω ∈ Ω′. By the contradiction assumption (Equation 4), for
any outcome ω ∈ Ω′, we know that

Si(b)

N(b)−
∑i−1
j=0Nj(b)

≥ pi

1−
∑i−1
j=1 pj

+ ε

This contradicts the previous result from the strong law of
large numbers (Equation 3). Finally, we obtain:

Pr [∀ε > 0,∃b0,∀b ≥ b0,

NS(b) <

∑k
i=1

pi

1−
∑i−1
j=1

pj

(1−
∑i−1
j=0 αj(b))∑k

i=1 αi(b)wi
+ ε

]
= 1

Bounding αi(b). With Si(b) ≤ Ni(b) ≤ N(b)−∑i−1
j=0Nj(b), we have:

Si(b)

N(b)−
∑i−1
j=0Nj(b)

(1−
i−1∑
j=0

αj(b)) ≤ αi(b)

and

αi(b) ≤ 1−
i−1∑
j=0

αj(b)

We look for an asymptotic deterministic lower bound for
αi(b). From the strong law of large numbers (similar to
above):

Pr
[
∀ε > 0,∃n0,∀N(b)−

∑i−1
j=0Nj(b) ≥ n0,

Si(b)
N(b) >

pi
1−

∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b))− ε

]
= 1

which we can rewrite as:

Pr
[
∀ε > 0,∃n0,∀N(b)−

∑i−1
j=0Nj(b) ≥ n0,

pi
1−

∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b)) < αi(b) + ε

]
= 1

because Ni(b) ≥ Si(b) and thus αi(b) ≥ Si(b)
N(b) . We now

show that

Pr [∀ε > 0,∃b0,∀b ≥ b0,
pi

1−
∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b)) < αi(b) + ε

]
= 1

Indeed, assume by contradiction that it is false, then

Pr [∃ε > 0,∀b0,∃b ≥ b0,
pi

1−
∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b)) ≥ αi(b) + ε

]
6= 0

We use a similar reasoning as before. Let b(l) be the sequence
of b such that pi

1−
∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b)) ≥ αi(b) + ε.

This gives ∃l0,∀l ≥ l0, pi
1−

∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b

(l))) ≥

αi(b
(l)) + ε, which can also be written ∃l0,∀l ≥

l0,
pi

1−
∑i−1
j=1 pj

N(b(l))−
∑i−1
j=0Nj(b

(l))

N(b(l))
≥ αi(b(l)) + ε. Since

limb→∞N(b) =∞ (because N(b) =
∑k
i=0Ni(b) ≥

b bwk c), we have limj→∞N(b(l))−
∑i−1
j=0Nj(b

(l)) =∞,
which contradicts the previous result from the strong law of
large numbers.
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Summing up. In the previous paragraphs, we have
showed that

Pr [∀ε > 0,∃b0,∀b ≥ b0,

NS(b) <

∑k
i=1

pi

1−
∑i−1
j=1

pj

(1−
∑i−1
j=0 αj(b))∑k

i=1 αi(b)wi
+ ε

]
= 1

(5)

αi(b) ≤ 1−
i−1∑
j=0

αj(b) (6)

Pr [∀ε > 0,∃b0,∀b ≥ b0,
pi

1−
∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b)) < αi(b) + ε

]
= 1

(7)

We introduce the notation

f({αi}) =

∑k
i=1

pi
1−

∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b))∑k

i=1 αi(b)wi

and put together Equations (5) to (7) as follows:

Pr [∀ε1 > 0,∀ε2 > 0,∃b0,∀b ≥ b0, NS(b) < f({αi}) + ε1,
pi

1−
∑i−1
j=1 pj

(1−
∑i−1
j=0 αj(b))− ε2 < αi(b),

αi(b) ≤ 1−
∑i−1
j=0 αj(b)

]
= 1

For any event ω, ε1, ε2 and b ≥ b0, every αi(b) can be
replaced by a scalar term ai. Therefore, for any event ω, we
have:

NS(b) < f({ai}) + ε1

pi

1−
∑i−1
j=1 pj

(1−
i−1∑
j=0

aj)− ε2 < ai ≤ 1−
i−1∑
j=0

aj

The αis are defined over a compact set because
∑k
i=0 ai = 1

and 0 ≤ ai ≤ 1. Therefore, for any event ω, we have:

NS(b) <
max f({ai}) + ε1

pi

1−
∑i−1
j=1

pj

(1−
∑i−1
j=0 aj)−ε2≤ai≤1−

∑i−1
j=0 aj

1≤i≤k−1

Because we restricted on strategies that let tasks reach at
least the first state, we have αj(b) 6= 0 for some j > 0, and
the denominator of f({αi}) is never null. Therefore, f({ai})
is uniformly continuous and:

∀ε0 > 0,∃δ0 > 0,∀{ai},∀{a′i}, d({ai}, {a′i}) < δ0
⇒ d2(f({ai}), f({a′i})) < ε0

By taking ε0 = ε2 = ε/2 and ε1 = θ0, we get that for any
event ω, ε, and b ≥ b0:

NS(b) <
max f({ai}) + ε

pi

1−
∑i−1
j=1

pj

(1−
∑i−1
j=0 aj)≤ai≤1−

∑i−1
j=0 aj

1≤i≤k−1

Using the fact that α0(b) = 0, we end up with:

Pr [∀ε > 0,∃b0,∀b ≥ b0, NS(b) <

max
pi

1−
∑i−1
j=1

pj

≤ ai(b)

1−
∑i−1
j=1

aj(b)
≤1

1≤i≤k−1

∑k
i=1

pi

1−
∑i−1
j=1

pj

(1−
∑i−1
j=1 aj)∑k

i=1 aiwi
+ ε

 = 1

Maximum. We see that this last maximum is exactly
problem PB[k](D) introduced in the proof of Theorem 1.
This maximum is achieved by FTSopt, swhich concludes the
proof.

5 Continuous distributions
In this section, we build upon the previous results and deal
with continuous distributions. We do assume we have a fixed
budget and a deadline. Thus, in contrast to Section 4, the
distribution D is now continuous and has expected value µD
and variance σ2

D. Let F (x) be its cumulative distribution
function and f(x) its probability density function. The
objective remains to execute as many tasks as possible given
a budget b, a deadline d and a potentially unlimited number
of processors.

We start by designing several heuristics in Section 5.1
and then we assess their efficiency through experiments in
Section 5.2. The code and scripts used for the simulations
and the data analysis are publicly available online (Canon
et al. (2018b)).

5.1 Heuristics
We present below different heuristics that are frequently
used to interrupt stochastic tasks. All these heuristics decide
to interrupt a task when current execution time reaches
some threshold related to the probability distribution. We
also present OPTRATIO, which is an extension of the
asymptotically optimal greedy strategy of Section 4.3 to the
continuous case. In all cases, we enroll d bde machines. The
rationale for this choice is that this is the maximum number
of machines that can work in parallel and continuously, up to
the deadline. We have three main classes of heuristics:

• MEANVARIANCE(x) is the family of heuristics that
kill a task as soon as its execution time reaches µD +
xσD, where x is some positive or negative constant.

• QUANTILE(x) is the family of heuristics that kill a task
when its execution time reaches the x-quantile of the
distribution D with 0 ≤ x ≤ 1.

• OPTRATIO is the heuristic inspired by the asymp-
totically optimal strategy for discrete distributions.
OPTRATIO interrupts all (unsuccessful) tasks at time
l = arg maxlR(l) where

R(l) =
F (l)∫ l

0
xf(x)dx+ l(1− F (l))

.

The idea behind OPTRATIO is that it maximizes the
ratio of the probability of success (namely F (l)) to
the expected amount of budget spent for a single task
when the task is interrupted at time l (i.e.,

∫ l
0
xf(x)dx

for the cases when the task terminates sooner than
l and

∫∞
l
lf(x)dx = l(1− F (l)) otherwise). This is

a continuous extension of the approach proposed in
Section 4.3, and we expect OPTRATIO to perform well
for large budgets.

We now analyze OPTRATIO with some classical
probability distributions defined on nonnegative values
(task execution times need to be nonnegative). For the
exponential distribution, which is memoryless, R(l) = λ
where λ is the rate of the distribution. In this case,
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Figure 1. Efficiency (ratio R of number of tasks successfully executed per budget unit) for different probability distributions. Some
distributions have an optimal finite cutting threshold depicted with a vertical red line.

Table 1. Probability distributions with their Probability
Distribution Function (PDF) and density graph. Supports are
[0,∞) for all distributions except for Uniform, where it is [a, b]

and Beta, where it is [0, 1]. Note that B(α, β) = Γ(α)Γ(β)
Γ(α+β)

.

Name PDF Density

Uniform 1
b−a

Exponential λe−λx

Half-normal
√

2
θ
√
π
e−

x2

2θ2

Lognormal 1
xβ
√

2π
e
− (log(x)−α)2

2β2

Beta xα−1(1−x)β−1

B(α,β)

Gamma 1
Γ(k)θk

xk−1e−
x
θ

Weibull k
θk
xk−1e−( xθ )k

Inverse-gamma θk

Γ(k)x
−k−1e−

θ
x

any l can be chosen and the tasks may be interrupted
at any moment with OPTRATIO without modifying the
performance. For the uniform distribution (between a and
b), R(l) = 2 l−a

−l2+2bl−a2 , which takes its maximum value
for l = b (R(b) = 2

a+b ). In this case, tasks should never be
interrupted to maximize performance. We established these
results for exponential and uniform distributions through
simple algebraic manipulations.

In addition to the exponential and uniform distributions,
Table 1 presents other standard distributions. For these
distributions, we provide some code (Canon et al. (2018b)) to
numerically compute the optimal time l at which tasks should
be interrupted. Note that there exist many relations between
probability distributions. For instance, the beta distribution
with both shape parameters equal to one is the same as the

uniform distribution, whereas it has a U-shape with both
equal to 0.5, and a bell-shape with both equal to 2. Also,
the exponential distribution is a special case of the gamma
and Weibull distributions when their shape parameter is one.

Figure 1 shows how R(l) varies as a function of the
cutting threshold l, for the probability distributions shown in
Table 1. Recall that OPTRATIO will select the threshold l for
whichR(l) is maximum. For instance, this threshold is l = 1
for the uniform distribution, meaning that we should never
interrupt any task. The threshold can be any value of l for the
exponential distribution, and this is due to the memoryless
property: we can interrupt a task at any moment, without
any expected consequence. The threshold is l =∞ for the
half-normal distribution, meaning again that we should never
interrupt any task, just as for uniform distributions. Note that
the expected value of all distributions is not the same overall,
because we use standard parameters in Figure 1, hence ratio
values are not comparable across distributions.

We remark that the lognormal distribution, which presents
a fast increase followed by a slow decrease with an heavy tail,
exhibits an optimal cutting threshold during the execution
of a task: on Figure 1, we see that the optimal threshold
is l ≈ 1.73 (we computed this value numerically) for the
distribution Lognormal(0, 1). We make a similar observation
for the inverse-gamma distributions, where the optimal
threshold is l ≈ 0.7 for Inv-Gamma(1.5, 0.5) and l ≈ 2.32
for Inv-Gamma(3, 2). These lognormal and inverse-gamma
distributions share the following properties: the density is
close to zero for small costs and has a steep increase. On
the contrary, the bell-shape beta distribution Beta(2, 2) has
a small density for small costs but does not have a steep
increase, and tasks should never be interrupted (in other
words, the optimal cutting threshold is l = 1 for Beta(2, 2)).

Finally, we observe that three distributions are the
most efficient when the cutting threshold tends to zero
(Beta(0.5, 0.5), Gamma(0.5, 2) and Weibull(0.5, 1/Γ(3))).
This is a surprising result, and we experimentally confirm it
in Figures 5 and 6. We point out that it is unlikely that such
distributions would model actual execution times in practice.
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5.2 Experiments
The following experiments make use of three standard
distributions: exponential, uniform, and lognormal. The first
two distributions are very simple and easy to use, while
the latter has been advocated to model file sizes (Feitelson
(2014)), and we assume that task costs could naturally obey
this distribution too. Moreover, the lognormal distribution
is positive, it has a tail that extends to infinity and the
logarithm of the data values are normally distributed. Also,
this distribution leads to a non-trivial cutting threshold,
contrarily to exponential (interrupt anywhere) or uniform
(never interrupt), thereby allowing for a complete assessment
of our approach. In all experiments, we submit tasks steadily
until the budget and/or the deadline is exhausted.

Figure 2 shows the number of successfully executed
tasks for each heuristic with three distributions (lognormal,
uniform, exponential) of same expected value µ = 1, with a
budget and deadline b = d = 100. Note that to ensure a given
expected value and standard deviation for the lognormal
distribution, we set its parameters as follows: α = log(µ)−
log(σ2/µ2 + 1)/2 and β =

√
log(σ2/µ2 + 1). Note also

that using a standard deviation σ = 3 for the lognormal
distribution corresponds to a high level of heterogeneity.
To see this intuitively, take a discrete distribution with 11
equally probable costs, 10 of value 0.1 and 1 of value 10:
its expected value is µ = 1 while its standard deviation is
σ ≈ 2.85. Finally, we note that Figure 2 confirms that tasks
with exponentially distributed costs can be interrupted at any
time and that tasks with uniformly distributed costs should
never be interrupted.

Next, we focus on the lognormal distribution. First,
in Figure 3, we assess the impact of three important
parameters: the standard deviation, the budget and the
deadline, respectively. The expected value is always µ = 1.
By default, the standard deviation is σ = 3, and the budget
and deadline are set to 100 (b = d = 100), which means that
a single machine is enrolled. When we vary the standard
deviation (first row in Figure 3), we keep b = d = 100.
When we vary the budget (second row in Figure 3), we
maintain the equality b = d. When we vary the deadline
(third row in Figure 3), we keep b = 100, hence more VMs
are enrolled (10 VMs when d = 10 and 100 VMs when
d = 1). Each heuristic is run 100,000 times for each scenario.
The error bars represent an interval from the mean of two
standard deviations of the number of successes. For a normal
distribution, this means that more than 95% of the values are
in this interval. Note that the subfigures with σ = 3, b = 100
and d = 100 in Figure 3 are all the same as the subfigure with
the lognormal distribution in Figure 2.

On Figure 3, we see that the higher the standard deviation,
the larger the gain of every approach. With a low standard
deviation, all approaches perform similarly. Increasing the
budget tends to decrease the variability when running several
times the same approach (the error bars are narrower
with large budgets, which makes the approaches more
predictable). This is a consequence of the law of large
numbers. However, the expected efficiency (around 2.5 tasks
per unit of time) remains similar even for a low budget of
30. Finally, decreasing significantly the deadline prevents
some strategies from letting tasks run a long time. Long
running tasks are then forced to be interrupted early, which is

similar to the behavior of the more efficient approaches. In all
tested situations, the OPTRATIO algorithm with the optimal
threshold achieved the best results.

Next, Figure 4 depicts the efficiency of OPTRATIO
with small deadlines. Even though our approach extends a
strategy that is asymptotically optimal when both the budget
and the deadline are large, it does perform well with small
deadlines, as long as d is not lower than the cutting threshold.
In the settings of Figure 4, where the average execution
time of a task is equal to 1, this means that as soon as the
deadline is equal to 0.1, OPTRATIO achieves its asymptotic
performance! (The reader can compare the performance of
OPTRATIO for deadlines of 100 and 0.1 on Figures 2 and 4.)
Finally note that on Figure 4, b = 100 and that, therefore,
OPTRATIO uses 1,000 processors for a deadline d = 0.1.
This confirms that neither the budget, nor the deadline need
to be large for OPTRATIO to reach its best efficiency, and that
this heuristic is extremely robust.

Finally, recall that some distributions such as
Beta(0.5, 0.5), and Gamma(0.5, 2) have a cutting threshold
tending to zero. We confirm this observation in Figures 5
and 6. Figure 5 shows that a low threshold ` = 0.01 enables
OPTRATIO to dramatically outperform the other heuristics.
Figure 6 further studies the impact of the cutting threshold.
For ` = 0.001, we start more than 100,000 tasks during
b = d = 100 seconds, since we kill each of them after
one millisecond if it did not succeed before that; still, we
complete over 2,000 tasks, many more than using higher
cutting thresholds (let alone other heuristics). Again, such
distributions are not expected to model actual execution
times in practice!

Takeaway. The experiments demonstrate that OPTRATIO
is the heuristic of choice for all probability distributions.
Indeed, the results show that interrupting tasks when their
execution time reaches the optimal threshold computed form
the distribution is the best strategy, which outperforms all
other heuristics. This also confirms the asymptotic optimality
of OPTRATIO which we have established for discrete
distributions.

6 Conclusion

This paper deals with scheduling strategies to successfully
execute the maximum number of a bag of stochastic tasks
on VMs (Virtual Machines) with a finite budget and under a
deadline constraint. We first focused on the problem instance
with discrete probability distributions and no deadline. We
proposed three optimal dynamic programming algorithms
for different scenarios, depending upon whether tasks may
be preempted or not, and whether multiple VMs may
be enrolled or only a single one. We also introduced an
asymptotically optimal method that computes a cutting
threshold that is independent of the remaining budget. Then,
we extended this approach to the continuous case and with
deadline. We designed OPTRATIO, an efficient heuristic
which we validated through simulations with classical
distributions such as exponential, uniform, and lognormal.
Tests with several values of the deadline, leading to enroll
different numbers of VMs, also confirm the relevance and
robustness of our proposition.
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Figure 2. Number of successfully executed tasks for each heuristic with three distributions (lognormal, uniform, exponential) of
same expected value µ = 1, with a budget and deadline b = d = 100 (which means that a single machine is enrolled). Each
heuristic is run 100,000 times for each scenario. The error bars are computed with the mean plus/minus two standard deviations of
the number of successes. The lognormal distribution has parameters α ≈ −1.15 and β ≈ 1.52 to have an expected value µ = 1
and a standard deviation σ = 3, and the optimal cutting threshold for OPTRATIO is l ≈ 0.1). The exponential distribution has shape
λ = 1 and the cutting threshold is arbitrarily set to l = 2. The uniform distribution has parameters a = 0 and b = 2, and the cutting
threshold is l = 2.
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Figure 3. Number of successfully executed tasks for each heuristic, with lognormal costs and expected value µ = 1. Unless
otherwise specified, the standard deviation is σ = 3, and the budget and deadline are b = d = 100. Each heuristic is run 100,000
times for each scenario. The error bars are computed with the mean plus/minus two standard deviations of the number of
successes. The lognormal distribution has parameters α ≈ −1.15 and β ≈ 1.52 by default (to have µ = 1 and σ = 3) (the cutting
threshold for OPTRATIO is l ≈ 0.1). They are α ≈ −0.35 and β ≈ 0.83 when σ = 1 (l ≈ 2.1) and α ≈ −0.8 and β ≈ 1.27 when
σ = 2 (l ≈ 0.34).

Future work will be dedicated to considering heteroge-
neous tasks (still with stochastic costs), as well as hetero-
geneous VMs. Typically, cloud providers provide a few dif-
ferent categories of VM with different computer power and
nominal cost, and it would be interesting (albeit challenging)
to extend our study to such a framework. Another interesting
direction would be to take into account start-up costs when

launching a VM, thereby reducing the amount of parallelism,
because fewer VMs will likely be deployed.
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Figure 4. Number of successfully executed tasks for OPTRATIO
with a budget b = 100 and optimal cutting threshold l ≈ 0.1.
OPTRATIO is run 100,000 times for each deadline. The error
bars are computed with the mean plus/minus two standard
deviations of the number of successes. The lognormal
distribution has parameters α ≈ −1.15 and β ≈ 1.52 to have
an expected value µ = 1 and a standard deviation σ = 3.
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