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Abstract—In this work, we investigate the problem of life-
time optimization for partial coverage in heterogeneous sensor
networks. This problem which is NP-Hard in its general form
is known under the name of α-coverage, where α refers to a
prescribed level of coverage threshold that we need to maintain.
Sleep-Awake scheduling which turns sensors to On and Off,
is the common and the well known technique that has been
heavily studied in the literature to deal with energy management
under coverage constraint. The question is how to orchestrate
the clustering of the sensor nodes into disjoint or non-disjoint
covers, and to schedule these covers, so that the total network’s
lifetime is maximized. Unlike earlier works, we consider both
global (whole targets) resp. local (individual target) monitoring
thresholds to improve the coverage quality rather than dealing
with a single global leveling threshold as in the literature.
In addition, instead of employing a default covers’ activation
which may lead to the starvation phenomenon, where targets
may remain uncovered for a long time period, we provide a
clairvoyant scheduling for the obtained covers to ensure fair
smoothing for the cumulated target’s uncovered time periods
during the network’s service. First, a novel mathematical Binary
Integer Linear Programming (BILP) is proposed to solve the
α-coverage problem to optimality. Then, provable guarantees
of the upper bound for the number of partial cover sets are
given. Next, we formulate the covers’ planning as a p-dispersion
problem and due to the NP-Completeness of the former, an
efficient Genetic Algorithm (GA) based approach is designed to
achieve efficient covers’ scheduling with minimal execution time
complexity. Finally, a series of experiments are conducted and
several QoS metrics are evaluated to show the usefulness of our
proposals.

Index Terms—sensor networks; lifetime optimization; partial
coverage; integer linear programming; p-dispersion; genetic
algorithms

I. INTRODUCTION

With the emergence of IoT, wireless sensor networks (WSN)
are widely used for monitoring in diverse fields of applications
such as tracking, home security, tactical surveillance, health
care, and so on. They are made up of many low powered
and small device nodes which collaborate with each other to
monitor, collect, process, and forward the sensed information
using wireless communications. Nevertheless, WSNs present
a number of shortcomings that may have an adverse effect
on the gathered data at the sink level, leading to non reliable
diagnostics of the monitored targets. Consequently, to improve
the network’s QoS, two main critical and related issues,
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namely the energy consumption and target coverage, need to
be considered.

While some very sensitive applications require the complete
coverage of all the targets during the whole lifetime of the
network, others can bear less strict monitoring. Depending on
the nature and the sensitivity of the monitored targets, partial
coverage, where some targets may remain uncovered for a
limited time period, could be tolerated in order to prolong
the network’s lifetime. For instance, since the probability of a
forest fire occurring in the rainy season is significantly lower
than in the dry season, monitoring at each time period a few
random regions in the forest could be sufficient to prevent the
forest from taking fire. This partial coverage would also lead
to activating at each time period a smaller number of sensors
than in full-coverage which would drastically reduce the sen-
sors’ energy consumption and increase the network’s overall
lifetime [1]. Pollution monitoring systems can also make do
with partial coverage of the monitored area. Excluding, at each
time period, some random regions and computing the average
pollution level using a percentage of the measurements, would
not practically affect the final results [2].

Although, both energy saving and coverage requirement
have been studied in the literature, to the best of our knowl-
edge, none of the existing research works has considered, at
the same time, both global (whole targets) and local (indi-
vidual target) monitoring level threshold constraints nor the
starvation phenomenon that may occur if the obtained cover
sets are not scheduled in a suitable way. Going further, it is
usually assumed that the lifetime of the partial coverage must
be at least as well as the achieved one in the case of complete
coverage. We strongly conjecture that this assumption is a
weaker condition and it is far from being sufficient to provide
reliable targets’ coverage.

In this paper, we bring answers to the aforementioned
shortcomings of the previous works in the literature. We
target the case of Non-Disjoint Set Covers (NDSC) problem
in which sensors can participate to more than one cover
set and can interchange between idle and working modes.
We consider heterogeneous networks where the initial energy
levels of nodes’ batteries are different. The aim of this paper
is to deal with energy saving subject to a prescribed leveling
threshold of the coverage quality that we have to ensure during
the network’s activity. To this end, two main and distinct



optimization problems are investigated: i) the construction of
the α-cover sets (by the exact resolution of a binary integer
linear program) and ii) the planning of the generated α-cover
sets (in which order they should be activated successively?).
The output of the former is the input of latter.

In the following, we summarize the contributions and the
novelties of of the presented study:
• A new mathematical Binary Integer Linear Programming

(BILP) formulation is proposed to solve to optimal-
ity the Heterogeneous Non-Disjoint Partial Set Cover
(HNDPSC) problem with fixed activation time periods.

• We provide necessary and sufficient global and local cov-
erage constraints to achieve an efficient trade-off between
energy and coverage performance related objectives dur-
ing the network’s service. The findings of our research
study reveal that, when dealing with partial coverage
under energy constraint, local (individual target) coverage
constraint plays a crucial role on the achieved global
performances of the network’s monitoring activity (See
Section III for more details on these constraints called
resp. α for the global constraint and β for the local one).

• We give provable guarantees for two upper bounds for the
number of non-disjoint cover sets that can be constructed
when dealing with partial coverage under fixed activation
time periods in heterogeneous sensor networks. This
drastically reduces the number of variables which is a
key factor when solving linear and nonlinear optimization
problems. That is to say that these bounds allow practical
gains and enable us to solve the α−coverage problem
in a single stage in contrast with what was previously
proposed in the literature.

• To avoid the starvation phenomenon, instead of consid-
ering a default activation of the resulting cover sets,
we provide an efficient scheduling to fairly smooth the
target’s uncovered time periods during the network’s
lifetime. To this end, first we formulate the dispersion
of uncovered time periods of a target throughout the
network’s lifetime as a p-dispersion problem. Then, we
derive a generalization of the p-dispersion problem where
the dispersion of the uncovered time periods for all
the monitored targets should be optimized at the same
time. Two criteria were adopted to reflect how well the
uncovered time periods of all targets are balanced (See
Section IV for more details on these criteria). Due to
the NP-completeness of the p-dispersion problem and its
generalization, an efficient GA was designed to achieve
near optimal solutions in polynomial time complexity.

The remainder of this paper is organized as follows. In
Section 2, the relevant α-Lifetime optimization techniques that
have been proposed in the literature are reviewed. In Section
3, we present in details the new proposed BILP mathematical
model for the HNDSC problem as well as the upper bound’s
analysis of the number of partial cover sets. Section 4 is

devoted to the Cover Set Scheduling which includes the p-
dispersion problem formulation and the presentation of a GA
to find a good scheduling of the obtained cover sets. We
report in Section 5, a series of experimental results to asses
the behaviour of our proposals. In particular, our approach is
compared to a competing method from the literature. Finally,
some concluding remarks are made in Section 6.

II. RELATED WORK

In the last two decades, the Maximum Network Lifetime
Problem (MLP) in wireless sensor networks had considerable
attention from researchers. In [2]–[7], exact methods and
heuristics were proposed to either solve small instances of
the problem to optimality or produce good solutions for large
instances in a reasonable time. Solving the MLP consists in
finding subsets of sensors that can cover all the targets for
the longest possible time period. The MLP was shown to be
NP-complete by a polynomial time reduction from the well
known problem 3-SAT [8].

Several derived problems from the MLP were proposed to
adapt it to different contexts. Some of them address coverage
connectivity [9] [10], reliability [11], or consider sensors
with adjustable coverage range [12] [13]. Another interesting
variant of the problem, studied in [2], [4], [13] and [5], is the
α−Maximum Network Problem (α-MLP), in which a given
portion ((1−α) percent) of the targets could be uncovered in
each cover set. In [2] and [4], the authors demonstrated that
in some cases, it is preferred to partially cover the targets
for a longer period instead of providing full coverage for
a short one. They have also provided a formulation of the
problem as a linear program where the objective function
is the maximization of the α-Lifetime of the WSN. This
formulation first requires the generation of all possible feasible
α−covers. For a given α ∈ [0, 1], an α−cover is a subset of
the sensors that covers at least α × |T | targets (where |T |
is the total number of targets in the monitored area). Once
all the α−covers have been generated, the resolution method
have to find out how much time each α−cover has to be
activated. Therefore, the linear program’s variables are the
activation times of all the feasible α−covers and its objective
function is the maximization of the sum of their activation
times while ensuring that the battery lifetime of each sensor
is not exceeded.

Since the number of potential α−covers increases exponen-
tially with the number of sensors, especially for lower values
of α, the authors applied a Column Generation (CG) approach
to be able to find the optimal solutions for small instances
of the problem in reasonable times. The same approach was
already proposed in [14] to solve the MLP. At each iteration
of the CG method, a Restricted Master Problem, with only
a subset of the feasible α−covers, is solved. Then a specific
optimization problem (generally called subproblem) is solved
which either produces an attractive cover to be considered
while solving the Master Problem in the next iteration or
guarantees that the last found solution found is the optimal
one.
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In [2] the subproblem was formulated as a integer linear
program (ILP) and solved to optimality. In [4], the authors
attempted to heuristically solve the subproblem by using a
genetic meta-heuristic. In both works, an additional constraint
was added to the Restricted Master problem such that each
target is at least covered as in the complete coverage problem
(with α = 1). Therefore, before solving the α-MLP for a given
instance, the complete coverage problem must be solved for
the same instance in order to find out what is the minimal
coverage time to respect for each target. The need to go
through this preliminary step is one of the major disadvantages
of this approach. The authors also proposed in the same
paper a greedy approach, called α − greedy, to find feasible
α−covers and to initialize the Column Generation procedure.
They assigned a predefined activation time to each generated
α−cover. Their heuristic iteratively constructs each α−cover
by adding to it the sensor with the highest residual energy
and at the same covering the largest number of uncovered
targets. In [13], another greedy algorithm for partial coverage
of WSNs was proposed as well. In this work, the nodes
have different sensing and communication ranges but the same
amount of initial energy. The proposed algorithm guarantees
the connectivity of the nodes while constructing the α−covers.
The covers sets are then successively activated during a fixed
amount of time λ such that a sensor could participate in
several cover sets. However, this approach does not guarantee
that each target will be sufficiently monitored over the entire
lifetime of the network.

In [5], a heuristic that provides the maximum number of
α−cover sets, was presented. These cover sets were activated
one by one for a fixed time period. As in [2] and [4], a
minimal coverage time per target, equal to their coverage time
in the complete coverage problem, was ensured. Therefore,
this approach also requires the pre-calculation of the minimum
coverage level for each target. The authors of this paper
claim that it is possible to extend the network lifetime by
wisely selecting the targets to be uncovered in each cover
set. However, their approach and simulations are limited to
homogeneous sensors (all the sensors have one initial energy
unit) and therefore each sensor can at most be involved in
two cover sets (the activation time of a cover set is fixed to
0.5 unit). Even though the network’s lifetime is extended in
most cases, for some instances some targets are monitored less
than 20% of the network lifetime which can be potentially
dangerous.

The work presented in [7] is the closest one to our study
because it also proposes an exact method for solving the
coverage problem in a heterogeneous wireless sensor network
(sensors with non-identical amount of initial energy and power
consumption). The authors of [7] present an Integer Linear
Programming (ILP) mathematical model for maximizing the
network lifetime. Their goal is to find out how many times
each possible cover set should be activated during a fixed
amount of time. Their model can be easily extended to partial
coverage. More details about this technique are given in
section III-D. But the major drawback of this method, as

shown in our experiments in Section V-B, is that it requires
two time-consuming preliminary steps in order to generate all
the possible cover sets.

The authors of [2], [4], [5], [7], [13] proposed exact or
heuristic methods for solving the α−MLP but none of them
took into account the fact that the coverage period for each
target may be too short when compared to the total lifetime of
the network. Therefore, in our approach, although the network
lifetime is partially reduced, we guarantee that each target
will be covered for a minimum percentage of the network
lifetime, which is more appropriate to real-life applications
requirements. In addition, to the best of our knowledge, no
method is proposed in the literature for scheduling α− cover
sets once they have been generated. This is why we provide a
judicious way to schedule the α−cover sets in order to avoid
excessively long periods of time during which some targets
are not monitored.

III. PROBLEM FORMULATION

In this section, we define more formally the α− Maximum
Lifetime problem and in order to solve it, it is modeled as a
Binary Integer Linear Programming (BILP) problem.

A. Notations

Before getting in details, we first define some notations that
will be used throughout the paper.
• n : Number of sensors
• m : Number of targets
• S : Set of sensors = {s1, ..., sn}
• T : Set of targets = {t1, ..., tm}
• Ei : Available time units for sensor si
• Ti : Set of targets covered by the sensor si
• Sj : Set of sensors covering the target tj
• Ck : α− cover set k
• d : Fixed activation time of a partial cover set Ck.
We assume that n heterogeneous sensors are deployed to

monitor m targets. Sensors might have heterogeneous initial
battery power and power consumption. After deployment, each
sensor si has a battery level Bi and an energy consumption of
ei per unit of time. For each sensor, Ei represents the number
of time units during which it can be activated continuously
such that Ei = Bi

ei
. In the rest of the paper, we will

indifferently use the term energy or time units to refer to
the quantity Ei for sensor si. We consider a classic coverage
model which consists of saying that a target tj is covered
by a sensor si if and only if the distance (Euclidean distance)
between tj and si is less than the coverage radius of the sensor
si. The matrix ∆ is defined with the Boolean coefficients δij
such that δij is equal to 1 if the target tj is covered by the
sensor si and 0 otherwise.

In order to optimize the lifetime of the network, redundant
sensors are scheduled to sleep when their targets are being
monitored by other active sensors. This leads to the construc-
tion of cover sets consisting of sensors that cover the targets
for a given time period. Then, these cover sets are activated
one after the other. In the partial coverage context, for a given
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α ∈ (0, 1], Ck ⊆ S is an α−cover set if its sensors cover
at least Tα = bα × mc targets. The α−cover sets can be
non-disjoint which means a sensor can participate to more
than one cover set if it has enough energy. In this work, we
assume that all the cover sets have the same activation time
d. Therefore, improving the lifetime of the network amounts
to maximizing the number of constructed α−cover sets. As
in other models [5] [13] in the literature, the activation time
is a fixed parameter. Its value should be long enough to hide
the system control overhead and short enough to minimize
the negative effects in case of node failures. In this paper,
to concentrate our efforts on the introduction of new types
of constraints to prevent some targets from being uncovered
during a long time period in the case of partial coverage, we
have assumed that the duration of the activation time is fixed.
Concerning the choice of the value of the fixed activation time
d, it is correlated to the type of the considered application and
the sensors initial energies.

When the coverage is partial, all the targets do not have
the same coverage rate which can lead to very poor coverage
of some individual targets. Therefore, it is appropriate to add
additional constraints to ensure for each target a minimum
coverage rate over the total lifetime of the network. We
introduce a new parameter β which defines the minimal ratio
between the time of coverage of one target and the network
lifetime. We denote this parameter β as a ”Target Monitoring
Ratio” applied to each target whereas the coverage ratio α
is applied to each cover set. Therefore, the new objective
of the α− Maximum Lifetime Problem is to form as many
α−cover sets as possible while meeting coverage and energy
constraints.

B. BILP: model formulation

The search for the optimal solution to the α −MLP , can
be formulated as a Binary integer linear programming (BILP)
problem. Since all the cover sets have a fixed activation time,
the goal of the BILP is to construct the maximum number
of α−cover sets. The upper bound of the possible number of
α−cover sets for a given instance can be denoted by K and
its calculation is discussed in section III-C.

The variables used to define the problem are the following:

• Binary variables xi,k, ∀ i ∈ J1, nK and ∀ k ∈ J1,KK;
xi,k = 1 means that the sensor si is active in the cover
set Ck.

• Binary variables yj,k, ∀ j ∈ J1,mK and ∀ k ∈ J1,KK;
yj,k = 1 means that the target tj is covered by the cover
set Ck.

• Binary variables zk, ∀ k ∈ J1,KK; zk = 1 means that
Ck is an α−cover set.

1) Objective: The objective is to maximize the number of
α−cover sets.

Max

K∑
k=1

zk (1)

2) Global coverage constraints: If the sensor si is active
in the cover set Ck, the set of targets (Ti) that it monitors will
be covered in the cover set Ck. A target tj is covered if there
is at least one sensor si ∈ Sj that monitors it in the set Ck.
This is mathematically formulated by the following two types
of constraints:

yj,k ≥ xi,k ∀ j ∈ J1,mK, ∀ k ∈ J1,KK, ∀ i ∈ Sj (2)∑
i∈Sj

xi,k ≥ yj,k ∀ j ∈ J1, mK, ∀ k ∈ J1,KK (3)

Constraint (2) forces the variable yj,k to be equal to 1 if one
sensor of Sj is activated in the α−cover. Constraint (3) allows
the variable yj,k to be equal to 1 only if at least one of the
sensors monitoring it is active in the cover set Ck.
The following constraints impose that at least Tα targets are
covered in each α−cover set :∑

j∈T
yj,k ≥ Tα × zk ∀ k ∈ J1,KK (4)

3) Target’s coverage constraints: As explained above, our
model includes a new type of constraints that limits the net-
work lifetime according to the parameter β (Target Monitoring
Ratio) such that the total coverage time of each target is greater
than or equal to β percent of the network lifetime. Moreover,
in some applications such as forest fires, it is necessary to
monitor the coverage of the targets that have been affected by
the fires. These targets must have a higher monitoring ratio
than the others and then each target j has its own monitoring
ratio βj . This constraint is called in this paper β constraint
and it can be expressed as follows :

K∑
k=1

yj,k ≥ βj ×
K∑
k=1

zk ∀ j ∈ J1,mK (5)

∑
k∈K yj,k represents the number of α−cover sets which

cover the same target tj , and
∑
k∈K zk is the total number

of generated α−cover sets.
The β constraint differs from those usually proposed in the
literature for partial coverage. Authors of [2], [4] and [5] have
proposed the wmin constraint which imposes that each target
must be covered at least as well as the achieved one in the
case of complete coverage. This kind of constraint requires the
resolution of the model with α = 1 beforehand to provide a
common minimum coverage bound wmin for the whole targets
and it can be expressed as follows :

K∑
k=1

d× yj,k ≥ wmin ∀ j ∈ J1,mK (6)

4) Energy constraints: In the non-disjoint case, a sensor
might belong to several α−cover sets if it has enough en-
ergy. The following constraint ensures that the total energy
consumed by a sensor does not exceed its initial energy:

K∑
k=1

d× xi,k ≤ Ei ∀ i ∈ J1, nK (7)
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5) Additional constraints: To make the model consistent
and ensure that the sets that do not respect the α−cover set
conditions (i.e zk is equal to 0), are empty, the following
constraint has been added to the model:∑

i∈S
xi,k ≤ n× zk ∀ k ∈ J1,KK (8)

This constraint forces the variables xi,k to be equal to zero if
Ck is not an α−cover set.

6) Optional constraints: By construction, the total coverage
time of a target cannot exceed the total time of the sensors
capable of monitoring it. This constraint can be formulated as
follows:

K∑
k=1

d× yj,k ≤
∑
i∈Sj

Ei ∀ j ∈ J1,mK (9)

This constraint is not mandatory but we have noticed that by
adding this extra constraint, the resolution time of the Branch-
and Bound method for the BILP is significantly reduced. This
constraint can be seen as a cutting plane in the resolution
process.

Considering cover sets of fixed duration d, a Coverage
Ratio α and a Target Monitoring Ratio β, a new mathematical
formulation of the α−Maximum Lifetime Problem can be
given as follows:



max
∑K
k=1 zk

subject to :
yj,k ≥ xi,k ∀j ∈ J1,mK, ∀i ∈ Sj ,

∀k ∈ J1,KK∑
i∈Sj

xi,k ≥ yj,k ∀j ∈ J1,mK, ∀k ∈ J1,KK∑
j∈T yj,k ≥ Tα × zk ∀k ∈ J1,KK∑K
k=1 d× xi,k ≤ Ei ∀i ∈ J1, nK∑K
k=1 yj,k ≥ β ×

∑K
k=1 zk ∀j ∈ J1,mK∑

i∈S xi,k ≤ n× zk ∀k ∈ J1,KK∑K
k=1 d× yj,k ≤

∑
i∈Sj

Ei ∀j ∈ J1,mK
(10)

It’s worthwhile to note that the number of variables is (n +
m+1)×K. The number of constraints is bounded by mnK+
mK+2K+n+2m. Consequently, it is not surprising that the
resolution of this linear program with binary variables becomes
impracticable for large optimization problems.

C. The upper bound of the number of α−cover sets, K

In this section, we give two upper bounds of the number
of α−cover sets for the problem of partial coverage in WSN
where each α− cover set is activated during a fixed time period
(called slot) of d time units. First, we start by computing the
general upper bound K, next we derive a tighter one K ′ ≤ K
and prove its attainability. Finally, we shall express a bound
on the maximum number of α−cover sets in the special case
where a Target Minimum Ratio, β, is required for each target.

Ti
m
e

t1 t2 t3 tmtm-1

L

Targets
...

...

Fig. 1: The cumulated idle and coverage time slots of the m
targets.

Proposition 1. The number of cover sets for the α−coverage
problem is upperbounded by

K =
⌊∑m

`=1

∑
i∈S`

Ei

α×m× d

⌋
Proof. Consider the clustering illustrated in Figure 1. Since we
deal with partial coverage, at any time step in the network’s
activity, some targets are covered and some others are not. Let
I and C be the cumulated Idle time slots, resp. the cumulated
Coverage time slots of the m targets throughout the lifespan
of the network.
Intuitively, we have:

I + C = L ×m

where L is the Upper Bound of the achieved network’s
lifetime. Since, the cover’s duration time is the same for all
the constructed covers, we obtain:

I + C = K × d×m

Moreover, we can observe that:

C = K × d×m× α

In this way we deduce:

K =
⌊ C
α×m× d

⌋
=

⌊∑m
`=1

∑
i∈S`

Ei

α×m× d

⌋

Proposition 2. Let ∆ > 0 be the cumulated residual energy
that cannot be used to form new covers, then the Upper
Bounded K can be reduced down to

K ′ = K − ε

where, ε is within ⌊ ∆

α×m× d

⌋
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Proof. We need to prove that K ′ ≤ K holds. According to
the Greedy-Procedure’s policy (see Algorithm 1), a cover set
is built if and only if it remains enough energy that could be
assigned to α×m targets. Let λ be the remaining cumulated
energy in the time slot at the i’th iteration, 1 ≤ i ≤ K. Then,
the number of constructed cover sets at the time step i during
the clustering process is:

i− 1 +
⌊ λ

α×m× d

⌋
≤ K

Now, we consider the worst case where all the computed
covers are holding the needed value of α×m targets except for
the last one which cannot be retained owing to the condition
pointed above. In this configuration, the whole amount of
the residual energy, denoted as ∆, that will no longer be
usable before reaching the final number of cover sets will be
decreased from the global energy of the network. Thus,

K ′ =
⌊∑m

`=1

∑
i∈S`

Ei−∆

α×m×d

⌋
≤

⌊∑m
`=1

∑
i∈S`

Ei

α×m×d

⌋
+
⌊
−∆

α×m×d

⌋
+ 1

=
⌊∑m

`=1

∑
i∈S`

Ei

α×m×d

⌋
−
⌈

∆
α×m×d

⌉
+ 1

= K −
⌈

∆
α×m×d

⌉
+ 1

=⇒ K ′ ≤ K + 1−
⌈

∆
α×m×d

⌉
We have two scenarios:

1) 0 < ∆ ≤ α×m× d =⇒ K ′ = K
2) ∆ > α×m× d =⇒ K ′ < K

(1) and (2) =⇒ K ′ ≤ K

Hence a result,

K ′ = K − ε ∧ ε ≤
⌊ ∆

α×m× d

⌋

Proposition 3. The bound K ′ is attainable.

Proof. To see that this bound is really attainable, consider a
network of two sensors (n = 2) which are deployed to cover
two targets (m = 2). Assume a one-to-one scenario where
each sensor is a assigned to a separate target. Let α = 0.5,
E1 = E2 = 1 and T1

⋂
T2 = φ. It’s straightforward to check

that the achieved lifetime is L = 2 with K ′ = 2 covers. This
result is optimal and cannot be improved.

Algorithm 1 Compute the upper bound of the number of cover
sets in the proposed linear program: The Greedy-Procedure
Require:

CTj =
∑
i∈Sj

Ei : the cumulative time units for each target
1: K′ =0
2: while ∃ bm× αc targets with CTj > d do
3: Decrement by d the residual cumulative time units CTj of the

bm× αc targets with the highest residual cumulative time units.
4: K′ =K′+1
5: end while
6: return K′

In our BILP formulation, when the Constraint (5) with the
Target Minimum Ratio βj is applied, the maximum number
of non-disjoint α−cover sets of a fixed activation time period
d, is bounded by the least covered target and βj . Thus, this
upper bound can be computed as the following:

K = minj∈T

⌊∑
i∈Sj

Ei

βj × d

⌋
(11)

For the sake of comparison, we present in the following
section, the description of an existing network’s lifetime
optimization approach introduced in [7] which is, as far as
we know, the closest work to the one addressed in this paper.

D. An existing Integer Linear Formulation

In this section, we discuss a mathematical formulation for
the Maximal Lifetime Problem in WSN designed in [7] and
we present an adaptation of this method to solve α-MLP. In
this way, we will be able to compare this approach to the one
proposed in this paper. To solve the MLP problem, the authors
in [7] proposed a method using the three following steps :

1) Construct all possible cover sets (at most 2n − 1 where
n is the number of sensors). Retain only the cover sets
where the coverage conditions are satisfied (all targets
are covered in the case of complete coverage, bα ∗mc
targets are covered in the case of partial coverage). You
get L′ cover sets said valid.

2) Among the valid L′ cover sets, retain those which are
elementary (where there are no superfluous sensors) and
thus with a smaller number of sensors. We get L valid
and elementary cover sets. Construct the matrix A of
binary coefficient ai,l which is equal to 1 if the sensor
i is in the cover set Cl, 0 otherwise.

3) Write the associated Integer Linear Program and solve
it.

Let ul be the number of times the cover set Cl is activated
during a fixed activation time d. The mathematical model,
designed by the authors of [7], can be formulated with the
notation used in this paper as the following Integer Linear
Program (ILP).

max
∑L
l=1 d× ul

subject to :∑L
l=1 d× ai,l × ul ≤ Ei ∀i ∈ J1, nK

(12)

The objective function expresses the network lifetime. As
constraint (7), the constraints in this formulation guarantee that
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the total consumed energy by a sensor cannot exceed its initial
reserve of energy (here expressed as a number of available time
units Ei for a sensor i). To introduce the β constraint in this
model, it is necessary to build the matrix B where the binary
coefficient bj,l is equal to 1 if the target j is monitored in the
cover set Cl, 0 otherwise. The β constraint for this model can
be formulated as the following:

L∑
l=1

bj,l × ul ≥ βj
L∑
l=1

ul ∀j ∈ J1,mK (13)

Although this formulation seems to be simple as it involves
only one type of variables and two types of constraints, its
construction process is composed of two preliminary complex
steps which are very time-consuming. We have called this
method the 3-steps method to distinguish it from our approach
(called all−in−one method) for which the construction of
the covers sets and the computation of their activation times
are performed in a single model. In part V, our approach is
compared to the 3-steps method and the results show that our
mathematical formulation outperforms the latter.

IV. COVER SETS SCHEDULING PROBLEM

The optimal solution obtained from the BILP consists of
Kopt α−cover sets that have a fixed activation time period d.
These cover sets should be activated successively to cover the
targets during the lifetime of the WSN. In the case of partial
coverage, a target might be covered in a non continuous mode.

Let Θ be the coverage binary matrix for a given solution
such that θj,k is equal to 1 if target tj is covered in the cover
set Ck and 0 otherwise, see matrix (14).

Θ =


θ1,1 θ1,2 · · · θ1,Kopt

θ2,1 θ2,2 · · · θ2,Kopt

...
...

. . .
...

θm,1 θm,2 · · · θm,Kopt

 (14)

In some cases, when the cover sets are not properly sched-
uled, we may have situations where targets remain contin-
uously uncovered during many successive cover sets. For
example, in matrix (15), target 1 is not covered for three
consecutive periods.


C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

t1 1 1 1 0 0 0 1 1 1 1
t2 1 0 0 1 1 1 1 1 1 1
t3 0 1 1 1 1 1 0 1 1 1

 (15)

To avoid this issue which can be viewed as a starvation
phenomenon, we provide in this section a meta-heuristic that
searches for a good approximation of the most favourable
scheduling of the obtained cover sets. For each target and as
much as possible, the new scheduling should smooth fairly,
during the whole lifetime of the network, the periods where
a target is not covered. In other words, the new order should
disperse, for every target, the zeros in the coverage matrix, Θ.

As was mentioned in the introduction section, to measure
the dispersion rate of the uncovered periods for a given covers’

schedule, we use two key criteria, namely: the p-dispersion and
the coefficient of variation criteria.

A. The first criterion: Measure of dispersion (p-dispersion)

Dispersing elements in a set has been already tackled
in the literature and it is called the p-dispersion problem.
Unfortunately, this problem is known to be NP-hard [15] in the
general case and heuristics are required to achieve sub-optimal
solutions but in polynomial time complexity.

Definition IV.1. p-dispersion Problem
Given p elements and a set of n locations where p < n, the

objective of this problem is to select p locations where the p
elements would be as dispersed as possible which amounts to
maximizing the minimum distance (MAX-MIN) between any
pair of the p elements [16] [17] [18].

Let N and U be respectively the set of candidate locations
(of size n) and the solution vector (of size p). Considering a
metric space where the distance between two elements ui and
uj is denoted by dis(ui, uj) and the identity of indiscernible,
symmetry and triangle inequality properties are satisfied, the
discrete p-dispersion problem can be stated as the following:


max(f(U))

Subject to:
f(U) = min(dis(ui, uj) : 1 ≤ i < j ≤ p)
U ⊂ N, |U | = p

(16)

In our case, for a given target ti, the indexes of the vector
(θi,1, · · · , θi,Kopt

) are the locations and the p elements to
disperse in these locations are the coefficients of that vector
that are equal to 0. The distance between two elements
is equal to the absolute value of the difference between
their indexes minus 1, dis(θi,x, θi,y) = |x − y| − 1, with
x 6= y. For example, if θi = (1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1),
dis(θi,3, θi,6) = 2, dis(θi,5, θi,9) = 3 and the minimum
distance between the coefficients equal to 0, min(dis), is
equal to 2. To well disperse the uncovered periods of a target,
the minimum distance should be maximized. Moreover, in
order to not always have the first and last periods uncovered,
the extremities of the vector could be assumed as uncovered
periods and thus, in the last example, the minimum distance
between the coefficients equal to 0 or the extremities, is equal
to 1. The best dispersion of the uncovered periods in this
example is the following: θi = (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1)
where min(dis) = 2.

The p-dispersion problem should be applied to each target
in order to disperse, along the whole lifetime of the network,
the periods where a target is not covered. A cover set in the
solution, obtained by solving the BILP optimization problem,
represents, for a given activation time period, which target
is covered or not. Then modifying the cover’s schedule to
disperse the uncovered time periods of one target might
jeopardize the dispersion rate of the other targets’ uncovered
time periods. Therefore, in this case the objective should be
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maximizing the minimum of the minimum distances for each
target. The problem can be stated as the following:



max(minml=1(f(Ul)))

Subject to:
f(Ul) = min(dis(ui, uj) : 1 ≤ i < j ≤ p)
N = θl

Ul = {θl,j/θl,j = 0, j = 1, · · · ,Kopt}

(17)

From this formulation, it can be seen that the minimum
of the minimum distances between the uncovered periods for
each target in the coverage matrix (15), is equal to 0. If the
same covers are scheduled as in the coverage matrix (18), the
minimum of the minimum distances is equal to 1.


C9 C2 C8 C4 C1 C6 C7 C3 C5 C10

t1 1 1 1 0 1 0 1 1 0 1
t2 1 0 1 1 1 1 1 0 1 1
t3 1 1 1 1 0 1 0 1 1 1

 (18)

The same covers can also be ordered as in the coverage
matrix (19) which has the minimum of the minimum distances
also equal to 1. To differentiate between two solutions with
same minimum of the minimum distances, as in the previous
two coverage matrices, another criterion must be used. In
the next subsection, the coefficient of variation criterion is
presented.


C9 C6 C8 C4 C1 C2 C7 C3 C5 C10

t1 1 0 1 0 1 1 1 1 0 1
t2 1 1 1 1 1 0 1 0 1 1
t3 1 1 1 1 0 1 0 1 1 1

 (19)

B. The second criterion: coefficient of variation

Two distinct solutions having the same minimum of the
minimum distances (first criterion) does not imply that both
solutions have the same dispersion rate for the uncovered
periods. Moreover, solutions giving the same minimum of
the minimum distances is very common especially when the
ratio of the maximum number of uncovered periods per target
to the number of periods (maxmi=0(pi)/Kopt) is high. The
number of uncovered periods per target, pi, depends on β.
To differentiate such solutions, we propose to use the average
of the coefficients of variation (CV) criterion. Indeed, if
the uncovered periods of one target are well dispersed, the
distances between its successive uncovered periods should be
very close to the average of these distances. Therefore, if
the CV of a target is low, these distances are very close to
their average and the uncovered periods are well dispersed.
The coefficient of variation was used instead of the standard
deviation, because the number of uncovered periods might be
different from one target to the other. The relative value of the
CV allows its comparison to the CVs of other targets.

The CV of the distances between the successive uncov-
ered periods of a target, t, with the coverage vector θt =
(θt,1, · · · , θt,Kopt) can be computed as follows:
Let I = (i1, · · · , ip) be an ordered set containing the indexes
of the coefficients equal to 0 in θt and |I| = pt.
Let D = (d0, · · · , dp) be the set of distances between the
coefficients equal to 0 in θt. d0 = i1 − 1 is the distance
between the left extremity and the first coefficient equal to
0. For k = 1, · · · , p − 1, dk is the distance between the
coefficients of indexes ik and ik+1. dp is the distance between
the last coefficient which is equal to 0 and the right extremity.
CV is equal to the standard deviation to the mean of the vector
D.
For example, for θt = (1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1), the CV of
target t can be computed as follows:

µt = (2 + 2 + 3 + 1)/4 = 2

σ2
t = (2− 2)2 + (2− 2)2 + (3− 2)2 + (1− 2)2 = 2

CVt = σt/µt =
√

2/2

To consider the dispersion of uncovered periods for all the
targets in a solution, the average of the CVs of all the targets
is computed. When two solutions have the same value for
the first criterion, the one having the lowest average CVs is
considered to have more dispersed uncovered periods than the
other. The scheduling 18 and 19 give the same value for the
first criterion. Their respective average CVs are equal to 0.87
and 1.06 and therefore the first scheduling is considered to
have well balanced uncovered time periods than the second
one.

C. Method of resolution: Genetic Algorithm

Since, the cover sets scheduling problem is a hard problem
and some solutions could consist of a large number of cover
sets, we present in this section a genetic algorithm (GA)
to find good solutions to this problem in a reasonable time
and maximize the dispersion of the uncovered periods in the
optimal solution obtained by the BILP. Before going into
in details, we first pay a little attention on the rationale of
our choice for GA metaheuristic [19] in order to tackle the
second optimization problem addressed in this paper. Indeed,
broadly speaking, other metaheuristics optimization algorithms
may be more efficient than GA in terms of performances and
convergence speed, but the metaheuristics suitability relies on
the amount of knowledge and the kind of the problem that we
are facing. It was shown, in the literature, that GAs are preva-
lent and natural candidates for ordering optimization problems
like job scheduling, vehicle routing problem (VRP) or the
well-known, a special case of the later, travelling salesman
problem (TSP). They are often able to achieve better trade-
offs between the solution’s quality and the induced computing
time. Moreover, the chromosomes’ representation ensures that,
at each iteration step, the whole genotypic space corresponds
to feasible solutions. In our study, it turns out that the second
optimization problem of covers’ planning, in particular the p-
dispersion problem and its generalization for all the monitored
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targets can be seen as an ordering optimization problem. Hence
the rationale of our choice.

In the following paragraphs the different steps of the genetic
algorithm are described.

1) Encoding: The Cover Sets Scheduling Problem (CSSP)
is considered as the scheduling of Kopt α−cover sets and the
search space corresponds to the Kopt! possible ordering of
these cover sets. A solution of this ordering problem, called
a chromosome in the GA, can be naturally represented by an
ordered sequence (OS) of the Kopt α−cover sets where each
gene corresponds to the index of an α−cover set as outlined
in Figure 2.

1 5 4 23OS={C1,C3,C5,C4,C2}

Fig. 2: Representation of a solution as an ordered sequence.

2) Fitness function: It evaluates the quality of a solution
according to the first and second criteria presented in the
previous sections. Assigning a score to a solution allows its
comparison to other solutions. If two solutions have the same
minimum distance between the uncovered periods for all the
targets, the average coefficient of variation for both solutions
are compared and the one with the lowest average coefficient
of variation has a better uncovered periods dispersion rate.
Therefore, the fitness function returns two values for a given
OS: i) the minimum distance between the uncovered periods
and ii) the average coefficient of variation for all targets.

3) Crossover operator: Among several types of crossover
operators, the LOX (Linear Ordering Crossover) [19] was
adopted because it has been shown in [20] that it is well
adapted for linear permutation problems. The operator LOX
works as follows:
• Two crossover points are selected randomly.
• At the parents’ level, the sub-sequences between the two

crossover points are transferred to the children.
• Starting from the beginning of a chromosome, the genes

are copied in the order in which they appear in the other
parent by omitting the repeated genes.

Figure 3 shows an example of applying the crossover operator
on two parent to generate two new children solutions.

4) Mutation operator: The mutation operator consists of
modifying one or more genes of a solution to improve its
fitness. The swap mutation operator which consists in selecting
two genes to swap them was adopted. Instead of randomly
selecting the two genes to swap, the implemented operator
selects, as the first gene, one of the cover sets that gives the
smallest distance between the uncovered periods. A search
method is then used to discover which other cover set would
give the best improvement when swapped with the first
selected gene. Figure 4 shows an example of applying the
mutation operator on one parent to generate a new child
solution. In the example, target t1 has the least dispersed
uncovered periods due to three successive uncovered periods

1 3 4 52 6 7

2 7 1 34 6 5

Parent 1

Parent 2

3 4 57 1 62

2 7 1 34 5 6

Child 1

Child 2

Crossover Points

Fig. 3: The crossover operator applied on two individuals to
generate two new solutions.

in cover sets C4, C5 and C6. To increase the distance between
successive uncovered periods, it is obvious that C5 should be
swapped with a cover set that does cover target t1. Therefore,
all the possible swaps are evaluated and as seen in the
figure, C8 gives the highest distance when swapped with C5.
Therefore, the mutation operator swaps these two cover sets
and generates a new solution with a better dispersion rate of
uncovered periods.

Figure 5 illustrates the flow chart of the proposed genetic
approach to obtain good solutions for the cover sets scheduling
problem. At the beginning of the algorithm, a set of solutions,
represented by chromosomes and known as the initial popula-
tion, is generated and the fitness of each solution is computed.
At each generation of the genetic algorithm, the individuals
in the population with the best fitness values are selected.
The crossover and mutation operators are then applied on the
selected individuals to generate new solutions. At the end of
a generation, the new solutions are added to the population
and in order to keep the size of the population fixed, the
worst individuals in the population are removed. The iterative
process is stopped when the maximum number of generations
is reached.

The results of the experiments evaluating the performance
of this genetic algorithm are presented in Section V-C1.

V. EXPERIMENTS AND RESULTS

In this section, we present the experiments conducted to
assess the performance of our proposals. As mentionned in the
introduction, two main optimization objectives are considered,
namely: i) the network’s lifetime optimization and the cover
sets scheduling. The former seeks to solve the α-coverage
problem to optimality by proposing a novel BILP mathemati-
cal model, whereas the later focuses on the suitable planning
way of the set covers obatained by the BILP’s solver to smooth
fairly the cumulated targets’ uncovered time periods during the
network’s service. In subsection V-A, the results of solving to
optimality many instances of the α−MLP are presented. In
these experiments, we evaluate the effects of considering the
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(1)

Target 1 has the least dispersed uncovered periods 
due to the uncovered periods in C4, C5 and C6. 

C6

1  0  1  1  1  0  1  1  1
1  1  1  0  1  1  0  1  1

t1
t2
t3

C1 C2 C3 C4 C5 C7 C8 C9
min(dis)=0
min(dis)=1
min(dis)=2

(2)
C1 C2 C3 C4 C8 C6 C7 C5 C9

min(dis)=1
min(dis)=1
min(dis)=2

0 0 0 1 0

Test which cover set will give the max
 minimum distance when swapped with C5

1  0  1  0  0  0  1  1  1 
1  0  1  1  1  0  1  1  1
1  1  1  0  1  1  0  1  1

1  0  1  0  0  0  1  1  1 
min(dis)

1  0  1  0  1  0  1  0  1 
1  0  1  1  1  0  1  1  1

Swap C5 and C8 to improve the dispersion of uncovered periods

1  1  1  0  1  1  0  1  1

Fig. 4: The mutation operator applied on one individual to generate a better solution.

No

Generate Initial
Population

Fitness Calculation

Selection

Crossover

Mutation

Max
Generation?

Yes

End

Start

Generation ++

Fig. 5: General flow chart of the proposed genetic approach.

β constraint instead of the wmin constraint, on the obtained
network lifetime and target’s coverage ratio. We also assess the
quality of the upper bound of the number of α-cover sets by
comparing it for many instances with the numbers of α-cover
sets in the optimal solutions. Finally the results obtained by our
method are compared to those obtained by an existing 3-steps
method proposed in [7]. In subsection V-C, we compare the
results obtained by default from solving the BILP to the ones
provided by the proposed Genetic Algorithm and demonstrate

that this GA can improve the quality of the solutions for
the Cover Set Scheduling Problem. All these experiments
were coded in JAVA and executed over an Intel(R) i7-8650U
processor with 16GB of RAM. Note that the experimental set
up and the parameters used in our study are chosen in such
a way that they are representative and are in line with those
used in the literature (see for example [4], [5] and [6]).

A. Results for α−MLP

IBM ILOG CPLEX 12.5 was used to solve the considered
instances of the BILP, presented in Section III-B. All these
instances consisted of networks with 15 targets and 10 to
40 sensors. In each instance, the n sensors and m targets
were randomly deployed in a 500×500 sqm two-dimensional
area. Each target was at least covered by n/4 sensors. All the
deployed sensors could communicate directly with the base
station and had the same 300m sensing range. Note that the
sensing range value will not affect the BILP’s performances.
It is a system parameter which specifies which targets are
monitored by each sensor. At the start of the surveillance,
they had heterogeneous initial energy, varying between 1 to
12 energy units. One unit of energy allows a sensor to stay
active during one unit of time and to cover during that time all
the targets in its range. All the presented experiments’ results
are averages of 10 randomly generated instances. Four values
for the activation time d, equal to 2, 3, 4 or 6 time units,
were considered in the first set of the experiments and then
it was fixed to 3 time units for the rest of them. Four values
of α equal to 1, 0.85, 0.75 and 0.5 were also considered and
therefore, each partial cover set had to survey at least Tα = 15,
13, 11 and 8 targets respectively. All the parameters of the
experiments for the α−MLP are listed in Table I.

1) The network lifetime for different values of activation
time: This first experiment was conducted to evaluate the
influence of the activation time on the network lifetime,
obtained by solving the BILP, while varying the value of α.
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Parameter Description
Area 500× 500 sqm
Number of sensors (n) 10-40
Number of targets (m) 15
Sensing range (Rs) 300 m
Initial energy of sensor (Ei) 1-12 unit
Activation time for α− cover set (d) 2, 3, 4, 6
Values of α 1, 0.85, 0.75, 0.5
Values of Tα 15, 13, 11, 8

TABLE I: Simulation Parameters for α-MLP

The following activation times were tested: 2, 3, 4 and 6 time
units where sensors can at most participate to 6, 4, 3 or 2
cover sets respectively.
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Fig. 6: Average network lifetime obtained by solving the BILP
for different activation time period values under constraint β.

Figure 6 presents the average lifetime of a network com-
posed of 20 sensors for different activation times and α values.
As expected, with the partial coverage constraint the lifetime
of the network is higher than with the complete coverage
constraint. As more targets are neglected in the cover sets (α is
decreased), the lifetime of the network increases. For example,
with the activation time d = 2, the obtained network lifetime
is largely improved from 14.45% (α = 0.85, Tα = 13) to
96.98% (α = 0.5, Tα = 8) when compared to the network
lifetime obtained under full coverage (α = 1). Figure 6 also
shows that the network lifetime increases when the cover set
activation time is decreased. This is due to the fact that as
the activation times are decreased, a sensor can participate in
more α−cover sets and can fully consume its energy, while
with larger activation times, a sensor can be active in a small
number of cover sets and it will waste a lot of its energy.
For example, with α = 0.5, the network lifetime increases by
57.97% when considering an activation time equal to two time
units (d = 2) instead of six time units (d = 6).

2) The execution time for different values of activation time:
Figure 7 presents the average execution times for solving the
BILP under constraint β for different activation time values.
It can be noticed that as the activation time is increased
the execution time is decreased. This is due to the fact
that the upper bound of the number of cover sets, K is
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Fig. 7: Average runtime to solve the BILP for different values
of activation time under constraint β.

inversely proportional to the activation time. As K increases,
the complexity of the BILP and the search space increases.
For example, with α = 0.5, the execution time is increased by
790.9% when considering (d = 2) instead of (d = 6). Figure
7 also shows that as more targets are neglected (α decreased),
the execution time increases because more cover sets can be
constructed and the upper bound K grows which complexifies
the BILP and widens the search space. For example, for d = 3
the execution time increases by 142.85% when considering
α = 0.5 instead of α = 0.85.

3) The Upper bound versus the optimal value for the num-
ber of α-cover sets under wmin and β constraint: The upper
bound of the possible number of α-cover sets K computed
in part III-C is used to size the BILP presented in (10). In
this paragraph, we investigate whether this K value is often
attainable on the set of processed instances and we measure
the deviation between this value and the optimal number of
α-cover sets (denoted by Kopt) obtained after resolution of the
BILP. This value Kopt corresponds to the number of non-zero
zk variables in the optimal solution. We distinguish two cases,
the case where the wmin constraint is applied, and the case
where the β constraint is applied. Table II presents the upper
bound K and the obtained α−cover sets Kopt of the BILP
formulated previously under either the constraint wmin or the
constraint β. The activation time is fixed to 3 time units.

Table II shows that the upper bounds are higher when using
the wmin constraint instead of the β constraint. For example,
with n = 30 and α = 0.75, the upper bound is 80.7% higher
with the wmin constraint than with the β constraint. This is due
to the fact that the constraint β limits the network’s lifetime
according to the parameter β and consequently the upper
bound of the number of cover sets is also tighter. Moreover,
it can be noticed that as less targets are covered in the cover
sets (α is decreased), the upper bound increases under either
constraint β or constraint wmin. For example, with n = 20,
the upper bound under constraint β increases by 73.57% when
considering α = 0.5 instead of α = 0.85. Nevertheless, the
quality of the obtained upper bounds considerably reduces the
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n=10 n=20 n=30 n=40
wmin β wmin β wmin β wmin β

α K Kopt K Kopt K Kopt K Kopt K Kopt K Kopt K Kopt K Kopt
1 4.9 4.0 4.9 4.0 11.9 9.7 11.9 9.7 23.3 19.7 23.3 19.7 26.2 21.7 26.2 21.7

0.85 12.0 8.8 5.5 4.2 25.9 16.6 14.0 10.8 44.5 30.7 27.2 22.5 54.4 37.3 30.6 25.1
0.75 17.1 10.5 6.5 4.9 34.2 22.1 16.0 12.7 56.2 36.5 31.1 25.9 70.1 47.7 34.8 28.6
0.5 24.6 14.2 9.9 8.0 48.3 29.0 24.3 19.1 78.1 46.2 46.9 38.9 98.5 - 52.5 43.3

TABLE II: The upper bound K and the obtained α−cover sets Kopt for different networks under either wmin constraint or β
constraint

number of variables and constraints in the BILP and allows
us to solve to optimality larger instances than before.

4) wmin constraint versus β constraint: Table III presents
the execution time and lifetime of the BILP formulated previ-
ously under either the constraint wmin or the constraint β for
the same instances as those presented in table II. As under the
β constraint and for the same reasons, when partial coverage is
considered instead of complete coverage, the network lifetime
also increases under the wmin constraint. For example, Table
III shows that for the instance with n = 30, the average
network lifetime under constraint wmin significantly improved
from 55.83% with α = 0.85 to 134.51% with α = 0.5 when
compared to the network lifetime under full coverage (α = 1).
Moreover, it can be noticed that for some instances considering
constraint β instead of constraint wmin might decrease the
network lifetime. For example, for the instances with n = 30
and α = 0.75, when constraint β is considered instead of
constraint wmin, the average network lifetime decreased by
29.04%. This decrease in lifetime under the β constraint
was expected because contrary to the wmin constraint, it
imposes a minimum coverage level per target which makes
it more appropriate for real-life applications requirements. On
the other hand, Table III shows that the execution times are
higher when using constraint wmin instead of constraint β.
For example, with n = 40 and α = 0.75, the execution time
is 120, 516% higher with wmin instead of constraint β. This
is due to the fact that the upper bound of the number of cover
sets K is smaller under the β constraint than under the wmin
constraint and the complexity of the BILP is directly related
to the value of K. Finally, with either constraints, wmin or β,
only the optimal solutions of small networks can be computed
in a reasonable time because it is an NP-hard problem. The
results of instances with n = 40 and α = 0.5 under constraint
wmin are not displayed in Table III because they could not be
solved in a reasonable time.

After comparing the effects of considering β constraint
instead of the wmin constraint in terms of execution time and
network lifetime, in this paragraph, we compare their influence
on the target’s coverage percentage over the total lifetime of
the network. In these experiments, the considered instances
have 20 sensors and the activation time of the cover sets is
fixed to 3 time units. For the sake of simplicity, all targets have
the same monitoring ratio β which is equal to α. Figures 8, 9
and 10 show for α equals to 0.85, 0.75 and 0.5 respectively, the

percentage of coverage for each target over the total lifetime
of the network under either β constraint or wmin constraint.
The results reveal that under the β constraint each target is
on average covered for a period equal or superior to the one
under the wmin constraint.
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Fig. 8: The target’s coverage percentage over the total lifetime
of the network for α − MLP under β constraint , wmin
constraint with α = 0.85, n = 20, β = α = 0.85
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Fig. 9: The target’s coverage percentage over the total lifetime
of the network for α − MLP under β constraint , wmin
constraint with α = 0.75, n = 20, β = α = 0.75

To prove that the wmin constraint is not sufficient to impose
an appropriate global covering for each target, we have solved
10 instances of the α − MLP under the wmin constraint
and counted the number of targets that were not covered
appropriately. A target is considered as not being covered
properly, if its coverage ratio is less than α. The activation
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n=10 n=20 n=30 n=40
wmin β wmin β wmin β wmin β

α Tα L T(s) L T(s) L T(s) L T(s) L T(s) L T(s) L T(s) L T(s)
1 15 12 0.017 12 0.017 29.1 0.042 29.1 0.042 59.1 0.084 59.1 0.084 65.1 0.13 65.1 0.13

0.85 13 26.4 0.05 12.6 0.02 49.8 1.38 32.4 0.14 92.1 49.78 67.5 0.49 111.9 157.79 75.3 0.78
0.75 11 31.5 0.01 14.7 0.02 66.3 103.21 38.1 0.18 109.5 973.53 77.7 0.77 143.1 1399.15 85.8 1.16
0.5 8 42.6 0.24 24 0.04 87 6.95 57.3 0.35 138.6 305.27 116.7 29.43 - - 129.9 615.24

TABLE III: The lifetime and execution time for different networks under either wmin constraint or β constraint
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Fig. 10: The target’s coverage percentage over the total lifetime
of the network for α − MLP under β constraint , wmin
constraint with α = 0.5, n = 20, β = α = 0.5

time was fixed to 3 time units and each instance had 15 targets
to monitor. Table IV shows the results of this experiment
and it can be noticed that a high number of targets is under-
covered with the wmin constraint. Therefore, constraint wmin
is not sufficient to guarantee a good coverage quality for the
monitored targets. For example, for α = 0.75, 37 of the
150 targets (15 targets for 10 instances) were covered for
periods smaller than the desired level. On the other hand,
when considering the β constraint and when setting β = α,
the global and local coverage levels are always satisfied.

α=0.85 α=0.75 α=0.5
Constraint wmin 29 37 22

TABLE IV: Number of targets in 10 instances with a coverage
rate inferior to α under the wmin constraint

Moreover, for the same experiment, Table V presents
the target’s minimum coverage ratio under either the wmin
constraint or the β constraint. The results show that when
only considering the wmin constraint, the target’s minimum
coverage ratio is very low which means that some targets
are extremely under-covered during the network’s lifetime.
For example, for α = 0.5, the experiment showed that at
least one target is just covered during 15% of the network’s
lifetime. On the other hand, under the β constraint, each target
is at least covered during β× 100% of the network’s lifetime.
For example, replacing in the experiment constraint wmin by
constraint β, improves the target’s minimum coverage rate
from 0.2 to 0.75 for α = β = 0.75.

α = β = 0.85 α = β = 0.75 α = β = 0.5
Constraint wmin 0.27 0.2 0.15
Constraint β 0.85 0.75 0.5

TABLE V: Target’s minimum coverage ratio using constraint
wmin or constraint β

5) The relative target’s coverage gain under constraint β:
This section presents for each target how much its coverage
would increase if the partial coverage mode under the β
constraint is adopted instead of the complete coverage mode.
The relative coverage gain per target was computed as follows:∑K

k=1(yj,k × d)− wmin
wmin

× 100
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Fig. 11: The average coverage relative gain for each target
under partial coverage and with α = β = 0.85.
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Fig. 12: The average coverage relative gain for each target
under partial coverage and with α = β = 0.75.
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Fig. 13: The average coverage relative gain for each target
under partial coverage and with α = β = 0.5.

Figures 11, 12 and 13 present, for each target, the average
coverage relative gain under partial coverage and for α equal
to 0.85, 0.75 and 0.5 respectively. They also display the 100%
confidence interval. In this experiment, the number of sensors
was fixed to 20 and the activation time for each cover set was
also set to 3 time units. These figures show that with partial
coverage and under the β constraint each target is at least
covered for a time period equal or bigger than the network’s
lifetime under the complete coverage constraint because all
the coverage gain values are null or positive. On average the
target’s coverage is improved by 6.94%, 19.3% and 53.79%
for α = 0.85, 0.75 and 0.5 respectively. Therefore, the β
constraint can advantageously replace the wmin constraint
because it imposes for each target a coverage level equal or
superior to the one required by the wmin constraint without
computing wmin.

B. Performance comparison between our all-in-one method
and the 3-steps method

In Table VI, we compare the performance of our all-
in-one method with the 3-steps method, proposed in [7].
We applied both methods on smaller instances than in the
previous experiments because the 3-steps method took too
much time to solve to optimality larger instances including 30
or more sensors. The comparison results show that our method
outperforms the 3-steps method in all the tested instances
besides the very small ones. For example, with n = 25 and
α = 0.5, the execution time of our method is on average
99.52% lower than the 3-steps method’s execution time for
the 10 tested instances. This is due to the time complexity of
the two first steps of the 3-steps method where all the valid and
elementary cover sets are enumerated. The number of possible
cover sets is equal to 2n− 1 which is an exponential function
of n and each time the number of sensors is increased by 1,
the number of possible cover sets doubles. For this reason, the
3-steps method cannot solve in a reasonable time an instance
including more than 25 sensors. It took around four hours to
solve an instance with n = 30 and α = 1.

Moreover, as α decreases in the partial coverage case, the
number of the enumerated valid and elementary α-cover sets,
L, increases. For each valid and elementary α-cover set, a
constraint is added to the linear model in the third step of
the 3-steps method. Therefore, as L increases the model takes
more memory and becomes harder to solve by the IBM ILOG
CPLEX which imposes a size limit on the model. On the other
hand, our method can compute the optimal solution for larger
instances, up to n = 40, with an execution time inferior to 10
minutes as shown in Table III.

In conclusion, our approach outperforms the 3-steps method
and can solve larger instances.

C. Results for CSSP

In this section, we evaluate the proposed genetic algorithm
to optimize the scheduling of the cover sets of the solutions
obtained by the resolution of the BILP. The crossover and
the mutation rates of the GA were set to 80% and 20%
respectively. As described in Section IV-C, a chromosome
represents the order of the α−cover sets in a given solution
and its size is always equal to Kopt. All the experiments’
results are averages for 10 randomly generated instances. All
the GA’s parameters are listed in Table VII.

Parameter Description
Number of generations 100
Population size 100
Probability of crossover 0.8
Probability of mutation 0.2

TABLE VII: The genetic algorithm’s parameters

1) The GA versus the exhaustive search method for Cover
Sets Scheduling Problem on small networks: Solving the cover
sets scheduling problem seeks to plan efficiently the cover
sets of a given solution in order to smooth fairly the targets’
uncovered periods throughout the network’s lifetime. To show
the usefulness of our proposal, two scheduling approaches
were compared in this section: the exhaustive (brute-force)
search method and the proposed GA. Their results were also
compared to the default scheduling obtained by solving the
BILP. Due to the factorial time complexity of the brute-force
search, this method can only be applied to small instances
and therefore the experiments of this section are limited to
solutions including 6 to 11 partial cover sets.

Default scheduling Exhaustive search method GA
Kopt min(dis) Average CV min(dis) Average CV min(dis) Average CV

6 0.3 0.63 0.9 0.32 0.9 0.32
7 0 1.56 0.5 0.62 0.4 0.64
8 0.3 1.27 0.9 0.44 0.9 0.44
9 0 2.38 0 1.06 0 1.21

10 0.1 0.6 1.9 0.15 1.8 0.17
11 0.5 0.39 2.7 0.06 2.6 0.07

TABLE VIII: Minimum of the minimum distances and average
coefficient of variation for cover sets scheduling returned by
the BILP (default), the exhaustive search method and the GA.

In Section IV, two criteria were proposed to compare the
solutions returned by the search methods: p-dispersion and
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n=10 n=15 n=20 n=25
Rt Rt Rt Rt Rt Rt Rt Rt

α Tα L (3-steps (all-in-one L (3-steps (all-in-one L (3-steps (all-in-one L (3-steps (all-in-one
method) method) method) method) method) method) method) method)

1 15 12 0.034 0.042 22.5 0.383 0.036 29.1 9.062 0.084 46.8 378.145 0.059
0.85 13 12.6 0.039 0.02 24.9 0.476 0.064 32.4 8.92 0.14 53.4 499.964 0.301
0.75 11 14.7 0.078 0.02 29.1 0.417 0.084 38.1 9.55 0.18 61.2 521.282 0.394
0.5 8 24 0.046 0.04 44.7 0.463 0.139 57.3 9.72 0.35 91.5 408.854 1.957

TABLE VI: Comparison of the two methods in terms of running time (Rt) in seconds.

coefficient of variation. Table VIII presents the minimum of
the minimum distances between uncovered periods (min(dis))
and the coefficient of variation of these distances (CV) for the
best solutions found by each of the three methods with the
number of cover sets varying from 6 to 11. It can be noticed
that as expected the exhaustive search method always returns
the solutions with highest min(dis) and CV, which are the
best solutions according to the chosen criteria. It can also be
seen that the min(dis) and CV of the solutions returned by
the GA are very close to the ones returned by the exhaustive
search method. For some instances, like when Kopt is equal to
6 or 8, the GA finds the optimal scheduling for the cover sets.
For the other instances, the difference between the min(dis)
of the optimal solution and the one returned by the GA is less
than or equal to 0.1. In all the instances, the GA improves the
default scheduling returned by the BILP. Table VIII also shows
that in some cases, as with Kopt = 9, the min(dis) criterion
is not sufficient to compare the obtained solutions and the
second criterion, CV, must be considered. As a consequence,
the results in Table VIII highlight that if the obtained α−cover
sets are scheduled a a suitable way, we can achieve in a
reasonable time a well-balanced smoothing of the targets’
uncovered periods throughout the network’s lifetime.

2) The performance of the proposed GA on large networks:
In order to evaluate the performance of the proposed GA on
large networks and since the exhaustive search cannot solve
them in a reasonable time, the scheduling returned by the GA
was only compared to the default scheduling. The GA’s pa-
rameters, crossover and mutation rates, and initial population
size, were kept the same as in the previous experiments. On
the other hand, the number of partial cover sets to schedule
varied between 25 and 150. When the ratio of the maximum
number of uncovered periods per target to the number of
periods is high, most of the solutions give the same minimum
of the minimum distances, the first criterion is not sufficiently
discriminatory. For this reason, we only focus on the second
criterion in this section. Hence, Figure 14 only presents the
average coefficient of variation of the solutions returned by
default or by the GA for different numbers of α−cover sets.
It can be noticed that the scheduling returned by the GA is
better than the one returned by default for all the considered
configurations. The improvement over the default scheduling
varies from one instance to the other and it is hard to quantify
this improvement because it also depends on the quality of the
default scheduling. For example, the obtained improvement is
equal to 49.05% for Kopt = 75 where the default scheduling is

probably very poor and there is a lot of room for improvement.
On the other hand, for the 150 cover sets case, the GA does
not significantly improve over the default scheduling which is
already of good quality.
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Fig. 14: Average coefficient of variation for solutions of
different problem sizes returned by the BILP (default) or the
GA.

VI. CONCLUSIONS

In this paper, we have addressed the problem of partial
coverage in heterogeneous sensor networks. The aim is to
organize the sensor nodes into a number of non-disjoint
subsets nodes that are scheduled successively to improve the
network’s QoS under the constraints of energy saving and
partial coverage. To this end, a novel mathematical BILP
is proposed to solve to optimality the α-coverage problem.
Moreover, provable guarantees of the upper bound for the
number of cover sets that can be built are given. Unlike earlier
works in the literature, to improve the coverage quality of the
network while prolonging its lifetime, we provided necessary
and sufficient condition constraints to meet, at the same time,
both global and local monitoring quality thresholds. Another
important contribution of this paper is the design of an efficient
cover sets scheduling to fairly smooth the targets’ uncovered
periods during the lifetime of the network. Different scenarios
were studied and the obtained results corroborate the merits
of our proposals.

Future studies should target the case of large scale networks
where nodes have to decide cooperatively and in a distributed
way which of them will remain in sleep or active mode while
at least ensuring the minimum level of coverage quality. In this
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context, particular attention should be paid for connectivity
between senors presenting critical articulation points in the
network. We expect a difficult challenging trade-off between
the induced communication costs, the network’s energy con-
sumption, and the achieved coverage quality.

REFERENCES

[1] Y. Wu, C. Ai, S. Gao, and Y. Li, “P-percent coverage in wireless
sensor networks,” in International Conference on Wireless Algorithms,
Systems, and Applications. Springer, 2008, pp. 200–211.

[2] M. Gentili and A. Raiconi, “α-coverage to extend network lifetime on
wireless sensor networks,” Optimization Letters, vol. 7, no. 1, pp. 157–
172, 2013.

[3] D. Zorbas, D. Glynos, P. Kotzanikolaou, and C. Douligeris, “Solving
coverage problems in wireless sensor networks using cover sets,” Ad
Hoc Networks, vol. 8, no. 4, pp. 400 – 415, 2010.

[4] F. Carrabs, R. Cerulli, A. Raiconi et al., “A hybrid exact approach
for maximizing lifetime in sensor networks with complete and partial
coverage constraints,” Journal of Network and Computer Applications,
vol. 58, pp. 12–22, 2015.

[5] S. Chand, B. Kumar et al., “Selective α-coverage based heuristic in
wireless sensor networks,” Wireless Personal Communications, vol. 97,
no. 1, pp. 1623–1636, 2017.

[6] S. Das and M. K. Debbarma, “A survey on coverage problems in wireless
sensor network based on monitored region,” in Advances in Data and
Information Sciences. Springer, 2019, pp. 349–359.

[7] Y. E. Ahmed, K. H. Adjallah, R. Stock, I. Kacem, and S. F. Babiker,
“Ndsc based methods for maximizing the lifespan of randomly deployed
wireless sensor networks for infrastructures monitoring,” Computers &
Industrial Engineering, vol. 115, pp. 17 – 25, 2018.

[8] M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target
coverage in wireless sensor networks,” in Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.,
vol. 3. IEEE, 2005, pp. 1976–1984.

[9] F. Castaño, E. Bourreau, N. Velasco, A. Rossi, and M. Sevaux, “Ex-
act approaches for lifetime maximization in connectivity constrained
wireless multi-role sensor networks,” European Journal of Operational
Research, vol. 241, no. 1, pp. 28–38, 2015.

[10] F. Castaño, A. Rossi, M. Sevaux, and N. Velasco, “A column generation
approach to extend lifetime in wireless sensor networks with cover-
age and connectivity constraints,” Computers & Operations Research,
vol. 52, pp. 220–230, 2014.

[11] R. Cerulli, M. Gentili, and A. Raiconi, “Maximizing lifetime and
handling reliability in wireless sensor networks,” Networks, vol. 64,
no. 4, pp. 321–338, 2014.

[12] M. Cardei, J. Wu, and M. Lu, “Improving network lifetime using
sensors with adjustable sensing ranges,” International Journal of Sensor
Networks, vol. 1, no. 1-2, pp. 41–49, 2006.

[13] H. Mostafaei and M. S. Obaidat, “A greedy overlap-based algorithm for
partial coverage of heterogeneous wsns,” in GLOBECOM 2017-2017
IEEE Global Communications Conference. IEEE, 2017, pp. 1–6.

[14] K. Deschinkel, “A column generation based heuristic to extend lifetime
in wireless sensor network,” Sensors and Transducers Journal, vol. Vol.
14-2, pp. 242–253, 2012, 10.1007/s10878-010-9332-8.

[15] E. Erkut, “The discrete p-dispersion problem,” European Journal of
Operational Research, vol. 46, no. 1, pp. 48–60, 1990.

[16] A. Suzuki, R. Uehara, T. Uno, and K. Wasa, “Max-min 3-dispersion
problems,” in Computing and Combinatorics: 25th International
Conference, COCOON 2019, Xi’an, China, July 29–31, 2019,
Proceedings. Springer, p. 291.

[17] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi, “Heuristic and special
case algorithms for dispersion problems,” Operations Research, vol. 42,
no. 2, pp. 299–310, 1994.

[18] Y. Okamoto, Y. Otachi, T. Saitoh, R. Uehara, T. Uno, and K. Wasa,
“Exact algorithms for the max-min dispersion problem,” in Frontiers
in Algorithmics: 12th International Workshop, FAW 2018, Guangzhou,
China, May 8–10, 2018, Proceedings, vol. 10823. Springer, 2018, p.
263.

[19] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press, 1975, second edition, 1992.

[20] P. Lacomme, C. Prins, and W. Ramdane Cherif, “Evolutionary al-
gorithms for periodic arc routing problems,” European Journal of
Operational Research, vol. 165, pp. 535–553, 09 2005.

16


