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Online Scheduling of Task Graphs
on Heterogeneous Platforms

Louis-Claude Canon, Loris Marchal, Bertrand Simon, and Frédéric Vivien

Abstract—Modern computing platforms commonly include accelerators. We target the problem of scheduling applications modeled as
task graphs on hybrid platforms made of two types of resources, such as CPUs and GPUs. We consider that task graphs are
uncovered dynamically, and that the scheduler has information only on the available tasks, i.e., tasks whose predecessors have all
been completed. Each task can be processed by either a CPU or a GPU, and the corresponding processing times are known. Our
study extends a previous 4

√
m/k-competitive online algorithm by Amaris et al. [Euro-Par, 2017], where m is the number of CPUs and

k the number of GPUs (m ≥ k). We prove that no online algorithm can have a competitive ratio smaller than
√
m/k. We also study

how adding flexibility on task processing, such as task migration or spoliation, or increasing the knowledge of the scheduler by
providing it with information on the task graph, influences the lower bound. We provide a (2

√
m/k + 1)-competitive algorithm as well

as a tunable combination of a system-oriented heuristic and a competitive algorithm; this combination performs well in practice and has
a competitive ratio in Θ(

√
m/k). We also adapt all our results to the case of multiple types of processors. Finally, simulations on

different sets of task graphs illustrate how the instance properties impact the performance of the studied algorithms and show that our
proposed tunable algorithm performs the best among the online algorithms in almost all cases and has even performance close to an
offline algorithm.

Index Terms—Scheduling, heterogeneous computing, task graphs, online algorithms.
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1 INTRODUCTION

MOdern computing platforms increasingly use special-
ized hardware accelerators, such as GPUs or Xeon

Phis: 102 of the supercomputers in the TOP500 list include
such accelerators, while several of them include several ac-
celerator types. The increasing complexity of such comput-
ing platforms makes it hard to predict the exact execution
time of computational tasks or of data movement. Thus,
dynamic runtime schedulers are often preferred to static
ones, as they are able to adapt to variable running times
and to cope with inaccurate predictions. Indeed, with the
widespread heterogeneity of computing platforms, many
scientific applications now rely on runtime schedulers such
as OmpSs, XKaapi or StarPU. Most of these frameworks
model an application as a task graph, and more precisely
a Directed Acyclic Graph (DAG) of tasks, where nodes
represent tasks and edges represent dependencies between
tasks. While task graphs have been widely studied in the
theoretical scheduling literature, most of the existing studies
concentrate on static scheduling in the offline context: both
the graph and the running times of the tasks are known
beforehand.

We believe that there is a crucial need for online sched-
ulers, that is, of scheduling algorithms that do not rely on
the structure of the graph. First, not all graphs are fully
available at the beginning of the computation: sometimes
the graph itself depends on the data being processed, dif-
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ferent inputs may result in different task graphs. This is
especially the case when the behavior of an iterative applica-
tion depends on the accuracy of the output. Second, in most
existing runtimes, even if the graph does not depend on
the input data, it is not fully submitted at the beginning of
the computation; instead, tasks are dynamically uncovered
during the computation. Finally, even if part of the graph is
available, runtime schedulers usually avoid traversing large
parts of the graph each time they take a decision in order to
strongly limit the time needed to make decisions.

In the present paper, we concentrate on the online
scheduling of task graphs on a hybrid platform composed of
2 types of processors that we call CPU and GPU for conve-
nience. There are m CPUs and k GPUs, where m ≥ k ≥ 1.
Note that we do not make any assumptions on the CPUs
and GPUs (i.e., on the processing times of each task), so that
these results may be symmetrically applied to the converse
case with more GPUs. The objective is to schedule a DAG
G of tasks, so as to minimize the total completion time,
or makespan. Each task can be assigned either to a single
CPU or to a single GPU. We adopt the notations of [1]: the
processing time of task Ti on a CPU is noted by pi and on a
GPU by pi.

We consider the following online problem. At the be-
ginning, the algorithm is aware of all the input tasks of
the graph, and can schedule each one on either a CPU or
on a GPU. A task is released and becomes available to the
scheduler only when all its predecessors completed. At any
given point in the computation, the scheduler is totally un-
aware of tasks that have not yet been released, but it knows
the processing times pi and pi of all available tasks: we
assume that tasks correspond to well-known computational
kernels whose processing times have been acquired through
extensive benchmarking; this happens for example in linear
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algebra applications. We do not take into account the time
needed for moving data and assume that there is no delay
between the release of a task and the start of its processing.
We denote this problem as (Pm,Pk)|prec, online|Cmax .

Contributions
This paper extends the work of Amaris et al. [1] on the very
same problem, which provides a 4

√
m/k-competitive algo-

rithm. We recall that an online algorithm is x-competitive
if the makespan returned by this algorithm on any instance
is at most x times larger than the optimal makespan (which
can be computed by an offline algorithm). The present paper
brings the following contributions:
• We prove that the competitive ratio of any online al-

gorithm is lower-bounded by
√
m/k for any value of

m and k, and by b
√
m/kc + 1 when k is large. We

study how the knowledge of the task graph and the
flexibility of the tasks may influence the lower bound;
we especially prove that knowing the bottom-level of
any task (i.e., the critical path length from this task to
the end of the graph) or having preemptive tasks does
not help much, whereas the knowledge of the number
of descendants allows reducing the lower bound to
1
2 (m/k)1/4 (Section 3). We also extend these results to
randomized algorithms.

• We propose a (2
√
m/k+1)-competitive algorithm, QA,

by refining both the algorithm and the analysis of
Amaris et al. [1] (Section 4.1).

• We study the generalized problem with multiple types
of processors, on which adapt the lower bounds and
the online algorithm (Section 6);

• We propose a simple heuristic (Section 4.2) based on
QA and the system-oriented heuristic EFT, which is
both a competitive algorithm and performs well in
practice, as we show with a comprehensive simulation
set (Section 7).

Note that a preliminary version of this work was pre-
sented at the Euro-Par 2018 conference [2].

2 RELATED WORK

We briefly position our contributions in comparison to the
existing work, starting with the offline case when the whole
scheduling problem (both task dependencies and running
times) is known beforehand.

Offline algorithms
Several schedulers for independent tasks on hybrid plat-
forms have been proposed. Bleuse et al. [3] designed a
polynomial but expensive

(
4
3 + 1

3k

)
-approximation. Low

complexity algorithms, which are closer to our work, have
been studied [4], [5] and achieve approximation ratios re-
spectively equal to 2 and 2 +

√
2. For tasks with precedence

constraints, Kedad-Sidhoum et al. [6] provided a tight 6-
approximation based on linear programming, while Beau-
mont et al. [7] extend their previous algorithm [5] to the
(offline) scheduling of task graphs.

In a different context, Chudak and Shmoys [8] provided
a log(p)-approximation for the Q | prec | Cmax problem:
scheduling a graph of tasks on p machines with different
speeds. Considering independent moldable tasks (tasks can

be assigned to multiple CPUs or one GPU), Bleuse et al. [9]
provide a 2-approximation. It was later adapted by Aba et
al. [10] to account for data movement between CPUs and
GPUs.

Online algorithms
When tasks with precedences are released over time,
Graham’s List Scheduling algorithm [11] is (2 − 1/m)-
competitive on homogeneous processors. Svensson [12]
proved that no polynomial offline algorithm can have a
better competitive ratio assuming P 6= NP and a variant
of the Unique Games Conjecture.

On the problem of scheduling independent tasks on
two sets of processors, Imreh [13] proposed a (4 − 2/m)-
competitive algorithm. The principle of this algorithm is
to schedule a task Ti on GPU if pi/pi ≥ m/k, or if Ti
can complete on GPU given the current schedule before
time pi. Chen et al. [14] later refine a similar algorithm
by introducing four tunable parameters. A combination of
parameters leads to an improved competitive ratio equal
to 3.85. They also show that any online algorithm has a
competitive ratio at least 2.

Based on this work, Amaris et al. [1], [15] exhibited
an online algorithm for precedence constraints, achieving
a competitive ratio of 4

√
m/k. The main difference with the

previous algorithms is that a task is scheduled on GPU if
it is accelerated by a factor at least

√
m/k (and not at least

m/k).

Runtime strategies
Actual runtime schedulers usually rely on low-complexity
scheduling policies to limit the time needed to allocate tasks.
For instance, StarPU [16] builds a performance model of
tasks that enables to predict their processing times. When a
new task is submitted, it is allocated to the resource that
will complete it the soonest (when using the dm policy,
previously called heft-tm [17]), which corresponds to the
classical Earliest Finish Time (EFT) scheduling policy [18].
Other strategies have been proposed that take into account
communication times, or precomputed task priorities, de-
pending on the descendants of each task. This has motivated
the consideration of such information in the design of the
lower bounds on competitive ratios (Section 3).

3 LOWER BOUND ON ONLINE ALGORITHMS COM-
PETITIVENESS

In this section, we provide a lower bound on the competitive
ratio of any online algorithm: no online algorithm has a
competitive ratio smaller than τ =

√
m/k for any values

of m and k (Theorem 1) and smaller than bτc + 1 when k
is large (Remark 1). We also study how adding flexibility to
task processing or giving some knowledge of the graph to
the scheduler impacts this lower bound.

Intuitively, the main difficulty for this problem arises
from choosing on which type of resource (CPU or GPU) a
given task should be processed, and not to come up with
the final schedule. This is indeed proven in Theorem 7,
Section 5: if the allocation of the tasks is fixed, any online
list scheduling algorithm is

(
3− 1

m

)
-competitive, and this

competitive ratio cannot be surpassed.
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Table 1
Summary of the lower bounds results obtained for various versions of online models. τ∗ represents the largest triangular number such that

τ∗ ≤ τ . If τ is large, we have
⌊√

2τ∗
⌋
≥
√
τ .

Flexibility Knowledge Lower bound Proof Note

None or Spoliation

None τ Th. 1 bτc+ 1 for large k

Bottom Level τ Th. 1 1
2
τ if k = 1; bτc+ 1 for large k

BL + descendants 1
2

⌊√
2τ∗
⌋

Th. 2 –

Migration

None 1
2
τ Th. 1 –

BL 1
2
τ Th. 1 1

4
τ if k = 1

BL + descendants 1
4

⌊√
2τ∗
⌋

Th. 2 –

The proof of Theorem 1 heavily relies on the fact that
an online algorithm has no information on the successors
of each task. In practice, it is sometimes possible to get
some information on the task graph, for example by pre-
computing some information offline before submitting the
tasks. For instance, offline schedulers usually rank available
tasks with priorities based on the graph structure. On ho-
mogeneous platforms, the bottom-level of a task is commonly
used, and is defined as the maximum length of a path from
this task to an exit node, where nodes of the graphs are
weighted with the processing time of the corresponding
tasks. In the heterogeneous case, the priority scheme used in
the standard HEFT algorithm [19] is to set the weight of each
node as the average processing time of the corresponding
task on all resources.

Knowing the bottom-level does not change the lower-
bounds of Theorem 1 and Remark 1, see the last statement
of Theorem 1. The only benefit is a diminution by a factor
2 if there is exactly one GPU. An interesting component of
this proof is that all the tasks are equivalent (same CPU and
GPU computing times) so other heterogeneous variants of
the bottom level are also captured.

When the online scheduler is given the knowledge of the
number of descendants of each submitted task in addition to
their bottom-level, the lower bound of Theorem 1 is reduced
to 1

2

√
τ when m/k is large enough (see Theorem 2), so

no constant-factor competitive algorithm exists. Note that
all the tasks are also equivalent in this proof; so it also
captures, for instance, the knowledge of the CPU and GPU
computing times of all the descendants; only the pattern of
precedence relations remains unknown. Note that, however,
no algorithm has been proposed that reaches this bound.

Another interesting question is whether adding flex-
ibility on how tasks are processed changes this bound.
Allowing task spoliation (where tasks can be canceled and
restarted on another resource, as done in [5]) does not
change any lower bound and our results hold both when
spoliation is authorized or forbidden. Allowing task mi-
gration (where tasks can be interrupted and resumed on
another resource) divides the lower bounds obtained by a
factor 2.

Table 1 summarizes the results for all combination of
knowledge given to the scheduler and flexibility on the
task processing. The best known competitive ratio for every
setting is smaller than 2τ + 1, and is achieved by the QA
algorithm we design in Section 4.1. This algorithm does not
use all the knowledge or flexibility as it does not practice

spoliation or migration, does not use any information on
the bottom level or the descendants, and schedules tasks
one by one, without looking at other available tasks.

First, we consider algorithms that are not aware of the
bottom level of the tasks.

Theorem 1. No online algorithm has a competitive ratio smaller
than τ for the problem (Pm,Pk)|prec, online|Cmax . If pre-
emption with migration is authorized, no online algorithm has
a competitive ratio smaller than τ

2 . These results sill hold if the
bottom level of each task is known and k ≥ 2, and are halved if
k = 1.

Proof. We first focus on the case where migration is not
authorized and the bottom level is unknown.

Consider an online algorithm A, making use of spoli-
ations. We assume for the moment that τ is an integer. We
consider an integer n as large as we want. A large nwill lead
to a large graph and a competitive ratio closer to τ . We will
use an adversary proof, by building a graph composed of
nm tasks denoted by T ji , with 1 ≤ j ≤ nτ and 1 ≤ i ≤ kτ .
The CPU processing time of each task equals τ and the GPU
processing time equals 1.

The procedure can be cut into nτ phases. During the
jth phase, tasks T ji for i from 1 to kτ are independent and
available. The adversary selects the task that A completes
the latest, breaking ties arbitrarily. Let T j∗ be this task. The
kτ tasks of the next phase are then made successors of T j∗ .
See Figure 1 for an illustration of a built graph.

T 1
1 T 2

1 T 3
1 T 4

1 T 5
1 T 6

1

T 1
2 T 2

2 T 3
2 T 4

2 T 5
2 T 6

2

T 1
3 T 2

3 T 3
3 T 4

3 T 5
3 T 6

3

T 1
4 T 2

4 T 3
4 T 4

4 T 5
4 T 6

4T 1
iT 1
∗

T 2
iT 2
∗ T 3

iT 3
∗

T 4
iT 4
∗

T 5
iT 5
∗

Figure 1. Example of built graph with τ = 2, k = 2, n = 3.

We now show how to build an efficient (offline) schedule
S of the resulting graph. A bucket is defined as a set of
processors, a starting time and a duration time. We use
buckets to book some processors for an amount of time, and
schedule a set of tasks in a given bucket. We consider n+ 1
buckets, as illustrated in Figure 2. Buckets Bi for i from 1 to
n each concerns all m CPUs, lasts a time τ , and starts at time
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iτ . Note that m tasks fit into each bucket. The last bucket, B
concerns one GPU, starts at time 0 and lasts a time nτ .
S schedules the nτ tasks T j∗ successively on a single

GPU, which fit into bucket B. In parallel, S schedules the
remaining tasks on CPU. More precisely, it puts in bucket
B` tasks T ji such that (` − 1)τ < j ≤ `τ , except for
tasks T j∗ . They all fit into the bucket as there are less than
τ×kτ ≤ m such tasks. Moreover, task T `τ∗ completes at time
`τ . Therefore, every task T ji with (` − 1)τ < j ≤ `τ can be
started at time `τ , and thus can be scheduled into bucketB`.
Therefore, S achieves a makespan equal to (n + 1)τ . Note
that this schedule delays the executions of tasks on CPUs
in order to start m tasks simultaneously a the beginning
of each bucket. Another solution would be to start each
task allocated to CPU as soon as possible, which does not
improve the makespan.

CPU

GPU

B1

τ

B2

τ

B3

τ

B4

τ

B
nτ= 4τ

Figure 2. Buckets used by S with n = 4.

Now, we consider algorithm A, and we show that the
makespan obtained is at least nτ2. At each phase, the
adversary reveals the next phase only when all the tasks of
the current phase are completed. If one task of the phase is
scheduled on CPU, it takes a time τ . Otherwise, all kτ tasks
are scheduled on GPU, and the last one completes at time at
least kτ/k = τ . Therefore, A completes each phase in time
at least τ . As there are nτ phases, the whole graph cannot be
scheduled in time smaller than nτ2. The competitive ratio of
A is then at least:

nτ2

(n+ 1)τ
−→
n→∞

τ.

Therefore, we have proved this first result: for any m
and k such that τ is integer, no online algorithm has a
competitive ratio smaller than τ .

Now, consider an algorithm A’ that makes use of pre-
emption with migration. The adversary strategy and the
schedule S is unchanged. We first prove by contradiction
that A’ cannot complete a phase in a makespan smaller
than τ/2. Assume that one phase is completed in time
τ/2. We consider the fraction of each task performed on
a CPU. All tasks have a processing time of τ on CPU, so
for each task, this fraction cannot be larger than one half.
Therefore, at least half of each task is executed on a GPU,
which takes a time 1/2 for each task, so it takes kτ/2 units
of GPU computing time. As we assumed that the phase is
completed in time τ/2, there is no more than kτ/2 work
units available on the k GPUs, which thus cannot process
more than one half of each task. Therefore, at least half of
each task is processed on CPUs, from the very beginning
to the very end of the phase. This requires executing each
task simultaneously on a CPU and on a GPU, which is not

possible even with migration. Therefore,A’ cannot complete
one phase in time τ/2 (and a fortiori in a shorter time).
Thus, A’ requires a time larger than nτ2/2 to complete all
nτ phases. The competitive ratio of A’ is then at least:

1
2nτ

2

(n+ 1)τ
−→
n→∞

τ

2
.

In a last step, we relax the constraint that τ is an integer.
Let q be an integer as large as we want, and r = bqτc, so
that r/q ≤ τ ≤ (r + 1)/q. A large q will lead to a greater
precision. We adapt the graph in the following way: there
are now nr phases each containing kbτc + 1 tasks. Each
task has a CPU computing time equal to τ/q and a GPU
computing time equal to 1/q.

We now adapt the schedule S , which still fits inside
the buckets (as previously defined). The tasks T j∗ all fit
inside bucket B. Indeed, the time needed to process them
sequentially is equal to nr/q ≤ nτ . For bucket B1, we
execute the tasks T ji for j = 1, . . . , r except tasks T j∗ . The
corresponding tasks T j∗ are completed before the start of
bucket B1. Inside bucket B1, we need to execute krbτc
tasks of CPU computing time τ/q. The number of processors
needed is then dkrbτc/qe ≤ kτ2 = m, so the first r phases fit
into bucket B1. The same reasoning applies to the following
buckets, so the makespan of S is (n+ 1)τ .

Concerning the algorithm A, each phase needs at least a
time τ/q to complete as computing all tasks on GPU take a
time (bτc+1)/q. The total makespan is then at least nrτ/q ≥
nτ
(
τ − 1

q

)
, so the competitive ratio tends to τ when q and n

grow. If A uses preemption with migration, this ratio tends
to τ/2, which terminates the proof.

Finally, we illustrate on Figure 3 the proof of the last
step of the theorem, when the online algorithm has access
to the bottom level of each task. The detailed proof of this
result and the following ones have been deferred to the web
supplementary material.

By adding nτ tasks to the graph of Figure 1, it is possible
to build a graph in which all tasks of the same phase have
the same bottom level. An offline algorithm can compute
these additional tasks in parallel on a separate GPU if k ≥ 2.
Hence, the theorem.

T 1
1 T 2

1 T 3
1 T 4

1 T 5
1 T 6

1

T 1
2 T 2

2 T 3
2 T 4

2 T 5
2 T 6

2

T 1
3 T 2

3 T 3
3 T 4

3 T 5
3 T 6

3

T 1
4 T 2

4 T 3
4 T 4

4 T 5
4 T 6

4

U 1 U 2 U 3 U 4 U 5 U 6

T 1
iT 1
∗

T 2
iT 2
∗ T 3

iT 3
∗

T 4
iT 4
∗

T 5
iT 5
∗

Figure 3. Example of built graph with τ = 2, k = 2, n = 3. In gray, the
tasks and dependencies existing in the previous proof.

In the proof of Theorem 1, we use the fact that the bottom
level is no longer useful to differentiate tasks T j∗ from
other tasks T ji . However, the former may have many more
descendants than the latter (Θ(nm) compared to Θ(nτ) for
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small j). Some heuristic may thus rely on the total weight
of the descendants of a task in order to decrease its com-
petitive ratio. We nevertheless prove in Theorem 2 that this
knowledge cannot lead to constant-factor approximation, as
we prove a lower-bound in Θ(

√
τ). As discussed at the

beginning of this section, all the tasks used in the proof
of the following theorem are identical, so the weight can
actually capture several functions such as the number of
descendants, the average computing time, etc. We recall for
the theorem statement that τ is a triangular integer if we
have τ = 1 + 2 + . . .+

⌊√
2τ
⌋

.

Theorem 2. No online algorithm has a competitive ratio smaller
than 1

2

⌊√
2τ∗

⌋
for the problem (Pm,Pk)|prec, online|Cmax ,

even when both the bottom level and the total weight of the
descendants of each task is known. If preemption with migration
is authorized, no online algorithm has a competitive ratio smaller
than 1

4

⌊√
2τ∗

⌋
. In these bounds, τ∗ is the largest triangular

integer not larger than τ .

Proof idea. Similarly to the last part of Theorem 1, this result
is proved by adding tasks to the focused graphs. However,
the number of phases has to be small in this case so that
the (many) additional tasks can be computed quickly in the
offline schedule. This explains why the lower bounds are
significantly smaller.

Theorem 1 proves a lower bound valid for any value
of m and k. In the following remark (proven in the web
supplementary material), we show that the lower bound can
be improved from τ to bτc+1 if k is large enough compared
to m. However, it should be noted that this result is still not
tight, as Lemma 3 provides a better bound (3 − 1/m) for
small values of τ and large values of m.

Remark 1. When 4m ≤ (k − 2)3, no online algorithm has a
competitive ratio smaller than bτc + 1, even when the bottom
level of each task is known.

We conclude this part by adapting our results to ran-
domized algorithms. We have focused so far on establishing
lower bounds on the approximation ratio of deterministic
online algorithms. The competitive ratio of a randomized
online algorithm is defined as the maximum over all graphs
of the following ratio: the expected makespan obtained
by the algorithm on a given graph divided by the offline
minimum makespan of this graph.

Theorem 3. The lower bounds proved in Theorems 1 and 2 on the
competitive ratio of deterministic algorithms not using migration
hold for randomized algorithms, divided by a factor 2.

Proof. Consider a randomized online algorithm B not using
preemption with migration. We focus on a phase of kbτc
independent and indistinguishable tasks of CPU computing
time τ and GPU computing time 1, where only one task T∗
among these has successors. Select T∗ as the task with the
highest expected completion time under B. In any schedule
computed by B, the average completion time of all tasks is
at least (bτc+ 1)/2 ≥ τ/2.

Plugging this result into the proofs of Theorems 1 and 2,
we get that the expected makespan obtained by B is at least

half of the smallest makespan that can be guaranteed by a
deterministic online algorithm. Hence, the results.

4 COMPETITIVE ALGORITHMS

4.1 The Quick Allocation (QA) algorithm
Amaris et al. [1] designed an online algorithm named ER-
LS composed of two phases. For each available task, it first
decides whether it should be allocated to CPUs or GPUs,
and then schedules it on the appropriate resource type.
More precisely, ER-LS can be described as follows:

1) Take any available task Ti.
a) If Ti can complete on GPU in the current schedule

before time pi, allocate it to GPU.
b) If pi/pi ≤ τ =

√
m/k, then allocate Ti to CPU,

otherwise assign it to GPU.
2) Schedule Ti as soon as possible on the assigned type of

processor
3) If there are remaining tasks, return to Step 1.

This algorithm is proved to be 4τ -competitive. We pro-
pose here a simplified version of this algorithm, for which
we prove a better competitive ratio. The improvement
comes both from the simplification and a tighter analysis.
We define the algorithm QA, which stands for Quick Allo-
cation. Rule 1a of ER-LS is deleted, so the allocation phase
is then simplified to:
• Take any available task Ti. If pi/pi ≤ τ , then allocate Ti

to the CPU side, otherwise allocate it to the GPU side.
Note that this allocation phase does not take into account

any precedence relation or current schedule. Once this task
is allocated to the CPU or GPU side, it is scheduled on
the processor of this side that has completed its tasks the
soonest.

One could wonder why the ratio τ is the best choice in
the allocation phase. Intuitively, there are more CPUs than
GPUs, so if pi/pi < 1, task Ti is executed faster on CPU,
which is a lesser rare resource, therefore task Ti should be
allocated to CPU. On the contrary, if pi/pi > m/k, then
not only task Ti is executed faster on GPU, but if there are
many independent tasks with the same processing times to
compute, they will be executed faster all on GPUs than all on
CPUs. Therefore we can safely allocate Ti to GPUs although
this is a rare resource. When this ratio is between 1 and
m/k, the loss is minimized when switching resource at the
geometric mean of 1 and m/k, which is equal to τ .

We now show that QA is
(
2τ + 1− 1

kτ

)
– competitive

and that the analysis of this ratio is almost tight, as we
provide an example on which QA leads to a makespan(
2τ + 1− 1

k

)
times larger than the optimal solution.

Theorem 4. QA is
(
2τ + 1− 1

kτ

)
– competitive.

Proof. We consider a graph, an online instance of this graph,
and the schedule S computed by QA, of makespan Cmax .
We also consider an optimal schedule of this graph (later
referred to by the optimal solution), and we let OPT be its
makespan.

Let Wc (resp. Wg) be the total load on the CPUs (resp.
GPUs). Let cp be a critical path of the task graph given the
allocation of S , and CP be the sum of the processing times
of the tasks of cp in S .
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The objective is to prove that:

Cmax ≤
(

2τ + 1− 1

kτ

)
OPT .

We first use Lemma 1 to bound Cmax using the processor
loads (Wc and Wg) and the length of the critical path (CP ).
Then, we bound the expression obtained in function of OPT
to prove the result.

Lemma 1.

Cmax ≤
Wc

m
+
Wg

k
+

(
1− 1

m

)
CP .

Proof Sketch. The proof of this lemma is deferred to the web
supplementary material. The idea is very similar to the
proof of Graham’s list scheduling algorithm [11].

Bounding the loads
We denote by Ac (resp. Ag) the set of tasks placed on the
CPU (resp. GPU) both by S and in the optimal solution. We
denote by Cc (resp. Cg) the set of tasks placed on CPU (resp.
GPU) by S but not in the optimal solution. The lowercase
denotes the sum of the processing times of these sets.

The optimal makespan OPT is at least equal to the
average work on CPU (and on GPU) in the optimal solution.
In this solution, the tasks executed on CPU are tasks of the
setsAc andCg . Tasks ofAc have the same processing time in
S and in the optimal solution, as they are executed on CPU
in both cases. Tasks of Cg are completed faster in S than
in the optimal solution. More precisely, the allocation phase
ensures that any task Ti of Cg verifies pi ≥ τpi. Therefore,
bounding OPT by the average work on CPU than on GPU
gives the following inequalities:

OPT ≥ 1

m
(ac + τcg) , (1)

OPT ≥ 1

k

(
ag +

cc
τ

)
. (2)

Using the fact that kτ ≤ m, we multiply by m/kτ both
sides of Equation (1) to get:

m

kτ
OPT ≥ m

kτ

ac
m

+
m

kτ

τcg
m
≥ ac
m

+
cg
k
.

We then simplify Equation (2) using that kτ ≤ m:

OPT ≥ 1

k

(
ag +

cc
τ

)
≥ ag

k
+
cc
m
.

Summing these two inequalities, we get:

(
1 +

m

kτ

)
OPT ≥ ac + cc

m
+
ag + cg
k

≥ Wc

m
+
Wg

k
. (3)

Bounding the critical path
We now bound the length of the critical path produced: ev-
ery task of this critical path is also scheduled in the optimal
schedule, and forms a path. Each task can be accelerated
by a factor at most τ in the optimal schedule, so the time
dedicated to process this path in the optimal schedule is at
least CP/τ . Therefore, we have:

CP ≤ τOPT . (4)

Conclusion of the proof
Finally, from Lemma 1 we get:

Cmax ≤
Wc

m
+
Wg

k
+

(
1− 1

m

)
CP .

Equations (3) and (4) lead to:

Cmax ≤
(

1 +
m

kτ

)
OPT +

(
τ − τ

m

)
OPT (5)

≤
(

1 + τ + τ − 1

kτ

)
OPT .

Hence, the theorem.

We note that in the definition of QA, choosing a ratio
slightly larger than τ can lead to a slightly smaller prov-
able competitive ratio using the same proof as above up
to Equation (5). However, this only leads to a marginal
improvement of the upper bound of the competitive ratio,
at the price of a more complex and less elegant criterion.
Moreover, due the non-perfectly tight approximation ratio
of both versions, we cannot decide which one has the actual
best (tight) competitive ratio. Therefore, we only state this
result as a remark.

Remark 2. When m > k, choosing a separation ratio equal to
τ
√

m
m−1 instead of τ in the definition of QA leads to an algorithm

that is
(

1 + 2
√

m−1
k

)
- competitive.

We now prove that the competitive ratio of QA is almost
tight in the following theorem.

Theorem 5. The competitive ratio of QA is at least(
2τ + 1− 1

k

)
.

Proof. We let ε be a small processing time and we define
q = (k − 1)k.

Consider a graph composed of q+mk+ 2 tasks, labeled
by Ti for i from 1 to q+mk+2. The first q+mk+1 tasks are
all independent. These tasks are composed of four groups:
• The first q tasks have an infinite CPU processing time

and a GPU processing time equal to x = (k − 1)/q =
1/k.

• The next mk tasks have a CPU processing time of (1 +
ε)/k and a GPU processing time of 1/

√
mk.

• The next task, Tq+mk+1 has an infinite CPU processing
time and a GPU processing time of ε.

• The last task of the graph, Tq+mk+2 is a successor of
Tq+mk+1. Its CPU processing time is equal to τ , and its
GPU time is equal to 1 + ε.

We consider the online setting in which the tasks Ti
arrive in the order given by i. The ratio of CPU time over
GPU time is larger than τ for every task except the last one.
Then, QA schedules the first q tasks on k GPUs in time
qx/k = (k− 1)/k. Then, it schedules the next mk tasks on k
GPUs in timem/

√
mk = τ . Task Tq+mk+1 is then scheduled

on GPU in a time ε, after which the last task is scheduled on
CPU. The makespan obtained is then equal to:

MQA = 2τ +
k − 1

k
+ ε.



7

CPU

GPU

QA

T1...q

1− 1
k

Tq+1...mk+q

τ

ε

Tq+mk+2
τ

CPU

GPU

OPT

T1...q

1

Tq+1...mk+q

1+ε

ε Tq+mk+2

1+ε

Figure 4. Schedule obtained by QA (left) and the optimal one (right).

Another possibility consists in scheduling first Tq+mk+1

then Tq+mk+2 on a single GPU, which takes a time 1 + 2ε.
In parallel, tasks T1 to Tq are scheduled on the remaining
(k−1) GPUs, which takes a time qx/(k−1) = 1. In parallel,
we schedule tasks Tq+1 to Tq+mk on m CPUs, which are
then completed at time 1 + ε. The makespan obtained is
then:

M = 1 + 2ε.

The schedules obtained are illustrated on Figure 4.
The ratio of the makespan obtained by QA divided by

M is then equal to:

MQA

M
=

2τ + k−1
k + ε

1 + 2ε
−→
ε→0

2τ +
k − 1

k
.

4.2 A tunable competitive algorithm which performs
well in practice
EFT, which stands for Earliest Finish Time, is one of the
most intuitive algorithm to solve this problem: it schedules
each task on a resource on which it will be completed the
soonest. If several tasks are available, they are scheduled
in an arbitrary order. This algorithm has good performance
in practice as demonstrated in our experiments, because the
load between resources is maintained balanced. However, in
some instances, it can achieve makespans m/k+2− 1

k times
longer than the optimal solution or the one computed by
QA, with any tie-breaking strategy, as proved in Lemma 2.

Lemma 2. The competitive ratio of EFT is at least (m/k+2− 1
k ),

for any ordering policies when several tasks are available.

Proof. Let ε be arbitrary small. We assume that k divides m
and m > 1.

We first prove a weaker result, by exposing an instance
on which EFT achieves a makespan equal to m/k where the
optimal result is arbitrarily close to 1.

Consider n := (m+ k + 1)m/k tasks composed of three
types. m tasks of type A have a CPU computing time equal
to 1 + ε and a GPU computing time equal to 1. m2/k tasks
of type B, have a CPU computing time equal to 1− ε/2 and
a GPU computing time equal to ε. The remaining tasks, of
type ε have a computing time of ε/2 on CPU and ε on GPU.

The online instance is decomposed into m/k phases,
each starting by k tasks of type A and one task of type ε,
which is the predecessor of m tasks of type B. The tasks of
the next phase are the successors of one task of type B.

A nearly-optimal schedule executes all the tasks B and ε
on GPUs then, once they are all completed, each task A on a
single CPU. After the m/k phases, this achieves a makespan
smaller than 1 + nε, where n is the number of tasks in the
graph.

EFT allocates the first k tasksA on GPU as they complete
faster (1 versus 1 + ε), and the task ε on CPU. Then, all the
GPUs are busy until time 1, so EFT allocates the next m
tasks of type B on CPU, starting at time ε/2 and completing
at time 1. Therefore, at the end of the first phase, all the
processors are busy until time 1. Consequently, after the
m/k phases, EFT achieves a makespan equal to m/k. We
have then proved the first result.

This instance can now be modified to prove the lemma.
Split the last phase into k − 1 sub-phases, where each sub-
phase contains the same tasks as one phase of the previous
instance, but which computing time are divided by k. EFT
schedules this phase in time 1 − 1

k , using all processors,
achieving a makespan equal to (m− 1)/k. A nearly-optimal
schedule executes all B and ε subtasks on GPUs, then
executes the k(k − 1) A subtasks on k − 1 CPUs. Therefore,
compared to the previous instance, the makespan achieved
by EFT so far is slightly smaller than before, but OPT has one
idle CPU. Now, add a new phase at the end of the instance
composed of one task A and one task ε followed by k tasks
of type C , which have an infinite CPU computing time and
a GPU computing time equal to 1. The graph and schedules
obtained are represented in Figures 5 and 6. The last A task
is noted A′ to differentiate it from the previous A tasks.

ε

A

A

B

B

B

B

B

B

ε

A

A

B

B

B

B

B

B

εs

As

As

Bs

Bs

Bs

Bs

Bs

Bs

ε

A′ C

C

Figure 5. Example of instance built with m = 6, k = 2. Note that this
instance contains 1 subphase of subtasks denoted by the subscript s.

CPU

GPU

EFT

A

m−1
k

A′
1

C
1

ε

C
1

B CPU

GPU

OPT

B

nε

C

1

ε

A

1+ε

A′

Figure 6. Schedule obtained by EFT (left) and an nearly-optimal one
(right). The ε tasks except the last one are not depicted for simplicity.

The optimal schedule executes the task A on the last
idling CPU, and each task C on a GPU. The makespan
obtained is then at most 1 + nε, where n is the number
of tasks in the graph.

EFT schedules k + 1 tasks of this phase on GPU. Its
makespan is then increased by 2, to reach a value of m/k +
2− 1

k ; hence, the lemma.
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We propose a new tunable algorithm, named MIXEFT
that benefits both from the performance of EFT on most
instances, and from the robustness of QA on the hardest
graphs. The idea is to improve EFT by switching to a
guaranteed algorithm if EFT does not perform well enough.
The algorithm is composed of two phases. In the first phase,
it is equal to EFT except that it also simulates the schedule
that QA would have produced on the same instance. If the
makespan obtained by EFT is more than λ times larger
than the makespan obtained by the simulated QA (for a
fixed positive parameter λ) we switch to the second phase,
and MIXEFT from this point behaves as QA. A small λ
leads to a smaller competitive ratio, but may degrade the
performance of MIXEFT in practice. We propose to use a
value of λ between 1 and 2. The pseudocode is provided
in Algorithm 1. The time complexity to schedule a task is
dominated by the computation of the schedule that would
be achieved by QA, which is O(n logm). Note that this
algorithm assumes that dependencies are learned once they
are met. This yields the partial DAG required to simulate
QA.

Algorithm 1: MIXEFT (λ)

1 StayEFT ← True
2 while there is a new task Ti do
3 if StayEFT then
4 CEFT ← makespan obtained by scheduling

Ti as EFT
5 CQA ← makespan that QA would have

obtained in this instance
6 StayEFT ← (CEFT ≤ λCQA)

7 if StayEFT then
8 Schedule Ti as soon as possible on the

resource on which it completes the earliest
9 else

10 Schedule Ti as soon as possible on CPU if
pi/pi ≤ τ and on GPU otherwise

Theorem 6. MIXEFT is (λ+ 1)(2τ + 1) - competitive.

Proof. Let OPT be the length of the optimal schedule. QA
solves the whole graph in less than (2τ + 1)OPT . Therefore
it completes any subset of the graph in less than this time
(as the optimal makespan cannot increase when removing
tasks). Therefore, the time to complete the first phase is less
than λ(2τ + 1)OPT . The time to complete the second phase
(which may be empty) it then smaller than (2τ + 1)OPT .
The whole graph is then completed in less than (λ+1)(2τ+
1)OPT .

5 THE ALLOCATION IS MORE DIFFICULT THAN THE
SCHEDULE

The proofs of the lower bounds presented in Section 3
and the competitive algorithms designed in Section 4 focus
substantially more on the allocation decisions (i.e., deciding
whether to execute a task on CPUs or on GPUs) than on the
scheduling decisions (e.g., if a task is allocated to CPUs,
deciding its starting time and the CPU). In this section,

we support this observation by showing that if the alloca-
tion decisions are given by an oracle, then any online list
scheduling algorithm is (3 − 1

m ) - competitive, which is the
best competitive ratio achievable.

A corollary of this result is that, when m = k, QA has
the best competitive ratio achievable. This also shows that
the best lower bound proved in Remark 1 (which holds if
m = k ≥ 4) is not tight, as it is only equal to 2.

Theorem 7. If the allocation of each task is fixed, any online
list scheduling algorithm is

(
3− 1

m

)
- competitive for the problem

(Pm,Pk)|prec, online|Cmax .

Proof. Consider a graph where each task has a fixed allo-
cation, an online instance of this graph, and the schedule
S computed by any online list scheduling algorithm, of
makespan Cmax . Let Wc (resp. Wg) be the total load on the
CPUs (resp. GPUs). Let cp be a critical path of S , and CP
be the sum of the processing times of the tasks of cp in S .

The result of Lemma 1 stated in the proof of Theorem 4
holds, therefore we have:

Cmax ≤
Wc

m
+
Wg

k
+

(
1− 1

m

)
CP .

Let OPT be the optimal makespan given the fixed
allocation. The m CPUs have to execute tasks whose ex-
ecution time sum to Wc, so OPT ≥ Wc/m. Similarly,
OPT ≥ Wg/k, and as CP is the length of the critical path,
we have OPT ≥ CP . Therefore, we conclude that:

Cmax ≤
(

3− 1

m

)
OPT .

We now show that this upper bound is tight.

Lemma 3. If the allocation of each task is fixed, no online schedul-
ing algorithm has a competitive ratio smaller than

(
3− 1

m

)
for

the problem (Pm,Pk)|prec, online|Cmax .

Proof. We assume m ≥ 2. Note that the result also holds
for m = 1, with a simpler example without the second
group of tasks built below. Let A be an online scheduling
algorithm. We let n be an integer multiple of km(m − 1)
and an adversary will build a graph G composed of the
2n+ 1 following tasks:
• tasks T1 to Tn have a GPU computing time equal to k/n

and an infinite CPU computing time;
• tasks Tn+1 to T2n have a CPU computing time equal to

(m− 1)/n and an infinite GPU computing time;
• task T2n+1 has a CPU computing time equal to 1 and

an infinite GPU computing time.
In the graph G, there will exist i ∈ [1, n] and j ∈ [n +

1, 2n] such that the dependencies of G are from task Ti to
tasks Tn+` for every ` > 0 and from task Tj to task T2n+1.

Every such graph can be scheduled in time 1 + (k+m−
1)/n: schedule each task as soon as possible starting task
Ti at time 0, task Tj at time k/n and task T2n+1 at time
(k+m− 1)/n, see Figure 7. Tasks T1...n are completed on k
GPUs in time n/k ∗ k/n = 1, tasks Tn+1...2n are completed
on m− 1 CPUs in time (m− 1)/n ∗n/(m− 1) = 1, and task
T2n+1 in time 1.
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CPU

GPU

A

T1...n

1

Tn+1...2n

1− 1
m

T2n+1
1

CPU

GPU

OPT

T1...n

1

Tn+1...2n

1

T2n+1
1

Figure 7. Schedules obtained by A and OPT .

Now, consider algorithm A. The adversary selects the
last task of T1...n to complete as the predecessor of every
task Tn+` for every ` > 0. Similarly, it selects the last task
of Tn+1...2n to complete as the predecessor of task T2n+1.
The makespan obtained is then at least the time necessary
to complete T1...n on k GPUs, plus the time to complete
Tn+1...2n on m CPUs, plus the time to complete T2n+1 on 1
CPU, see Figure 7:

1 +
n

m

m− 1

n
+ 1 = 3− 1

m
.

Therefore, the competitive ratio of A is at least:

3− 1
m

1 + 1
n (k +m− 1)

−→
n→∞

3− 1

m
.

6 EXTENSION TO MULTIPLE TYPES OF PROCES-
SORS

In this section, we generalize our study to Q ≥ 2 types
of processors, which allows modeling a platform composed
of several accelerator types. For comparison, in the offline
setting, Amaris et al. [15] provide aQ(Q+1)-approximation.
We denote by mq the number of processors of type q, and
we assume that they are ordered such that mq ≥ mq+1. The
computing time of task Ti on processor type q is denoted by
pi,q .

Our first result directly extends the lower bounds of
Section 3 for Q processor types. We only detail the proof
of Theorem 8 here, but the same generalization can be done
for every lower bound presented in Table 1, replacing τ by√∑Q−1

q=1 mq/mQ.

Theorem 8. No online algorithm for Q processor types has a
competitive ratio smaller than

√∑Q−1
q=1 mq/mQ.

Proof. Let P be the target platform composed of Q types of
processors. Consider an alternative platform P ′ composed
of 2 types of processors, m′ CPUs and k′ GPUs, with m′ =∑Q−1
q=1 mq and k′ = mQ.
Any instance G′ on P ′ can be simulated by an instance

G on P , which has the same vertices and edges as G′. The
processing times of the tasks of G are defined as follows:
for any task Ti , pi,Q is equal to the GPU processing time
of Ti on P ′ and pi,q , for q = 1, . . . , Q − 1, is equal to its
CPU processing time. Therefore, a schedule of G on P can
be adapted as a schedule of G′ on P ′ achieving the same

makespan, and vice-versa: the processor types 1 to Q − 1
are equivalent in P and can be mapped to the CPUs of P ′.

Suppose by contradiction that an online algorithm has a

competitive ratio smaller than
√∑Q−1

q=1 mq/mQ =
√
m′/k′

on P . Its competitive ratio on P ′ is then smaller than√
m′/k′, which violates Theorem 1.

We also adapt the QA algorithm (and thus MIXEFT) for
this setting, by changing its allocation phase:
• Allocate Ti to a processor type q that minimizes
pi,q

/√
mq .

Note that with Q = 2, this algorithm is equal to the
original QA. Theorem 9 (proved below) generalizes the
competitive ratio. However, the gap with the lower bound
proved above increases with Q, as the lower bound is
roughly the square root of the sum of ratiosmq/mQ whereas
the competitive ratio of QA is roughly the sum of the square
roots of the same ratios.

Theorem 9. On Q types of processors, QA is√m1

mQ
+

Q∑
q=1

√
mq

mQ

 - competitive.

In comparison, there is an instance similar to the one
of Lemma 2 on which EFT achieves a ratio larger than∑Q
q=1mq/mQ. Indeed, by setting identical computing times

to processor types 1 to Q− 1, EFT behaves as if there were∑Q−1
q=1 mq CPUs and mQ GPUs, which leads to this result.
The generalization of QA may seem straightforward,

but it brings new insights on the underlying principles.
We can see that the value τ =

√
m/k hides several con-

cepts. Comparing the processing times ratio pi/pi to τ is
actually a way to select the resource type q that minimizes
pi,q

/√
mq . The competitive ratio of QA on two types of

processors, 2τ + 1, is the sum of two terms. The first one
is the maximal deceleration of a task compared to the
optimal schedule, which is equal to τ on two types of
processors and generalized to

√
m1/mQ. The second one

is the maximal loss when scheduling too many tasks on the
fastest resource type while all the others may idle, which is
equal to τ + 1 on two types of processors, and generalizes
to
(∑Q

q=1
√
mq

/√
mQ

)
. The gap with the lower bound of

Theorem 8 is explained by the fact that the proposed lower
bound does not exploit the different execution times of tasks
on the Q−1 first resource types. The construction proposed
in Section 3 actually strongly relies on the fact that tasks
have only two different processing times: either all tasks are
executed on GPU, or at least one of them is not executed
on GPU. Both cases must lead to the same processing time
for the lower bounds to hold. It should be noted that this
generalization exhibits another meaning of the value τ : it is

equal to the value
√∑Q−1

q=1 mq/mQ when Q = 2.

Proof of Theorem 9. We consider a graph G and the schedule
S computed by QA, of makespan Cmax . We consider also
an optimal offline solution, to which we will refer as the
optimal solution, of makespan OPT . Let Wq be the total
load on the processors of type q for each q ∈ {1, . . . , Q− 1}.
Let cp be a critical path of S , and CP be the sum of the
processing times of the tasks of cp in S .
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First, we prove that:

Cmax ≤
Q∑
q=1

Wq

mq
+ CP . (6)

As in Theorem 4, consider a path p of tasks of G whose
execution starts the soonest and completes exactly at time
Cmax in S . When no task of p is being executed, one type
of processor is necessarily busy because of the scheduling
strategy, which always schedules an available task if one
processor of each type is idle. The total amount of time
during which at least one type of processor has no idle
resource is at most

∑Q
q=1

Wq

mq
; hence, the result.

We now bound CP . Consider a task Ti that is executed
on processor type ` in QA and q in the optimal solution. We
have, by definition of QA, m1 and mQ:

pi,` ≤
√
m`

mq
pi,q ≤

√
m1

mQ
pi,q. (7)

Summing over the tasks of cp, we obtain:

CP ≤
√
m1

mQ
OPT . (8)

We consider the workload W ∗q on processor type q in the
optimal solution, which is not larger than mqOPT . For any
processor type `, let C`q be the sum of the computing times
on processors of type ` of tasks allocated to processor type
` in QA and to processor type q in the optimal solution.
We can lower bound W ∗q in the optimal solution by the
quantities Cq` , using the first inequality of Equation (7):

OPT ≥
W ∗q
mq
≥ 1

mq

Q∑
`=1

√
mq

m`
C`q

√
mq

mQ
OPT ≥

Q∑
`=1

C`q√
mQm`

≥
Q∑
`=1

C`q
m`

.

Now, summing over all processor types q, we get:

1
√
mQ

 Q∑
q=1

√
mq

OPT ≥
Q∑
q=1

Q∑
`=1

C`q
m`
≥

Q∑
`=1

1

m`

Q∑
q=1

C`q

≥
Q∑
`=1

W`

m`
. (9)

Finally, combining Equations (6), (8) and (9), we get the
result:

Cmax ≤
1
√
mQ

√m1 +

Q∑
q=1

√
mq

OPT .

7 SIMULATIONS

We now provide simulations to illustrate the performance of
both competitive algorithms and simple heuristic strategies
on various task graphs.

7.1 Baseline heuristics
In addition to the four online algorithms discussed above
(ER-LS from [1], QA, EFT, and MIXEFT, a combination of
EFT and QA implemented with λ = 2 unless otherwise
specified), we consider two simple strategies that follow
the same scheme as QA, with a different allocation criteria:
QUICKEST allocates each task to the resource type on which
its computing time is smaller; RATIO allocates a task on
GPUs if and only if its GPU computing time is at least
m/k times smaller than its CPU computing time. Intuitively,
QUICKEST should perform well on graphs on which the
critical path is preponderant. On the opposite, RATIO should
perform well on graphs with a high parallelism throughout
the execution.

We also used the offline HEFT algorithm [19], which is
known to perform well in practice, as a baseline to compare
all online strategies. Moreover, backfilling is performed fol-
lowing HEFT insertion policy.

7.2 Experimental setup
Experiments have been performed on a platform consisting
of m = 20 CPUs and k = 2 GPUs. We used three types
of instances: realistic DAGs corresponding to the Cholesky
factorization, random DAGs used in the literature, and ad
hoc instances designed to be difficult for this problem and
specifically for QA.

Cholesky factorization is a linear algebra application
whose parallel implementation usually uses a blocked algo-
rithm on a tiled matrix for performance issues. We consider
matrix sizes ranging from 2× 2 tiles to 15× 15 tiles, which
leads to DAGs with 4 to 680 tasks. Tasks correspond to four
linear algebra kernels: GEMM, SYRK, TRSM, and POTRF.
Their respective processing times on a CPU are set to 170ms,
95ms, 88ms, and 33ms, and on a GPU to 5.95ms, 3.65ms,
8.11ms, and 15.6ms, which corresponds to measures [20],
[21] made using the Chameleon software [22].

The random instances come from the STG set [23], which
is often used in the literature to compare the performance
of scheduling strategies. The set contains instances with 50
to 5000 nodes. We report here the simulations made with
180 graphs of 300 nodes each. Simulations performed with
sizes 100 and 500 lead to similar conclusions. We consider
that the cost generated by the STG random generator is the
processing time of the corresponding task on a GPU. Based
on the previous measures for linear algebra kernels, we
assume that the average speedup between CPU and GPU
is around 15 with a large variance. Thus, to obtain the pro-
cessing time of a task on CPU, we multiply its cost on GPU
by a random value with expected value 15 and standard
deviation 15. For that, we use a gamma distribution because
it has been advocated for modeling job runtimes [24], it
is positive and it is possible to specify its expected value
and standard deviation by adjusting its parameters. In this
paper, we do not focus on the differences between the four
random DAG generator. We refer the interested reader to
the web supplementary material for this discussion.

Finally, specific random instances have been designed to
test the limitations of QA. These ad hoc instances consist of a
chain of tasks together with a set of independent tasks, such
that all cores are expected to finish simultaneously if a GPU
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is dedicated to the chain and all independent tasks are load-
balanced on the other cores. These instances are assumed
to be problematic for online strategies that are unaware of
the critical path. The expected processing time of a task
on a GPU is 1 (with a standard deviation of 0.1) and the
expected processing time on a CPU varies from (m/k)−1/4

to (m/k)5/4 (with a standard deviation equal to 10% of
this expected value). For a given expected CPU cost µ, the
number of tasks in the chain is d n

m/µ+k e, where n = 300
is the total number of tasks. Therefore, the larger µ, the
longer the chain. The DAG size only affects the variability of
the results (larger variability with n = 100 and lower with
n = 500).

7.3 Results

Figure 8 depicts the performance of the six online schedul-
ing algorithms. Except when varying its parameter (Fig-
ure 8(d)), MIXEFT performs exactly as EFT (and is thus
omitted for better readability) because none of our instances
leads to a switch to QA. A more detailed and complete
analysis can be found in the web supplementary material.
In particular, Figure 8(a) is extended to different numbers of
CPUs and GPUs, Figure 8(b) is separated in four based on
the type of DAGs in the STG set and Figure 8(d) is broken
down into the three considered types of instances.

On Cholesky DAGs (Figure 8(a)), EFT (and thus MIX-
EFT) is always the best strategy. The only difference be-
tween QA and ER-LS concerns the first tasks (as we re-
moved Step 1a in QA), which explains why their behaviour
is similar for large graphs. QA, ER-LS, and RATIO all put
POTRF tasks on the CPU, which leads to performance loss
when the graph is small because its parallelism is limited
and the GPUs are often idle. However, it is acceptable for
larger graphs in which many tasks may be executed in
parallel on the GPUs. On the contrary, QUICKEST puts all
tasks on the GPUs. This is efficient for small graphs with
low parallelism but it is worse than RATIO for large graphs.

Figure 8(b) shows similar trends on the random graphs
from STG set: EFT (and thus MIXEFT) gives the best results,
followed by QA and ER-LS. Note that with graphs from
STG set of different sizes, RATIO may be more efficient than
QUICKEST due to DAG characteristics that depend on the
size in the STG data set.

Figure 8(c) first shows that EFT (and MIXEFT) is almost
always the best online heuristic for ad hoc graphs. For
extreme values of the expected CPU processing time µ
(significantly smaller than 1 or larger than m/k), all four
other heuristics are equivalent and perform well. Otherwise,
when µ is slightly larger than 1, the instance contains many
independent tasks and QUICKEST is almost m/k worst than
HEFT because scheduling independent tasks on GPUs is
not efficient. Symmetrically, when µ is slightly smaller than
m/k, the instance contains a large critical path and RATIO
shows poor performance, because it schedules the critical
path on CPUs. QA and ER-LS take the best of these two
strategies, and have a worst performance

√
m/k ≈ 3 times

larger than HEFT, when µ is close to
√
m/k.

Figure 8(d) shows that MIXEFT behaves like QA when
its λ parameter is smaller than 1, and rapidly changes to
mimic EFT when the parameter increases and exceeds 1.
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Figure 8. Ratios of the makespan over HEFT for EFT, QA, ER-LS,
RATIO, QUICKEST, and MIXEFT with m = 20 CPUs and k = 2 GPUs.
Except in Figure (d), MIXEFT is not shown because it performs exactly
as EFT. In Figure (d), ER-LS, RATIO, and QUICKEST are discarded.

Note that in all studied instances, EFT was never far from
HEFT and that there is no practical gain of using MIXEFT
rather than EFT. The main advantage of MIXEFT lies in its
competitive ratio inherited from QA, whereas EFT can lead
to very large makespans on specific instances.

These simulations show that QA achieves the same
performance as ER-LS, except for Cholesky DAGs where
the latter is better, especially for small instances. However,
both these algorithms, despite their worst-case performance,
are significantly outperformed by EFT and MIXEFT, even
on difficult instances such as the ad hoc ones.

8 CONCLUSION

In this paper, we have focused on the problem of schedul-
ing task graphs on hybrid platforms made of two types
of processors, such as CPUs and GPUs. We have studied
the online case, when only the tasks whose predecessors
are all completed are known to the scheduler, and the
graph is thus gradually discovered. We proved that no
scheduling algorithm can have a competitive ratio smaller
than

√
m/k, and studied how this ratio varies when more

knowledge on the graph is given to the scheduler and/or
tasks may be migrated between processors. We have pro-
posed a (2

√
m/k + 1)-competitive algorithm as well as a

mixed strategy, which is both Θ(
√
m/k)-competitive and

performs as well as the best heuristics in practice. This is
demonstrated through an extensive set of simulations. We
have also extended the lower bounds and the competitive
algorithms to the case with more types of processors.

Future work includes several directions. For indepen-
dent tasks, there is still a gap between the best lower bound
on online algorithms competitive ratio (2) and the best on-
line algorithm (3.85-competitive) [14]. The best algorithm to
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schedule offline DAGs of tasks is a 6-approximation relying
on linear programming [1]. Improving this algorithm, on the
approximation factor or the complexity, is therefore an open
problem. Another research direction consists in exploiting
task parallelism. A 2-approximation has been exhibited for
offline scheduling of independent moldable tasks on hybrid
platforms in [9], but this problem with precedence con-
straints remains unexplored. Finally, in order to model more
closely realistic problems, it remains to take into account
communication times when moving data from/to the GPUs,
and to cope with inaccurate processing time estimates.
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