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Besançon, France

Abstract

Nephroblastoma is the most common kidney tumour in children. Its diagnosis

is based on imagery. In the SAIAD project, we have designed a platform for op-

timizing the segmentation of deformed kidney and tumour with a small dataset,

using Artificial Intelligence methods. These patient’s structures segmented by

separate tools and processes must then be fused in order to obtain a unique

numerical 3D representation. However, when aggregating these structures into

a final segmentation, conflicting pixels may appear. These conflicts can be

solved by IA techniques. This paper presents a synthesis of our segmentation

contribution in the SAIAD project and a new fusion method. The segmenta-

tion method uses the FCN-8s network with the OV
2

ASSION training method,

which allows segmentation by patient and overcomes the limited dataset. This

new fusion method combines the segmentations of the previously performed

structures, using a simple and efficient network combined with the OV
2

ASSION

training method as well, in order to manage eventual conflicting pixels. These

segmentation and fusion methods were evaluated on pathological kidney and

tumour structures of 14 patients affected by nephroblastoma, included in the
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final dataset of the SAIAD project. They are compared with other methods

adapted from the literature. The results demonstrate the effectiveness of our

training method coupled with the FCN-8s network in the segmentation process

with more patients, and in the case of the fusion process, its effectiveness cou-

pled with a common network, in resolving the conflicting pixels and its ability

to improve the resulting segmentations.

Keywords: Medical image segmentation, Medical image fusion, Deep

Learning, Conflict management, Cancer tumour

1. Introduction

The Wilms tumour, also called Nephroblastoma, is one of the most frequent

abdominal tumours observed in children (generally from one to five years of

age) and represents 5% to 14% of malignant paediatric tumours. This type of

tumour is developed from embryonic structures in the kidney. Most often, its5

initial diagnosis is based on imagery. Generally, ultrasound observations are ini-

tially planned in order to confirm the tumour’s existence and to approximate its

position. A CT scan (Computed Tomography scan) then locates it, along with

the affected organs and healthy tissues, with greater accuracy. Radiologists and

surgeons need 3-Dimensional (3D) representations of the tumour and the border10

organs in order to confirm the diagnosis, plan the surgery (estimated quantity

of blood loss, specialized equipment required, estimation of the duration of the

surgery, anticipation of surgical risks, etc.) and also guide the actions of the

surgeon during the surgery. This 3D representation is currently done through

manual or semi-automatic segmentation, which is a long and time-consuming15

task.

The French-Swiss border project SAIAD (Automated Segmentation of Medi-

cal Images Using Distributed Artificial Intelligence) aims at obtaining automatic

segmentation of the nephroblastoma and other abdominal structures through

Artificial Intelligence (AI) methods. However, nephroblastoma is a rare tumour20

(the number of patients being limited, with for example the acquisition of data
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from 14 patients in 14 years at the University Hospital of Besançon), which can

reach patients of various ages (between 1 and 15 years old). The structures,

which already vary in size depending on age, also vary between patients. Thus,

the size of the tumour, which is principally rounded in shape, can vary greatly25

from one patient to another, and the kidney affected, compressed by the tumour,

also has a very varied shape and size. Solutions must be found to overcome the

lack of data and the wide variety of structures encountered.

AI is a powerful tool that may provide a viable solution for fully automated

treatment, but with all the constraints of nephroblastoma segmentation, a single30

AI method is not efficient enough to achieve correct segmentation for all abdom-

inal structures. This is why each structure of the SAIAD project is segmented

separately by a technique specifically adapted to a structure, and adapted to

the limited data [1].

Once the segmentation step is completed for each structure, the different35

segmentations must be aggregated together to obtain a final consensus segmen-

tation. This aggregation is not easy to carry out, because when the different

segmentations are superposed, some areas of conflicting segmentations can ap-

pear on the labelled pixels belonging to the different structures. Other classical

fusion techniques aggregated in a model have already been tested within the40

framework of the project [2].

1.1. Semantic segmentation

Many methods exist for image segmentation through Deep Learning and

more particularly through CNNs, whose notions are presented in [3]. The first

Fully Convolutional Network (FCN) was designed by Long et al. [4], where45

the fully connected layers are replaced by convolutional layers. SegNet [5] is a

convolutional network that was developed to perform segmentation of indoor

scenes and road scenes in real time. DeconvNet (Deconvolution Network) [6]

is a CNN whose principle consists of a convolutional network followed by a

deconvolutional network. DeepLab [7], revisits atrous convolution in order to50

solve the problem of segmenting objects at multiple scales.
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In medical and biology applications, Thong et al. [8] used CNN to perform

segmentation of healthy kidneys. U-Net [9] performed segmentation of cells in

microscopy images. Currently, CNNs obtain accurate results on the recognition

of the shape of a healthy kidney, because the shapes and areas are more or less55

the same from one subject to another. But there are gaps for the segmentation

of more complex structures with very different forms depending on the patient

in the literature. Neural networks for segmentation also need a large number of

heterogeneous data in order to be able to transcribe reliable results. However,

nephroblastoma is not a common tumour and the number of data is limited.60

In addition, pathological kidneys have very different forms from one patient to

another, with unpredictable shapes and situations. This then us to find another

method to segment more complicated structures with limited data.

In our previous contribution [1], the nephroblastoma was segmented by a

CNN (FCN-8s) associated with the OV
2

ASSION training method (called the65

FCN-8s-OV
2

ASSION segmentation method), specially designed for training on

a small dataset, and tested on a single patient. The pathological kidney was

segmented by a Cased-Based Reasoning (CBR) coupled with a region growing

technique, tested on a few slices of one patient.

1.2. Multiple segmentation fusion70

The combination of multiple segmentations is less frequent than the seg-

mentation process in the literature. Nevertheless, segmentation fusion (several

segmentations of the same source image, calculated by more basic segmenta-

tion algorithms) can lead to better segmentations, instead of using a unique

and complex segmentation method. It can also be used in the case of fusion75

of different complementary structures, as in our case, in order to arbitrate the

conflicting pixels and obtain the final segmentation containing all the struc-

tures. Intuitive methods can be employed, such as the use of majority vote

[10] or the intersection and the union [11]. However, these methods are limited.

Many methods have emerged with the use of different metrics, via an itera-80

tive algorithm (Iterated conditional modes) with the Variation of Information
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(VoI) criterion [12, 13]; with the F-Measure (or precision-recall criterion) [14];

with the Global Consistency Error (GCE) [15]; or the probabilistic Rand Index

(PRI) measure, for the fusion of multiples segmentations [16]. Another approach

is the use of spatial and intensity information (like the pixel’s grey level and the85

neighbour’s labels) of an image and its segmentations for the fusion of MR-T2

brain images segmentation map [17]. Recently, a new fusion method based on

different models, which combined different fusion methods, has been used for

the fusion of the nephroblastoma and the pathological kidney structures and is

tested on three patients [2]. These different methods use different metrics (like90

the VoI and Dice metrics) and different information present in the CT-scans and

segmentations such as pixel intensity and Euclidean distances between pixels.

The fusion of multiple segmentations using neural networks is a little-explored

area of research. Most methods perform the fusion at the same time as the seg-

mentation process in the same network. This is the case of Hu et al. [18], which95

uses a deep convolutional neural network consisting of seven convolutional lay-

ers, five ReLU layers, and two pooling layers that are used in order to combine

two feature maps in an image segmentation method.

In addition, most methods apply fusion in the context of saliency detection.

Saliency detection aims to highlight and segment the most important or visu-100

ally distinctive objects or regions in an image by extracting its discriminative

features and then computing their importance in the image. Li et al. [19] pro-

posed a saliency detection approach that combines the segmentations from a

pixel-level saliency map and a region-level saliency map using a single convolu-

tional layer with a 1×1 kernel. The same fusion system is also proposed to fuse105

segmentations from five saliency maps [20]. In the saliency detection method

proposed by Tang et al. [21], the fusion of two segmentations, each from a pixel-

level saliency map and a region-level saliency map, is also used. The authors

also incorporate the original image in the fusion process in order to provide

more information and correct the segmentation in the final saliency map. The110

fusion system’s architecture consists of one concatenation layer and three convo-

lutional layers, outside of the segmentation process. Xiao et al. [22] developed
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another saliency detection method that uses a Recurrent Convolutional Neural

Network to extract four saliency maps from an image. These maps are later

concatenated and fused by three convolutional layers, followed by a Rectified115

Linear Unit (ReLU) layer. Another saliency method [23] fuses multiple saliency

feature maps through a more complex convolutional neural network (outside of

the segmentation process), and the resulting segmentation is passed through a

Laplacian propagation to enforce better spatial consistency in the final saliency

map. But these fusion networks are not applied at the fusion of complementary120

segmentations.

All these methods are present in the comparative Table 1 with more de-

tails. To simplify the networks architecture used, we use conv(N,K), pool(T,K),

deconv(N,K), fc(N), sig, relu and dropout to indicate the different layers with

N the number of output, K the kernel size and T the type of pooling layer.125

Table 1: Comparison of the different fusion methods present in literature.

Classical fusion methods Working level Calculation specificity

by VoI metric [12] pixel-level
Classical entropy +

Mutual information

by F-Measure metric [14] region-level
Precision measure +

Recall measure

by GCE metric [15] region-level Local refinement error (LRE)

by PRI metric [16] pixel-pair-level Rand Index (RI)

by Feng et al. [17] pixel-level
Euclidean distance +

Greyscale intensity

based on

multiple methods [2]
pixel-level

Aggregation of multiple fusion methods +

Fusion of results by majority vote

IA fusion methods Application field Network

by Hu et al. [18] Interactive segmentation

conv1(512, 3) − relu1 − conv2(512, 3) − relu2 − conv3(512, 3)

−relu3 − pool3(MAX, 2) − conv4(4096, 7) − relu4

−conv5(4096, 1) − relu5 − conv6(1, 1) − deconv(1, 64)

by Li et al. [19] Saliency detection conv1(1, 1)

by Tang et al. [21] Saliency detection conv1(64, 3) − conv2(128, 3) − conv3(1, 1)

by Xiao et al. [22] Saliency detection
conv1(32, 3) − relu1 − conv2(64, 3)

−relu2 − conv3(1, 3) − relu3

by Qu et al. [23] Saliency detection

conv1(6, 5) − sig1 − pool1(MEAN, 2) − conv2(12, 5)

−sig2 − pool2(MEAN, 2) − conv3(24, 3) − sig3

−fc4(200) − relu4 − dropout4 − fc5(2)
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This paper proposes a synthesis of our segmentation contributions and a new

fusion system based on neural networks, tested on the final set of 14 patients at

our disposal in the SAIAD project:

• We show the performance of our neural network segmentation system, de-

signed to operate per patient on a small dataset using our training method130

called OV
2

ASSION. This time, we are testing this segmentation system on

the structure of the tumour and the pathological kidney of our patients;

• We then propose a new neural network fusion method, by designing a

simple efficient network, inspired by classical segmentation networks, com-

posed of an upsampling layer;135

• We also use the OV
2

ASSION specific training method in order to test

the fusion of the tumour and pathological kidney segmentations of each

patient, with a small training dataset;

• Segmentation and fusion systems are tested for the first time on 14 pa-

tients (previously only one patient had been tested with the segmentation140

system).

This paper is organized as follows: Section 2 presents the general architecture

of the SAIAD project, with a description of the segmentation method and the

new fusion method; Section 3 presents the experiments and the performances of

the segmentation and fusion methods; lastly, these results are finally discussed145

in Section 4.

2. Proposed method

This part of the paper first presents the general architecture of the platform

of the SAIAD project, and more particularly its segmentation and fusion layers.

The way of the OV
2

ASSION method, used in the segmentation method, has been150

integrated into the fusion of multiple segmentations is then presented.
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2.1. The SAIAD project’s architecture

Figure 1 shows the general architecture of the system designed in the SAIAD

project. It is composed of three layers. The first one is the data layer, which

contains a database for each segmentation system. Each database has access155

to all of the CT scan images (Atlas) and expert knowledge, such as the cor-

responding manual segmentations (ground truths) and the data and metadata

of CT scans stored as Dicom files. The second layer is the segmentation layer,

where CT scans are segmented by AI systems. The nephroblastoma and kidney

segmentations can be performed independently by a Deep Learning (FCN-8s)160

coupled with the OV
2

ASSION method [1]. The CBR coupled with a region

growing system, also used for the pathological kidney segmentation in [1], does

not currently allow the segmentation of an entire patient. Subsequently, this

method is therefore not used to obtain the segmentations of a patient’s patho-

logical kidney (before being fused with the segmentations of his tumour). A165

Conditional Random Field (CRF) post-processing [24] is applied, allowing im-

provement of the segmentations. At the end of the segmentation processes, the

system gives two complementary segmentations in two different images and the

fusion layer combines them with a deep neural network.

In addition to the work done in [2] (The creation of new models for the fusion170

of our two structures, which use a combination of different fusion methods), we

have now used a Deep Learning fusion method, with the OV
2

ASSION training

method to train the neural network used in this last fusion step of the process.

2.2. Overlearning Vector for Valid Sparse SegmentatIONs (OV
2

ASSION) method

for segmentation and the fusion175

Having a sufficiently large number of data representative of all possible data

is essential for training a deep neural network. Manual segmentation of one

patient is a time-consuming process (six to eight hours for an expert). Con-

sequently, at the scale of a hospital, the learning set composed of the entire

segmented abdomens of patients may be composed of tens of cases only. This180
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Figure 1: General schema of the SAIAD project.

may not be large enough for conventional learning since each tumour and patho-

logical kidney is unique and varies greatly from one patient to another. Nev-

ertheless, for any given patient, these structures have the same shades of grey

and are generally homogeneous. As shown in Figure 2, the OV
2

ASSION method

is based on the overlearning of some manually segmented slices of the patient,185

separated by a gap in order to calculate the segmentation of the entire set of

unsegmented slices of this patient automatically.

In this particular training method, we need to determine the training dataset

and the testing dataset. This datasets are formalized in the format of a vector

noted Vg which determines for each slice of a patient, the slices taken into ac-190

count for training and those for testing, all according to the gap g. The possible

values for a slice are 1 if it is taken into account for training and 0 if it is taken

into account for testing.
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Figure 2: The 3D representation of the tumour and pathological kidney. Each

black line represents the selected slice for the training of the neural network. The

gap between the chosen slices is the same to recover information homogeneously

at different levels.

For a given gap, there are several possibilities for the set of selected slices

for training, depending on the first slice considered for training. Consider a Vg

vector with a g gap and being part of V (corresponding to the set of all possible

combinations), such that:

Vg ∈ V = {({0, 1}1, . . . , {0, 1}n)} (1)

Where n is the number of the patient’s slices.

The learning set LS of the neural network, whether it is a network for seg-

mentation or fusion, then contains all the slices used for training that have been

determined by a vector, and is defined as:

LS = {Sj , . . . , Sk} (2)

Where Sj , . . . , Sk represent all the selected slices for training.195

However, there are different possible vectors for a given gap, depending on

the first slice included in LS. Vg then corresponds to the set of possible vectors

as a function of g, such as:

Vg =

h⋃
i=1

(Vg)i (3)
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Where h is the number of possible vectors for the g gap and (Vg)i is the i number

vector of the g gap.

Thus, the (Vg)1 vector corresponds to a vector starting by including the first

slice at LS before including all g+1 slices, the (Vg)2 vector starting by including

the second slice at LS, and so on. An example of these different vectors on 60200

slices for a 2 gap is shown in Table 2 where three vectors are then possible.

Table 2: Example of possible vectors for a gap of 2 (V2)i and for 60 slices of a

patient (n = 60).

S1 S2 S3 S4 S5 . . . S58 S59 S60

(V2)1 1 0 0 1 0 . . . 1 0 0

(V2)2 0 1 0 0 1 . . . 0 1 0

(V2)3 0 0 1 0 0 . . . 0 0 1

The formalization of the addition of slices in LS can be done by a f function

which allows to select a slice having a value of 1 in a vector (Vg)i:

f : LS × {0, 1} → LS|∀i ∈ {1, . . . , n}

f(Si, 0) = Ø

f(Si, 1) = Si

(4)

And finally we can define the final LS, by introducing a F function that uses

the f function following the (Vg)i vector, going through all the elements of the

vector.

F : V → LS|F (Vg)i) =

n⋃
j=1

{f(Sj , ((Vg)i)j−1)} (5)

With this method, the trained dataset is composed of selected slices with a

certain gap between them, and the test dataset is composed of the rest of the

patient’s slices.

In our case, the different structures have only a slight difference from one205

neighbouring slice to another. This semi-automatic method can be effective for

the fusion of multiple segmentations. Nevertheless, the OV
2

ASSION implemen-

tation for this fusion step will consider the manual segmentations, which have

already been considered during the segmentation step before fusion.
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2.3. The DL network for the fusion210

For the fusion of multiple complementary segmentations with the method

indicated above, a common neural network is used. This neural network, whose

general architecture is presented in Figure 3, is inspired by the CNN used for

image segmentation and more particularly by the networks of Long et al. [4].

The network for the fusion is composed of eight convolutional layers and two215

pooling layers. It consists of the application of two 3x3 convolutions, each

followed by a rectified linear unit (ReLU), and a 2x2 max pooling with a stride

of 2 for downsampling, with the whole process repeated twice. Then, two other

3x3 convolutions without padding with ReLU are applied and followed by a 1x1

convolution in order to obtain the desired number of classes. Finally, a 20x20220

up-convolution (or deconvolutional layer) is used to get a result with the same

size as the input of the network. For the training phase, like the training for

segmentation, all chosen slices are used for the prediction of the segmentation

fusion of the patient’s entire nephroblastoma.

Figure 3: Overall architecture of the proposed network.

3. Experiments225

For all the methods (segmentation and fusion) which use the OV
2

ASSION

training method, one training was performed per patient and for each structure.

Likewise, a gap of 4 is used to select training slices.
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The FCN-8s-OV
2

ASSION segmentation method will be compared with the U-

Net architectures with the OV
2

ASSION training and the FCN-8s with a classical230

training (i.e. by performing training on all the other patients in order to allow

segmentation of the current patient).

After, the pathological kidney segmentation and the tumour segmentation

was fused by the new fusion system with the OV
2

ASSION method, called the

DL-OV
2

ASSION fusion method, and compared by the fusion systems of Corbat235

et al. [2] and others of the literature.

All neural networks were developed in Python with the Caffe library [25], on

a Tesla Kepler K40 GPUs from Mésocentre at the University of Franche-Comté.

3.1. Dataset and ground truth

CT-Scan of 14 nephroblastoma patients are used in the SAIAD project for240

the segmentation process and the segmentations fusion process. These patients

come from the Centre Hospitalier Régional Universitaire de Besançon (Univer-

sity Hospital of Besançon) between 2005 and 2018. There are as many girls as

boys and their age varies between 1 and 15 years, with an average age of 5 and

a half years. The tumoral kidney can be either the left or the right kidney and245

the number of slices to visualize all the target structures vary from 30 to 147 per

patient, with an average of 97 slices per patient (in total, we have 1344 slices

for all patients).

Per patient, the training dataset and the testing dataset are the same in the

segmentation stage and the fusion stage. Using the OV
2

ASSION training method250

with a gap of 4 (starting with the first slice used for training) and an average

of 97 slices per patient, we have an average of 20 slices for the training set and

77 slices for the testing set. That’s about 20% of a patient’s slices that are used

for training network.

We had the ground truth segmentations of all the patients (i.e. the desired255

segmentations), carried out by experts (surgeons and radiologists) at the same

hospital. All of the CT scan images and ground truths had the same size: 512

x 512 pixels. These ground truths were used in order to verify the reliability
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of our processes and the resulting segmentations through the Dice coefficient.

The Dice’s score varies between 0 and 1. Between two segmentations S and S′,260

S represents the pixels of the ground truth, and S′ represents the pixels of the

calculated segmentation given by the system. A score of 0 denotes that the two

segmentations are completely different, whereas a score of 1 indicates that they

are identical.

The Dice is then defined as:

Dice(S, S′) =
2 ∗ TPS,S′

2 ∗ TPS,S′ + FPS,S′ + FNS,S′
(6)

where TPS,S′ is the number of true-positive pixels between S and S′; FPS,S′ is265

the number of false-positive pixels; and FNS,S′ is the number of false-negative

pixels.

In addition, the IoU metric (also known as the Jaccard index and the Haus-

dorff distance) is calculated in order to compare the results according to different

metrics.270

3.2. Tumour and pathological kidney segmentation

3.2.1. Training optimization and post-processing

For the FCN-8s-OV
2

ASSION method, we used the pre-trained parameters

of the conv1 to fc7 layer of the PASCAL VOC 2012 database [26]. The last

convolution was modified with two-channel dimensions to predict two scores:275

the background and the chosen structure. We used a learning rate of 1e-12 and

10,000 iterations for the training. For other comparative methods, we used a

learning rate of 1e-8 with 100,000 iterations for the training of traditional FCN-

8s, and the same pre-trained parameters as FCN-8s-OV
2

ASSION. We used a

learning rate of 1e-9 with 10,000 iterations for the U-Net-OV
2

ASSION, but the280

network was pre-trained on one patient during 75,000 iterations. A CRF post-

processing [24] was applied at the end of each neural network for segmentation

process.
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3.2.2. Results of the segmentations

Initially, as the structure of the tumour is simpler to segment than the285

structure of the pathological kidney, we compared the effectiveness of our FCN-

8s-OV
2

ASSION method on the segmentation of the tumour with other methods.

In particular, with FCN-8s architecture and traditional training, and with U-Net

architecture coupled with OV
2

ASSION training. Using the U-Net architecture

with traditional training does not give any results because the network is deeper290

and there is not enough data to allow the network to train correctly.

Table 3 presents the mean results, in the different metrics, on 14 patients of

tumour segmentation, by the 3 methods. We can see that our method on average

achieves the best tumour segmentation, with a Dice and a IoU of 91.54% and

84.68% . The Hausdorff distance is also smaller with our training method cou-295

pled to the different networks. Traditional training with the FCN-8s network

has not been conclusive, because in the absence of more consistent data, the

network segmented some patients poorly, resulting in a high standard deviation.

The U-Net-OV
2

ASSION method also performs correct segmentation. However,

the computation time for segmenting a patient is three times longer with this300

method than with the FCN-8s-OV
2

ASSION.

Table 3: Mean results (in Dice score, IoU metric and Hausdorff distance between

calculated segmentations and ground truths) on 14 nephroblastoma patients of

the tumour segmentation by our FCN-8s-OV
2

ASSION method, compared with

the traditional FCN-8s and the U-Net with the OV
2

ASSION training method.

Dice ± Std Dev IoU ± Std Dev HD ± Std Dev

FCN-8s-OV
2

ASSION

method
0.9154 ± 0.0449 0.8468 ± 0.0726 4.27 ± 1.41

U-Net-OV
2

ASSION

method
0.8994 ± 0.0429 0.8197 ± 0.0687 4.12 ± 1.43

FCN-8s 0.6708 ± 0.3448 0.5828 ± 0.3264 5.51 ± 2.13
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Table 4 presents the Dice scores obtained of both structures for each patient,

as well as the standard deviation for the FCN-8s-OV
2

ASSION method. This Dice

score per patient was obtained by calculating the average of the Dice scores of

all of the patient’s slices. We find again a Dice score of 91.54% on average for305

the tumour segmentation, with a standard deviation of 4.49%. The pathological

kidney segmentation is correct at 80.58% with a higher standard deviation of

11.27%. On average, with both structures, the Dice score is 86.06% with 4.72%

of standard deviation. We can see that the segmentation system is more efficient,

on average, on tumour segmentation than on the kidney, with a difference of310

11%. We have noticed that our system segments larger structures better. Thus,

Patients 3 and 14, having a smaller tumour compared to all the other patients,

have the lowest Dice score for the tumour at 80.66% and 84.13%, and Patient

10, having the kidney most compressed by the tumour and therefore less visible,

has the lowest Dice score for the kidney at 61,81%. In addition, the tumour315

is often oval in shape and larger in size, allowing more accurate segmentation,

whereas the kidney, completely compressed, will have more random and less

regular shapes. This point can be seen in Figure 4, which shows the results of

the segmentation of both structures for one slice of Patient 10.
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Table 4: Results of the tumour and pathological kidney segmentation (in Dice

score) through the FCN-8s-OV
2

ASSION method.

Patient
Tumour

segmentation

Pathological kidney

segmentation
Mean

P1 0.9368 0.8553 0.8961

P2 0.8694 0.9115 0.8904

P3 0.8066 0.9346 0.8706

P4 0.9527 0.9187 0.9357

P5 0.9290 0.8433 0.8862

P6 0.9202 0.8295 0.8748

P7 0.9500 0.7254 0.8377

P8 0.9203 0.9087 0.9145

P9 0.9452 0.6686 0.8069

P10 0.9282 0.6181 0.7731

P11 0.9588 0.7353 0.8471

P12 0.9386 0.6376 0.7881

P13 0.9183 0.7693 0.8438

P14 0.8413 0.9258 0.8835

Mean 0.9154 0.8058 0.8606

Std Dev (%) 4.49 11.27 4.72

3.3. Fusion of the tumour and pathological kidney segmentation320

3.3.1. Training and prediction phase

The network (presented in Figure 3) needs to receive as inputs both of the

segmentations to fuse (pathological kidney and nephroblastoma) and the cor-

responding CT scan in order to give as much information as possible. These

images are contracted in a single 3-channel image, which is given as input to325

the network. When considering one patient, the network trains according to

the OV
2

ASSION method on all of the selected slices of the patient with a gap of

17



Figure 4: Segmentation result of one slice of Patient 10. From left to right:

CT scan image of patient; Ground truths of the pathological kidney and the tu-

mour; Result of the pathological kidney segmentation and tumour segmentation

obtained by AI method.

4, starting with the first slice. Indeed, these parameters have been found to be

the ones that gave the best compromise between accuracy and time consumed

for manual segmentation [1]. The deep neural network for our DL-OV
2

ASSION330

fusion system is trained on 30,000 iterations with a learning rate of 1e-9. For

the prediction phase, all of the slices of the considered patient (even the slices

used for training) are given to the network.

3.3.2. Results of the segmentation fusion

We, therefore, tested the segmentation fusion, based on the segmentations335

previously acquired by the FCN-8s-OV
2

ASSION method, on all 14 patients. Our

results are compared to seven other methods, including four neural network

fusion methods (a network of three convolutional layers [21]; a network of three

convolutional layers followed by ReLU layers [22]; and a deeper neural network

[23]) and three so-called more classical methods (the use of a combination of340
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six mathematical techniques and metrics [2]; the use of similarity criterion [17];

and the use of VoI-criterion [12]). All fusion methods based on neural networks

(except the DL-OV
2

ASSION) have been subjected to classical training (i.e. by

performing training on all the other patients in order to allow fusion of the

current patient) and trained with a learning rate of 1e-10 and the number of345

iterations fixed at 20,000.

Table 5 presents the percentage of conflicting pixels that have been correctly

classified and the standard deviation of the different approaches. The DL-OV
2

ASSION method is not the most efficient in the management of conflicting pixels

but is in second place for conflict resolution. However, this method performed350

the best conflict resolution for four patients. It is the method that uses a combi-

nation of six different mathematical methods that obtain, on average, the best

pixel resolutions in conflict (with the best conflict resolution for nine patients).

Nevertheless, when examining the standard deviations obtained, the DL-OV
2

ASSION method has a higher standard deviation than most of the methods. It355

then obtains more dispersed results, as is the case for P11, where the network

had difficulty in resolving conflicts. We can assume that this is a lack of training

for this patient, as the training parameters are fixed for all patients.
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Table 5: Percentage of correctly resolved conflicting pixels for each patient with different methods. The values in bold

correspond to the best values obtained. From left to right: The different patients; The results of our DL-OV
2

ASSION method;

The results by a deeper neural network; The results by the network of three convolutional layers; The results by the network

of three convolutional layers followed by ReLU layers; The result of the method with a combination of six fusion protocols;

The results by the use of similarity; The results by the use of VoI-criterion.

Patient
DL-OV

2

ASSION

method

Network by

Qu et al. [23]

Network by

Tang et al. [21]

Network by

Xiao et al. [22]

Method by

Corbat et al. [2]

Method by

Feng et al. [17]

Method by

Mignotte [12]

P1 0.7002 0.6400 0.6041 0.6162 0.7296 0.6062 0.6782

P2 0.7655 0.6926 0.6795 0.6831 0.6989 0.5834 0.6681

P3 0.9336 0.7012 0.7054 0.0249 0.7220 0.6556 0.5104

P4 0.8075 0.2650 0.7189 0.7915 0.7332 0.6549 0.6650

P5 0.6527 0.5855 0.5655 0.6003 0.7213 0.5907 0.7089

P6 0.5834 0.5692 0.5815 0.6087 0.7486 0.6201 0.6044

P7 0.6891 0.6658 0.6819 0.6143 0.7138 0.5426 0.5870

P8 0.7840 0.3396 0.3758 0.3461 0.4295 0.3868 0.2846

P9 0.6242 0.6287 0.6399 0.6553 0.8087 0.6528 0.5250

P10 0.6490 0.6658 0.6175 0.5321 0.6618 0.5463 0.5471

P11 0.3152 0.4586 0.4574 0.6378 0.7911 0.5303 0.7108

P12 0.5708 0.4683 0.5656 0.5622 0.6376 0.5746 0.4759

P13 0.5965 0.6255 0.6222 0.4777 0.7282 0.6122 0.5563

P14 0.6539 0.5226 0.5788 0.6482 0.7224 0.6114 0.5697

Mean 0.6661 0.5592 0.5996 0.5570 0.7033 0.5834 0.5780

Std Dev (%) 14.23 13.35 9.38 18.42 9.00 6.98 11.32

20



Table 6 shows the results obtained according to three different metrics (Dice

score, IoU metric and Hausdorff distance) between calculated segmentation and360

ground truth) for the tumour and the pathological kidney structures, and the

mean of both, before and after the fusion, according to the different methods.

The results (Dice, IoU, HD) for one method were obtained by averaging the

results of all 14 patients, and the result for one patient was obtained by av-

eraging the results of each slice of the patient. The DL-OV
2

ASSION method365

obtained, on average, the best scores, either for the tumour or the pathological

kidney segmentation, with a Dice for both structures of 88.06% and 4.65% of

standard deviation. It also obtained higher scores than the scores before the

fusion. Thus, the tumour segmentations improved, from a Dice score of 91.54%

to 92.66% with a decrease in the standard deviation. The same result was370

obtained for the pathological kidney segmentations, going from a Dice score of

80.58% on average to 83.45%, with a decrease in the standard deviation as well.

Finally, we obtained a general improvement of the segmentations, going from

a Dice score of 86.06% on average to 88.06%, with a regular decrease in the

standard deviation. The same improvement is noticed by the other metrics.375

The method by Feng et al. and by Mignotte obtain very similar results com-

pared to the results before the fusion because these methods do not allow for

higher results, as they only work on the conflicting pixels on the image and do

not modify the other pixels. Neural network fusion methods modify the overall

segmentation, and can, therefore, modify the labels of all pixels. Moreover,380

the number of conflicting pixels in the segmentations is, on average, very low

(1.73%) compared to the total number of pixels in the image, which is why the

metric results can only show a slight improvement in the best case with this

type of method.
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Table 6: Results of the quality of the tumour segmentation, the pathological kidney segmentation and both, using Dice score,

IoU metric and Hausdorff distance with standard deviation, before the fusion and after the fusion according to different

methods.

Dice ± Std Dev IoU ± Std Dev HD ± Std Dev

Tumour P. Kidney Mean Tumour P. Kidney Mean Tumour P. Kidney Mean

DL-OV
2

ASSION method 0.9266 ± 0.0373 0.8345 ± 0.1048 0.8806 ± 0.0465 0.8653 ± 0.0622 0.7165 ± 0.1632 0.7909 ± 0.0711 4.11 ± 1.40 3.36 ± 0.70 3.73 ± 0.81

Network by Qu et al. [23] 0.9217 ± 0.0384 0.8256 ± 0.0987 0.8737 ± 0.0416 0.8570 ± 0.0634 0.7139 ± 0.1406 0.7854 ± 0.0578 4.27 ± 1.31 3.44 ± 0.66 3.85 ± 0.74

Network by Tang et al. [21] 0.9163 ± 0.0448 0.8108 ± 0.1101 0.8635 ± 0.0452 0.8482 ± 0.0727 0.6950 ± 0.1539 0.7716 ± 0.0611 4.29 ± 1.39 3.51 ± 0.65 3.90 ± 0.76

Network by Xiao et al. [22] 0.9129 ± 0.0466 0.8118 ± 0.1009 0.8624 ± 0.0410 0.8428 ± 0.0751 0.6944 ± 0.1413 0.7686 ± 0.0558 4.42 ±1.38 3.68 ± 0.75 4.05 ± 0.83

Method by Corbat et al. [2] 0.9157 ± 0.0452 0.8065 ± 0.1141 0.8611 ± 0.0481 0.8473 ± 0.0730 0.6895 ± 0.1564 0.7684 ± 0.0637 4.25 ± 1.39 3.47 ± 0.64 3.86 ± 0.76

Method by Feng et al. [17] 0.9154 ± 0.0453 0.8056 ± 0.1143 0.8605 ± 0.0481 0.8469 ± 0.0732 0.6884 ± 0.1566 0.7676 ± 0.0636 4.25 ± 1.39 3.47 ± 0.64 3.86 ± 0.76

Method by Mignotte [12] 0.9154 ± 0.0456 0.8039 ± 0.1168 0.8596 ± 0.0494 0.8468 ± 0.0735 0.6865 ± 0.1592 0.7666 ± 0.0651 4.26 ± 1.40 3.48 ± 0.64 3.87 ± 0.77

Dice before fusion 0.9154 ± 0.0449 0.8058 ± 0.1127 0.8606 ± 0.0472 0.8468 ± 0.0726 0.6883 ± 0.1548 0.7676 ± 0.0626 4.27 ± 1.41 3.49 ± 0.65 3.88 ± 0.77
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Figure 5 shows the results according to the different methods or networks.385

Three examples of conflict management are presented. For each segmentation,

there is a zoom on the area of conflict surrounded. The figure is divided into

two columns: on the left the ground truth at the top and the resulting segmen-

tation with conflicts at the bottom; On the right the different results. On the

top right we have the results by the DL-OV
2

ASSION method, by the Qu et al.390

network [23], by the Tang et al. network [21], by the Xiao et al. network [22],

and bottom right the results by the Corbat et al. method [2], by the Feng et al.

method [17] and by the Mignotte method [12]. For each results, the Dice score

of the tumour and the pathological kidney are present as well as the percentage

of good conflict resolution.395

In the case of our three examples, our method obtains on average a better

improvement of the quality of the segmentations. The segmentations are also

smoothed and filled. On the other hand, when managing conflicting pixels, the

results are more heterogeneous. In the first example, non-AI-based methods are

the most successful in fusion. his is also the case in the second example, but400

some of the AI-based methods also achieve this. In the third example, none of

the methods achieve this, except for the DL-OV
2

ASSION method with a good

resolution percentage of 93.48%. On average, compared to all the slices of all our

patients, we have already shown that our method achieves a good resolution,

but this is the Corbat et al. method [2] that gets the best results (Table 5).405

Figure 6 shows the results of the segmentation fusion with conflict manage-

ment of the DL-OV
2

ASSION method. It shows, in particular, the results obtained

on ten slices belonging to different patients. All pixels in conflict are labelled as

belonging either to the tumour, kidney, or background. In the end, the fusion

method using DL-OV
2

ASSION significantly improves the segmentations, thus410

adding effective post-processing to the segmentation.
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Figure 5: Comparison of different segmentation results and conflicting pixel

management according to the network or method used. The elements from dark-

est to brightest represent: the background; the pathological kidney; the tumour;

and the few conflicting pixels.
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Figure 6: Results of the segmentation fusion of some slices by our DL-OV
2

ASSION method. There are two columns of results.

For each column, from left to right: CT scan images; Segmentations with conflicts; Results of the segmentations fusion. For

the images representing the segmentations, the curves denotes the ground truth. The Dice score for each structure and the

percentages of good conflict management are present for each segmentation.
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4. Discussion

The presented DL-OV
2

ASSION method achieves the highest percentage in

terms of segmentation improvement, for the tumour structure as well as for

the pathological kidney structure and regardless of the metrics used. But, the415

percentage of conflicting pixels that are correctly resolved, for each patient and

each method, is not relatively high, because of the difficulty of the conflicts to

be solved. Most conflict zones are located at the intersection of the different

structures. These areas remain very ambiguous, and the delimitations between

two structures are not always clear even for radiologists who then create the420

contours through their knowledge and experience.

In addition, this new method obtains a higher standard deviation compared

to other methods. This is due to the difficulty of the neural network used to

segment some patients correctly. For example, this is the case for Patient 11,

who obtained a percentage of correctly resolved conflicting pixels of only 31.52%.425

The learning parameters of the network were the same for all the tested patients.

On average, 30,000 iterations and a learning rate of 1e-9 is sufficient in order to

obtain accurate results. But these parameters could be adjusted according to

the patient in order to avoid some patients having a bad conflict resolution and

to improve the segmentation accuracy.430

The more classical method of Corbat et al. [2] obtains the best results for

conflict management, and the DL-OV
2

ASSION method obtains the best segmen-

tations. It would then be interesting to combine these two methods in order to

obtain the best results in terms of conflict management and segmentation.

Currently, the presented patient segmentation process is completed in eight435

hours, and all the fusion methods presented are a process performed over several

hours. The final execution times (segmentation and fusion) may seem long, but

it must be taken into account that experts (surgeons and radiologists) are not

monopolized by this calculation time. They can indeed devote themselves to

other tasks and let the supercomputer carry out the segmentation and fusion.440

Moreover, we are not in a state of absolute emergency and experts believe that
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it is reasonable to produce a numerical representation of one patient’s abdomen

in a few days or even a week.

Finally, it should be noted that our new fusion method is, unlike the other

methods, a semi-automatic method, in the sense that several slices of a patient445

must already be manually segmented to be used during training. In the SAIAD

project, we have no problem with this, as we already have these slices. They

are used in the special segmentation process, which is also semi-automatic. We

cannot, at this time, perform automatic segmentation due to the unpredictabil-

ity of the tumour and deformed kidney and the limited number of patients we450

can obtain.

Moreover, it should be noted that the training dataset used for our method

is different to the training dataset of the other comparative networks. These

different methods are therefore not strictly comparable. However, the training

dataset of our method is a lot smaller, only 20% of a patient’s slices are used455

for the training, compared to other fusion networks whose training dataset is

composed of all the slices of 13 patients, and our method achieves a better fu-

sion (compared to the other IA fusion methods) and improved the quality of

the segmentations.

5. Conclusion and further work460

In this paper, we have presented a synthesis of the work carried out in the

SAIAD project. The segmentation method and fusion methods developed were

tested on a larger set of patients for the representation of tumoral kidneys in

children. In addition, a final neural network fusion system for complementary

segmentation has been proposed, called DL-OV
2

ASSION. This method allows for465

the resolution of conflicts and thus improves the accuracy of segmentation. This

method of fusion increases the robustness of the general system of the SAIAD

project.

Since we have observed that our previous method using six different math-

ematical methods was outperformed by other methods in the resolution of con-470
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flicting pixels, we will study the possibility of combining this fusion method,

which obtained the best results for conflict management, with our DL-OV
2

ASSION fusion method, which obtained the best results for segmentation. Fur-

ther work will also focus on improving the system by adding functionalities for

segmentation and fusion of new structures appearing on the scanners, such as475

arteries, veins, and urinary cavities.
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