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Abstract  

Instrumented nanoindentation is widely used to extract the material properties from the 

measured force-displacement curves. In this work, the uniqueness/non-uniqueness of the 

intrinsic viscoelastic properties of materials determined by nanoindentation during load-unload 

tests is investigated. A four-parameter viscoelastic law with constant Poisson's ratio is used to 

model the mechanical behavior of a polymer material and a 2D-axisymetric Finite Element 

Model (FEM) is used to simulate the nanoindentation test. Firstly, a nanoindentation 

experimental triangular load-unload test is performed on a bulk sample of polypropylene (PP) 

with a Berkovich indenter tip at a depth rate of 1000 nm/min. The values of the four material 

parameters are estimated by the Finite Element Model Updating (FEMU). The numerical results 

can accurately fit the experimental data. However, several quasi-solutions are shown to exist. 

These load-unload data allow to identify only three viscoelastic parameters if the Poisson's ratio 

is known. Secondly, the effect of nanoindentation depth rate, loading type (triangular, 

trapezoidal, exponential, sinusoidal) and apex angle is numerically investigated using an 

identifiability index based on the conditioning of the inverse problem. We show a correlation 

between the identifiability index and the energy dissipated by the material during the tests. The 

extraction of all material parameters remains impossible using a single test. Finally, some 

combinations of several nanoindentation triangular tests and indenter tip angles are also 

investigated. We show that a dual nanoindentation technique (cube corner and Berkovich tips) 

with triangular load-unload tests is an interesting combination to reliably extract all the 

viscoelastic parameters, provided that plasticity is taken into account. This result illustrates the 

interest of using this numerical identifiability index to design nanoindentation experiments to 

ensure the robustness of the intrinsic viscoelastic properties extraction. 

Keywords: Viscoelasticity, Nanoindentation, Polymers, Identifiability, Uniqueness, 

FEMU. 

 

 



2 

 

1. Introduction  

Nanoindentation is a powerful technique for mechanical characterization of polymeric 

materials at small-scale (Cheng and Cheng, 2004; VanLandingham et al., 2005; Zhang et al., 

2006). During the nanoindentation test, a rigid indenter tip is pushed into the surface of a solid 

and then removed. The force 𝑃(𝑡) and the displacement ℎ(𝑡) are continuously recorded during 

loading and unloading segments. The resulting force–displacement curve is associated to the 

material properties, the geometry of the sample and the geometry of the indenter tip. Several 

models have been proposed to retrieve the elastic modulus and the hardness from such 

experimental data (Doerner and Nix, 1986; Oliver and Pharr, 1992). These methods generally 

assume that the material features a purely elastic behavior during the unloading part and does 

not exhibit any loading rate dependence (Oliver and Pharr, 1992). However, most of polymers 

exhibit a significant viscoelastic behavior (Tang and Ngan, 2003). It is therefore important to 

develop a method to retrieve the intrinsic viscoelastic properties of a material from the temporal 

data of such nanoindentation test. Two approaches have thus been proposed in the literature 

instead of the classical Oliver & Pharr method (Chen et al., 2013). The first approach is based 

on the viscoelastic contact theory (Lee, 1955; Radok, 1957; Lee and Radok, 1960; Graham, 

1965). The dimensional analysis or the Laplace transform method are used to extend the elastic 

solution to viscoelastic phenomena. The models yield closed-form solutions, which are used to 

analyze the nanoindentation test. The parameters are obtained by fitting the experimental force–

displacement data (Cheng et al., 2000; Vandamme and Ulm, 2006; Liu et al., 2006; Oyen, 

2006). These parameters, such as compliance constants and retardation times describe a 

mechanical system behavior in which the material is involved, but these are not intrinsic to the 

material. Indeed, these models generally include correction factors, which mix intrinsic material 

properties with geometrical consideration, to tune the contact conditions. A good example is 

the 𝛽 factor which corrects the Sneddon relation of elasticity for non-axisymmetric indentation 

(Oliver and Pharr, 1992). The vast majority of reported results make use of 𝛽 = 1.034 (King, 

1987). It is however known that this factor strongly depends on the tested material (Oliver and 

Pharr, 2004). This furthermore makes these models often over-parameterized, thus leading to 

multiple solutions for the fitting procedure (Menčík et al., 2011). Converting the properties 

estimated by this approach should into inputs for structural engineering problems based on the 

finite element analysis is therefore a difficult and non-obvious task. The second approach is 

carried out by combining Finite Element Method (FEM) and numerical optimization. In this 

method, the objective function, which is a norm of difference between the numerical 

nanoindentation force and/or displacement and experimental data, is minimized using 

optimization techniques (Qasmi et al., 2004; Guessasma et al., 2008). The parameters of the 

model are determined as the minimizer of the objective function. However, the uniqueness of 

this minimizer is generally not assessed in the literature, but it remains a fundamental question, 

particularly in instrumented nanoindentation. In fact, in the case of elastoplastic behavior, 

numerous works have shown that a group of materials with distinct elastoplastic properties may 

yield almost the same conical indentation 𝑃– ℎ curve (Cheng and Cheng, 1999; Capehart and 

Cheng, 2003; Alkorta et al., 2005). It implies that the material properties cannot be uniquely 

determined by using a single sharp indenter tip. In order to address this problem in the case of 

elastoplastic behavior, dual or multiple indentation techniques have been proposed by several 
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authors (Le, 2008; Heinrich et al., 2009; Le, 2011). However, the existence of mystical 

materials that give almost similar 𝑃– ℎ curves for different indenter tips with half angles ranging 

from 60° to 80° has also been shown (Chen et al., 2007). Recently, this problem of non-

uniqueness of the elastoplastic properties was investigated by Phadikar et al. (Phadikar et al., 

2013). They found that non-uniqueness of the solution is caused by a high sensitivity to the 

experimental errors. They also demonstrated that dual nanoindentation techniques are reliable 

when the experimental error is within ±1%. This question is poorly addressed in the presence 

of viscous phenomena (viscoelastic and/or viscoplastic). Constantinescu and Tardieu 

(Constantinescu and Tardieu, 2001) highlighted this difficulty in the case of Maxwell and 

Norton–Hoff behaviors. 

In this paper, the uniqueness/non-uniqueness of the viscoelastic properties of materials 

determined by the Finite Element Model Updating (FEMU) of the nanoindentation test is 

studied. A four-parameter viscoelastic behavior law with constant Poisson's ratio, which has 

been implemented in a 2D axisymmetric finite element model of the nanoindentation test, is 

first described in section 2. Then, the FEMU method used to adjust the force-displacement 

curves on the experimental data is presented. As an experimental reference, a nanoindentation 

triangular test at constant depth rate on a PP sample is performed. It is shown in the section 3 

that depending on the starting point used in the identification algorithm, multiple solutions for 

the values of the four viscoelastic parameters (𝐸, 𝑐1, 𝜈, 𝜂) have been obtained. The quality of 

this estimation is discussed using an identifiability analysis. In this aim, an identifiability index 

(I-index) is used to quantify the richness of the nanoindentation data taken into account in the 

cost function (Richard et al., 2013). It is also used to define the more adequate experimental 

procedure and define what would be the experiment(s) to add to a single triangular test in order 

to assess a unique solution. The identifiability analysis is first performed considering a single 

nanoindentation triangular test. The effect of nanoindentation depth rate using triangular, 

trapezoidal, exponential, sinusoidal loading and indenter tip angle is then investigated. The 

comparison between the I-index results and the dissipation (loss factor) is performed. Finally, 

the combinations of several nanoindentation triangular tests and indenter tip angles are carried 

out. A dual nanoindentation technique is shown to yield a unique solution for the inverse 

problem. To this end, two numerical nanoindentation triangular tests are carried out at a 

constant depth rate using equivalent cone apex angles of cube corner (42.28°) and Berkovich 

(70.3°) indenter tips to obtain pseudo-experimental data. The identifiability results for this 

technique show that a unique solution, which is robust with respect to the noise, can be obtained. 

However, a poor agreement is found when this solution is compared to the one obtained 

experimentally. Supported by residual imprint observed on the surface of the sample, plasticity 

seems to be the cause of this gap. Indeed, a visco-elastic plastic (VEP) model is finally used to 

describe the material behavior. This VEP model allows a much better agreement between 

experiment and simulation even if the combination of its five obtained parameters resulting 

from the updating process is not unique. Finally, it is shown that knowing the yield strength and 

Poisson’s ratio of the material, the identification of the three other parameters is robust, i.e 

plasticity knowledge helps to identify visco-elastic parameters. These results are supported by 

a validation performed with tensile response of the material. 
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2. Material and methods 

2.1. Material and viscoelastic law 

In this study, a copolymer PP specimen with dimensions of about 10 × 10 × 0.5 mm3 

produced by the Goodfellow company has been used (PP301440). An isotropic linear 

viscoelastic law with constant Poisson's ratio 𝜈 is chosen to model the behavior of this material. 

The Helmholtz free energy 𝜓 (Lemaitre and Chaboche, 1994) can be written as: 

 𝜓 =
1

2𝜌
(𝛆𝑒: 𝐂: 𝛆𝑒 + 𝛂𝑎𝑛: 𝐂𝑎𝑛: 𝛂𝑎𝑛) (1) 

where 𝛆𝑒 is the elastic strains tensor, 𝛂𝑎𝑛 is the internal variables tensor representing the 

anelastic phenomena, 𝜌 is the density, 𝐂(𝐸, 𝜈) and 𝐂𝑎𝑛(𝑐1, 𝜈) are the elastic and anelastic 

fourth-order stiffness tensors. 𝐸 and 𝑐1 are the instantaneous modulus, and the anelastic 

modulus, respectively; the symbol “:” stands for the tensor inner product. The state laws derive 

from this energy: 

 𝛔 = 𝜌
∂𝜓

∂𝛆𝑒
  and   𝐗𝑎𝑛 = 𝜌

∂𝜓

∂𝛂𝑎𝑛
 (2) 

where 𝛔  is the Cauchy stress tensor and 𝐗𝑎𝑛 is the anelastic stress tensor. 

The dissipation potential 𝛺 is defined as: 

 𝛺 =
𝐸

2𝜂
(𝛔 − 𝐗𝑎𝑛): 𝐒: (𝛔 − 𝐗𝑎𝑛) (3) 

where 𝜂 is the viscosity coefficient and 𝐒 the elastic compliance (fourth-order) tensor such as 

𝐒: 𝐂 = 𝐈 (identity tensor). The derivatives of this potential 𝛺 give the internal variables 

evolutions: 

 �̇�𝑎𝑛 =
∂𝛺

∂𝛔
  and  �̇�𝑎𝑛 = −

𝛛𝛺

𝛛𝐗𝑎𝑛
 (4) 

where 𝛆𝑎𝑛 is the anelastic strain which is defined as the difference between the total 𝛆 and 

elastic 𝛆𝑒 strains. 

 𝛆𝑎𝑛 = 𝛆 − 𝛆𝑒 (5) 

This linear viscoelastic behavior law with constant Poisson's ratio is controlled by four material 

parameters, which define the parameter set 𝛉 = (𝜃1, 𝜃2, 𝜃3, 𝜃4) = (𝐸, 𝑐1, 𝜈, 𝜂). 

From a rheological point of view, the chosen behavior is, for elastic contribution, a linear spring 

whose stiffness is given by the Young’s modulus 𝐸 and Poisson’s ratio 𝜈, and for anelastic 

contribution (delayed elasticity), a classical Kelvin-Voigt model which consists of a linear 

viscous damper of viscosity 𝜂 and a linear spring of stiffness 𝑐1 with internal stress Xan 

associated in parallel. One assumes herein a constant Poisson’s ratio, so that 𝐸 𝐺⁄ = 𝑐1 𝐺1⁄ =

𝜂  𝜂𝐺⁄ = 2(1 + 𝑣) and 𝐸 𝐾⁄ = 𝑐1 𝐾1⁄ = 𝜂  𝜂𝐾⁄ = 3(1 − 2𝑣) (Fig. 1). 
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2.2.  Numerical model of the nanoindentation tests 

In this paper, a parametric finite element model is built using the ANSYS software, (Ansys 

16.0, 2016) (Fig. 1). This 2D-axisymetric model allows the simulation of the nanoindentation 

test of a viscoelastic material through the ANSYS viscoelastic law. Five conical indenter tips 

are used, with equivalent half angles equal to 42.28°, 57°, 60°, 65 and 70.3° half angle and are 

assumed to be rigid. The indenter with 70.3° corresponds to the axisymmetric equivalent cone 

Berkovich indenter tip used experimentally (Chen et al., 2007; Fischer-Cripps, 2011). The 

Coulomb’s friction law is used between contact surfaces and the friction coefficient has been 

fixed to 0.2. Note that for this indenter geometry the contact friction coefficient does not have 

any significant effect on the numerical results (Bucaille et al., 2003). Linear quadrangular 

elements with 4 nodes (Q4 PLANE182) are used. The size of the modeled sample is 60 times 

greater than the maximum nanoindentation depth ℎ𝑚𝑎𝑥 in order to obtain realistic boundary 

conditions. The mesh size in the area right below the indenter is made finer than in the rest of 

the sample over a length 8 times greater than the ℎ𝑚𝑎𝑥, which makes possible to model the 

contact and to increase the precision on the result of the simulation. The mesh is progressively 

coarser when moving away from the indented area, making it possible to reduce the number of 

elements and thus reduce the computation time down to 30 minutes (on the sequential CPU 

mode, 4 processors, 2.5 GHz). The model has about 20,000 finite elements. The nodes 

belonging to the lower surface of the part of the modeled sample are clamped. For the 

convergence study, several simulations with refined meshes and time increments are performed 

with all indenter tips. It is found that from 6 elements below the cube corner indenter (48.28°), 

9 elements for the indenters 57°, 60°, and 10 elements for the indenter 65° and the Berkovich 

indenter (70.3°) at ℎ𝑚𝑎𝑥, the mesh size has no influence on the obtained results. The 

nanoindentation test is simulated by two subsequent parts: loading and unloading. During the 

loading part, the indenter tip penetrates the specimen up to ℎ𝑚𝑎𝑥 and during the unloading part, 

the indenter returns to the initial position. In each simulation, 1 to 5 iterations are required at 

each nanoindentation depth increment to reach an equilibrium configuration. At ℎ𝑚𝑎𝑥, about 

nine elements are in contact with the indenter tip. 
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Fig. 1. 2D-axisymmetric model of the nanoindentation test and the rheological model decomposed 

into: a deviatoric and a spherical part (𝐸 𝐺⁄ = 𝑐1 𝐺1⁄ = 𝜂  𝜂𝐺⁄ = 2(1 + 𝑣)) and (𝐸 𝐾⁄ = 𝑐1 𝐾1⁄ =
𝜂  𝜂𝐾⁄ = 3(1 − 2𝑣)). 

 

2.3. Experimental test 

A nanoindentation experimental test was performed at room temperature and relative humidity 

using an Ultra-Nanoindenter (UNHT) with a Berkovich indenter tip. This device allows to 

impose a force up to 50 mN (±0,1 𝜇N) and a displacement up to 40 𝜇m (±0,1 nm). The test 

has been carried out in displacement-controlled mode to a maximum value of ℎ𝑚𝑎𝑥 ≈ 550 nm. 

Repeating the same experiment 5 times, a standard deviation of 6µN is observed experimentally 

at ℎ𝑚𝑎𝑥. It consists of a load-unload cycle. Once the contact established, the indenter penetrates 

the sample at a quasi-constant nanoindentation depth rate ℎ̇ = 1000 nm/min until the 

maximum displacement ℎ𝑚𝑎𝑥. Then during the unloading phase the indenter is removed at the 

same rate until ℎ = 0. The force 𝑃𝑒𝑥𝑝(𝑡) and displacement ℎ𝑒𝑥𝑝(𝑡) are recorded during loading 

and unloading segments for a time 𝑡𝑚𝑎𝑥. 

 

2.4. Numerical tests 

In order to numerically investigate the parameters identifiability with different loading types 

and determine the better identification procedure, several nanoindentation tests at a depth of 

ℎ𝑚𝑎𝑥 = 500 nm  and time 𝑡𝑚𝑎𝑥 are numerically carried out at eight nanoindentation depth rates 

ℎ̇ = 50, 100, 500, 1000, 2500, 5000, 10000 and 20000 nm/min for triangular and trapezoidal 

loading, and eight strain rates (ℎ̇ ℎ⁄ = 0.0104, 0.0207, 0.1036, 0.2072, 0.5179, 1.0359, 2.0722 

and 4.1458 s−1) for the exponential loading. Normalized time-displacement curves are given 

in Fig. 2. 

𝐾1

𝐾

𝜂𝐾𝐺1

𝐺

𝜂𝐺

Symmetry axis Indenter tip

8ℎ𝑚𝑎𝑥

60ℎ𝑚𝑎𝑥

 

Spherical

part
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Fig. 2. Normalized time-displacement curves, (a) trapezoidal loading. (b) exponential loading. 

 

Other nanoindentation tests at a depth of ℎ𝑚𝑎𝑥 = 500 nm and maximum load of 𝑃𝑚𝑎𝑥 =

0.6 mN are numerically carried out in force-controlled mode with eight nanoindentation depth 

rates (60, 120, 600, 1200, 3000, 6000, 12000 and 24000 µN/min) for triangular loading (Fig. 

3a). A monotonic loading test is then performed with superimposed sinusoidal loading to a 

maximum depth of ℎ𝑚𝑎𝑥 = 510 nm over a loading time of 30 s and frequency of 4 Hz (Fig. 

3b). 

 

Fig. 3. Normalized time-force curves, (a) triangular loading. Normalized time-displacement (b) 

sinusoidal loading. 

 

(a) (b)

0.4 0.2 0.4

(a) (b)
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In the following, the computer-generated load-displacement curves obtained from these 

different conditions will be referred to as pseudo-experimental data. 

 

2.5. Inverse method for the material parameters estimation 

The updating process of the numerical model based on the experimental (or pseudo-

experimental) data allows to estimate one or more parameters values �̂� which minimize the 

difference between the force 𝑃(𝑡; 𝛉) resulting from the finite element simulation and the 

experimental data 𝑃𝑒𝑥𝑝(𝑡). The inverse problem is recast as the minimization problem of an 

objective function ω, which quantifies the difference between the numerical model and the 

experiment: 

 �̂� = argmin
𝛉

 ω [𝑃(𝑡; 𝛉), 𝑃𝑒𝑥𝑝(𝑡)] (6) 

The objective function ω is minimized by a local numerical optimization technique based on 

the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) implemented in 

MIC2M software (F. Richard, 2000). A starting point is required in this algorithm. The 

influence of this point will be investigated. The objective function is defined in displacement-

controlled mode as (Qasmi et al., 2004): 

 ω(𝛉) =
1

2𝑇
∑[

𝑃𝑘(𝛉) − 𝑃𝑘
𝑒𝑥𝑝

𝑃𝑚𝑎𝑥
𝑒𝑥𝑝 ]

2𝑇

𝑘=1

 (7) 

𝑇 = 1000 is the number of data points for each nanoindentation test, i.e. number of measured 

force values 𝑃𝑘(𝛉) = 𝑃(𝑡𝑘; 𝛉) and 𝑃𝑘
𝑒𝑥𝑝 = 𝑃𝑒𝑥𝑝(𝑡𝑘), and 𝑃𝑚𝑎𝑥

𝑒𝑥𝑝
 is the maximum of the 

experimental nanoindentation force. 𝑇 is sufficiently large so that it does not influence the 

reported results.  

The uncertainty ∆𝜃𝑗 on the estimated value of 𝜃𝑗  after the updating process can be obtained 

from the following equation in 𝜃𝑗 = 𝜃𝑗  : 

 
∆𝜃𝑗

𝜃𝑗
= √2ω[�̅�−1]𝑗𝑗 (8) 

where �̅� is a dimensionless pseudo-hessian matrix computed by forward finite difference 

method (Pac et al., 2014; Richard et al., 2013). The components of �̅� are given as: 

   �̅�𝑖𝑗 =
1

𝑇

𝜃𝑖𝜃𝑗

𝑃𝑚𝑎𝑥
2

∑
𝜕𝑃𝑘(𝛉)

𝜕𝜃𝑖

𝜕𝑃𝑘(𝛉)

𝜕𝜃𝑗

𝑇

𝑘=1

      𝑖, 𝑗 = 1,… ,4 (9) 

where 𝑃𝑚𝑎𝑥 is the maximum of the numerical nanoindentation force. 

Note that if the test is force-controlled, the objective function is formulated using the 

displacement response ℎ(𝑡; 𝛉), instead of 𝑃(𝑡; 𝛉).  
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When a combination of several nanoindentation tests 𝑛 is used in the updating process, the total 

objective function is given by the sum of the objective functions of all tests. 

 ω(𝛉) = ∑[
1

2𝑇
∑(

𝑃𝑘
(𝑒)(𝛉) − 𝑃𝑘

𝑒𝑥𝑝(𝑒)

𝑃𝑚𝑎𝑥
𝑒𝑥𝑝(𝑒)

)

2𝑇

𝑘=1

]

𝑛

𝑒=1

 (10) 

The uncertainty becomes: 

 
∆𝜃𝑗

𝜃𝑗
= √

2

𝑛
ω[�̅�−1]𝑗𝑗 (11) 

and the pseudo-hessian matrix �̅� is calculated from the following equation:  

 �̅�𝑖𝑗 = ∑[
1

𝑇

𝜃𝑖𝜃𝑗

(𝑃𝑚𝑎𝑥
(𝑒)

)
2 ∑

𝜕𝑃𝑘
(𝑒)

(𝛉)

𝜕𝜃𝑖

𝜕𝑃𝑘
(𝑒)

(𝛉)

𝜕𝜃𝑗

𝑇

𝑘=1

]

𝑛

𝑒=1

      𝑖, 𝑗 = 1,… ,4 (12) 

 

2.6. Parametric identifiability  

The sensitivity analysis is performed to evaluate how, and to which extent, variations of the 

model input data influence the output data. In this analysis, the value of each parameter is 

changed by 0.1% with respect to its initial value in the study. Using a finite difference scheme, 

the sensitivity vectors are given by (for a single test): 

 𝑆𝑘𝑗 =
𝜃𝑗

𝑃𝑚𝑎𝑥

𝜕𝑃𝑘
𝜕𝜃𝑗

 (13) 

The sensitivity of the nanoindentation force to the parameter 𝜃𝑗 can be computed as: 

 𝛿𝑗 =
𝜃𝑗

𝑃𝑚𝑎𝑥

√
1

𝑇
∑(

𝜕𝑃𝑘
𝜕𝜃𝑗

)

2𝑇

𝑘=1

 (14) 

 

A parametric identifiability analysis is used to quantify the reliability of the estimated 

parameters. The completeness of data contained in the nanoindentation force is quantified by 

an 𝐼-index (Richard et al., 2013). This index appears to be convenient to explore and investigate 

what are the optimal loading conditions to determine the four parameters of the material 

constitutive law. The analysis can be done before and after the updating process and therefore 

does not necessarily require the experimental measurements (only pseudo-experimental 

loading). The 𝐼-index is a measure of the conditioning of the inverse problem and is defined as 

(Pac et al., 2014): 
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 𝐼 = log10 (
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
) > 0 (15) 

where 𝜆𝑚𝑎𝑥 and  𝜆𝑚𝑖𝑛 are the maximum and minimum eigenvalue of the matrix �̅� at the 

considered calculation point 𝛉, respectively. The 𝐼-index is calculated as function of the 

sensitivity of parameters taken into account in the combination. In the case of combination of 

nanoindentation tests, Imin and Imax are the minimum and maximum of the 𝐼-index for the better 

and worse combination, respectively.  

The lower the 𝐼-index, the better conditioned is the matrix, which means its inverse can be 

calculated with great accuracy. At the opposite, if the 𝐼-index is large, the matrix is considered 

as ill-conditioned. Some  𝐼-index values defining practical limits can be found in the literature 

(Gujarati, D.N, 1988). For a chosen set of parameters 𝛉 and loading type, this 𝐼-index is 

calculated for the 11 parameter combinations (6 couples, 4 triplets and 1 quadruplet) and for 

various time subsets (load-unload, load only, unload only). This procedure allows to distinguish 

the potentially identifiable combinations (𝐼 ≤ 2) of material parameters from those which are 

not (𝐼 > 3).  

 

3. Results and discussions 

In this section, the results of the updating process of the FEM are presented in terms of estimated 

values of the parameters and associated uncertainties. The uniqueness/non-uniqueness of the 

viscoelastic properties of PP obtained from a single nanoindentation experimental triangular 

load-unload test is studied. The identifiability analysis is numerically performed using several 

loading types (trapezoidal, exponential, sinusoidal) and angles apex in order to propose an 

identification procedure for the four viscoelastic material parameters (𝐸, 𝑐1, 𝜈, 𝜂). A link 

between the identifiability results and the dissipated energy is shown. The addition of the 

plasticity in behavior law is carried out for a complete description of the material behavior. 

3.1. Non-uniqueness of the solutions 

3.1.1. Updating process from experimental data 

Experimental data from the nanoindentation test realized on PP at 1000 nm/min using the 

triangular loading are used in equation (Eq.6). Three starting points 𝛉(01), 𝛉(02) and 𝛉(03) are 

chosen to initialize the minimization algorithm (Table 1) and solve the minimization problem. 

The evolution of the four parameters during the minimization process are shown in Fig. 4. The 

parameters 𝐸, 𝑐1 and 𝜂 tend towards the same values whatever the starting point with acceptable 

uncertainties (about 15% for the viscosity 𝜂). However the obtained values for Poisson’s ratio 

𝜈 are multiple with an enormous uncertainty (about 140%). The value of the objective function 

ω is almost identical for all three cases and remains very low. Therefore there is non-uniqueness 

of the solution of the inverse problem. Fig. 5 illustrates that the obtained solutions generate 

almost the same P-h curve as the one obtained experimentally. 
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Table 1. Estimated parameters set �̂� (Eq. 6) using three starting points and uncertainties (Eq.8). 

  Parameter Starting value Estimated value Uncertainty 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 ∆𝜃𝑗/𝜃𝑗  (%) 

Starting point 1: 𝛉(01) 

1 𝐸 (GPa) 1.50 1.63 7.0 

2 𝑐1 (GPa) 12.25 1.05 6.0 

3 𝜈 0.4 0.13 90 

4 𝜂 (GPa. s) 65 18.56 15 

Objective function ω(1)   4.59 × 10−2 1.24 × 10−5  

Starting point 2: 𝛉(02) 

1 𝐸 (GPa) 1.40 1.63 6.0 

2 𝑐1 (GPa) 8.0 1.05 6.0 

3 𝜈 0.3 0.03 137 

4 𝜂 (GPa. s) 45 18.48 15 

Objective function ω(2)   2.18 × 10−2 1.24 × 10−5  

Starting point 3: 𝛉(03) 

1 𝐸 (GPa) 1.20 1.63 7.0 

2 𝑐1 (GPa) 4.0 1.06 6.0 

3 𝜈 0.2 0.03 138 

4 𝜂 (GPa. s) 30 18.50 15 

Objective function ω(3)   5.18 × 10−3 1.24 × 10−5  
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Fig. 4. Evolution of the four parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process using three starting 

points 𝜽(01), 𝜽(02) and 𝜽(03).  

 

Fig. 5. Experimental (ℎ̇ = 1000 nm/min) and simulated nanoindentation curves for the three solutions 

�̂�(1) = (𝐸 = 1.63 GPa, 𝑐1 = 1.05 GPa, 𝜈 = 0.13, 𝜂 = 18.56 GPa.s), �̂�(2) = (𝐸 = 1.63 GPa, 𝑐1 =
1.05 GPa, 𝜈 = 0.03, 𝜂 = 18.48 GPa.s) and �̂�(3) = (𝐸 = 1.63 GPa, 𝑐1 = 1.06 GPa, 𝜈 = 0.03, 𝜂 =

18.50 GPa.s).  

(a) (b)

(c) (d)

𝛉(01)

𝛉(02)

𝛉(03)

𝛉(01)

𝛉(02)

𝛉(03)

𝛉(01)

𝛉(02)

𝛉(03)

𝛉(01)

𝛉(02)

𝛉(03)

�̂�(1)

�̂�(2)

�̂�(3)
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Furthermore, the Poisson’s ratio is badly estimated comparing the obtained value with those 

given in the literature (𝜈~0.3 to 0.42) (Gao and Mäder, 2002; Jakes et al., 2008). Updating 

processes can also be performed by imposing one of the four parameters. Two particular cases 

are considered. In the first case A, the Young's modulus 𝐸 is set to 1.50 GPa and the three 

parameters 𝜈, 𝑐1 and 𝜂 are estimated (starting point: 𝛉(04) = (𝐸 = 1.50 GPa (imposed), 𝑐1 =

12.25 GPa, 𝜈 = 0.4, 𝜂 = 65 GPa. s)). In the second case B, the value of the Poisson's ratio 𝜈 is 

set to 0.4 and 𝐸, 𝑐1 and 𝜂 are estimated (starting point: 𝛉(05) = (𝐸 = 1.50 GPa, 𝑐1 =

12.25 GPa, 𝜈 = 0.4 (imposed), 𝜂 = 65 GPa. s)). Fig. 6 shows the evolution of the four 

parameters during the minimization process. The obtained values are multiple except for the 

parameter c1. The parameters estimated resulting from the updating process are presented in 

Table 2. It can be noted that imposing a parameter increases considerably the uncertainties even 

on 𝐸 and c1.The objective function values are not identical for the two solutions but they are 

the same order in magnitude. The five solutions �̂�(1), �̂�(2), �̂�(3) , �̂�(4) and �̂�(5) are summarized 

in Table 3. All of the P-h curves are in good agreement with the experimental data (Fig. 7). It 

is interesting to note that Young’s modulus 𝐸 = 1.65 GPa obtained from the nanoindentation 

experimental test at 1000 nm/min using the Oliver-Pharr method (Oliver and Pharr, 1992) using 

a Poisson’s ratio 𝜈 = 0.4 is approximately 12% higher than this estimated by FEMU (case B).  

 

Table 2. Estimated parameters for the two particular cases A and B. 

  Parameter Starting value Estimated value Uncertainty 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 ∆𝜃𝑗/𝜃𝑗  (%) 

Starting point 4: 𝛉(04) 

(Case A) 

1 𝐸 (GPa) 1.50 (imposed) 1.50 (imposed) 10 

2 𝑐1 (GPa) 12.25 0.96 24 

3 𝜈 0.4 0.02 291 

4 𝜂 (GPa. s) 65 22.87 29 

Objective function ω(4)   4.59 × 10−2 3.27 × 10−5  

Starting point 5: 𝛉(05) 

(Case B) 

1 𝐸 (GPa) 1.50  1.47 44 

2 𝑐1 (GPa) 12.25 0.94 48 

3 𝜈 0.4 (imposed) 0.4 (imposed) 145 

4 𝜂 (GPa. s) 65 17.08 41 

Objective function ω(5)   4.59 × 10−2 1.31 × 10−5  
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Fig. 6. Evolution of the four parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process for the two particular 

cases A and B. Comparison with a case with 4 free parameters for the starting point (𝜽(01) = 𝐸 =
1.5 GPa, 𝑐1 = 12.25 GPa, 𝜈 = 0.4,  𝜂 = 65 GPa.s).  

 

Fig. 7. Experimental (ℎ̇ = 1000 nm/min) and simulated nanoindentation curves for the three solutions 

�̂�(1) = (𝐸 = 1.63 GPa, 𝑐1 = 1.05 GPa, 𝜈 = 0.13, 𝜂 = 18.56 GPa.s), �̂�(4) = (𝐸 = 1.50 GPa, 𝑐1 =
0.96 GPa, 𝜈 = 0.02, 𝜂 = 22.87 GPa.s) and �̂�(5) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 =

17.08 GPa.s). 

𝛉(01)

𝛉(01)𝛉(01)

𝛉(01)

(a) (b)

(c) (d)

�̂�(1)

�̂�(4)

�̂�(5)
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Table 3. Five solutions of the inverse problem. 

 𝑗 1 2 3 4  

Solution  𝐸 (GPa) 𝑐1 (GPa) 𝜈 𝜂 (GPa. s) ω 

�̂�(1)  1.63 1.05 0.13 18.56 1.24 × 10−5 

�̂�(2)  1.63 1.05 0.03 18.48 1.24 × 10−5 

�̂�(3)  1.63 1.06 0.03 18.50 1.24 × 10−5 

�̂�(4)  1.50 (imposed) 0.96 0.02 22.87 3.27 × 10−5 

�̂�(5)  1.47 0.94 0.4 (imposed) 17.08 1.31 × 10−5 

 

 

3.1.2. Sensitivity analysis 

To probe the uniqueness of a solution resulting from an updating process may appear to be very 

time consuming. In fact, an updating process for four parameters requires about 40 FEM 

computations for each starting point and for each experimental loading. Another way is to 

investigate, a priori, the identifiability of the parameters. In this way, it is needed to estimate 

the sensitivity of the nanoindentation force to the material parameters. A sensitivity analysis is 

performed for the five solutions �̂�(1), �̂�(2), �̂�(3), �̂�(4) and �̂�(5) (2.5 hours for each solution) using 

the numerical nanoindentation triangular test realized at 1000 nm/min in displacement-

controlled mode. The norm of sensitivity vectors calculated using equation (Eq.14) are 

displayed in Fig. 8. The Young’s modulus 𝐸 is the most sensitive parameter, which means that 

it is the most influential to the nanoindentation curve. The sensitivities appear to be well 

balanced for each solution. An exception can be noted for the Poisson’s ratio. In fact, there is a 

lack of sensitivity to 𝜈 for the solutions �̂�(1), �̂�(2), �̂�(3) and �̂�(4) where the sensitivity to this 

coefficient is close to zero (Fig. 8). It is noted that the sensitivity of the nanoindentation force 

to the friction ratio can be neglected.  

 

Fig. 8. Sensitivity of the nanoindentation force 𝑃 to 𝜃𝑗 for the five solutions �̂�(1), �̂�(2), �̂�(3) , �̂�(4) and 

�̂�(5) (Table 3) using triangular test at 1000 nm/min. 

�̂�(1) �̂�(2) �̂�(3) �̂�(4) �̂�(5)
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The sensitivity vectors of the nanoindentation force have thus been calculated using equation 

(Eq.13) for the solution �̂�(5). Fig. 9a shows that these vectors are very similar (up to a 

multiplicative factor) during the loading phase. The identification of these four parameters from 

the sole loading phase is thus expected to be very difficult. Focusing on the sensitivity to 𝐸 we 

note that during the unloading part the proportionality with 𝑐1 and 𝜂 is lost. It seems to indicate 

that the unloading segment is more suitable to distinguish solution parameters and so to identify 

them. It also appears that the sensitivity vectors to 𝐸 and 𝜈 are almost collinear during the 

loading segment (OA) in (Fig. 9b), thus their identification using a single nanoindentation 

loading data is impossible. This is understood as a consequence of the sensitivity of the 

Boussinesq’s problem to the sole 𝐸 (1 − 𝜈2⁄ ) parameter (Boussinesq, 1885). 

 

 

Fig. 9. (a) Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading 

and unloading. (b) collinearity between sensitivity vectors 𝑆𝑘1 and 𝑆𝑘3 (sensitivities to 𝐸 and 𝜈, 

respectively). 

 

3.1.3. A posteriori identifiability analysis 

To quantify the completeness of the data used in the updating process, the 𝐼-index is determined 

from equation (Eq.15) using the solution �̂�(5) with the numerical nanoindentation triangular test 

realized at 1000 nm/min for the 11 possible combinations of parameters as a function of the 

considered data subsets (load-unload, load and unload) and summarized in Table 4. The 

identification of all combinations of two parameters is possible from load-unload test and only 

unloading segment. It seems possible to identify three parameters (𝐸, 𝑐1, 𝜂) when the Poisson’s 

ratio is known. The value of the index 𝐼(𝐸, 𝑐1, 𝜂) is greater than 3 only when the sole loading 

segment is considered and less than 2 as soon as the unloading phase is taken into account. For 

this combination of parameters, the identifiability is better if only unload is considered (𝐼 =

1.5) than if both load and unload are considered (𝐼 = 1.9). It can be observed that the relevant 

information is therefore contained in the unloading part, confirming the conclusions drawn from 

the sensitivity vectors analysis. The 𝐼-index is higher than 3 for the combination of four 

parameters from single nanoindentation load-unload test. The identification of the full set of 

parameters is considered to be impossible because of the inverse problem is too ill-posed. 

Loading Unloading

Loading

UnloadingO

O′

A

B

B′

B

A′

A

O O′

(a) (b)

B′

A′
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Table 4. 𝐼-index for all combinations of parameters using triangular test at 1000 nm/min with the 

solution �̂�(5). 𝐼 ≤ 2 (green, potentially identifiable), 2 < 𝐼 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not 

identifiable). 

Combination   Load-unload Load   Unload  

𝐸, 𝑐1 0.8 2.5 0.2 

𝑐1, 𝜂 0.8 2.1 0.8 

𝑐1, 𝜈 0.8 2.1 1.0 

𝐸, 𝜂 1.4 2.8 0.8 

𝐸, 𝜈 1.6 3.1 0.9 

𝜈, 𝜂 1.9 3.0 1.8 

𝐸, 𝑐1, 𝜂 1.9 3.5 1.5 

𝑐1, 𝜈, 𝜂 2.1 3.2 2.2 

𝐸, 𝜈, 𝜂 2.5 3.8 2.1 

𝐸, 𝑐1, 𝜈 3.0 3.7 2.6 

𝐸, 𝑐1, 𝜈, 𝜂 3.7 3.9 3.5 

 

 

3.2. A priori identifiability analysis of experimental approaches based on a single 

nanoindentation test   

In this section, we focus on the possibility to identify the viscoelastic parameters from a single 

nanoindentation test. The effects of nanoindentation depth rate, loading type (triangular, 

trapezoidal, exponential and sinusoidal) and the indenter tip angle are investigated. 

3.2.1. Effect of the nanoindentation depth rate 

The 𝐼-index is calculated for the other numerical nanoindentation triangular load-unload tests 

(50, 100, 500, 2500, 5000, 10000, 20000 nm/min) with the solution �̂�(5). Table 5 shows that it 

is possible to identify three parameters when using a nanoindentation depth rate between 500 

and 1000 nm/min (𝐼 ≤ 2).The nanoindentation depth rate does not improve the four material 

parameter 𝐼-index (𝐼 > 3). It can be concluded that whatever the nanoindentation depth rate, in 

the considered range the identification of the four material parameter from single 

nanoindentation triangular test is impossible. 

 

Table 5. 𝐼-index for all combinations of parameters for all nanoindentation triangular load-unload tests 

using the solution �̂�(5). 𝐼 ≤ 2 (green, potentially identifiable), 2 < 𝐼 ≤ 3 (difficult to identify), 𝐼 > 3 

(red, not identifiable). 

Combination  50 nm/min  100 nm/min  500 nm/min  1000 nm/min 2500 nm/min 5000 nm/min  10000 nm/min   20000 nm/min 

𝐸, 𝑐1 2.3 1.7 0.6 0.8 1.9 2.8 3.7 4.2 

𝑐1, 𝜂 2.2 1.7 0.6 0.8 1.7 2.3 2.3 2.2 

𝑐1, 𝜈 2.7 2.2 1.1 0.8 1.3 2.0 2.8 3.2 

𝐸, 𝜂 1.8 1.4 1.6 1.4 1.3 1.5 2.0 2.5 
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𝐸, 𝜈 2.8 2.5 1.6 1.6 2.0 2.4 2.9 3.4 

𝜈, 𝜂 1.6 1.1 1.1 1.9 1.3 1.1 1.2 1.6 

𝐸, 𝑐1, 𝜂 3.3 3.1 1.8 1.9 3.0 3.7 4.0 4.3 

𝑐1, 𝜈, 𝜂 3.4 3.3 2.3 2.1 2.5 3.0 3.1 3.3 

𝐸, 𝜈, 𝜂 3.0 2.9 1.8 2.6 3.7 4.0 4.2 4.3 

𝐸, 𝑐1, 𝜈 3.5 3.5 2.9 3.0 3.6 4.0 4.2 4.4 

𝐸, 𝑐1, 𝜈, 𝜂 3.5 3.5 3.6 3.7 4.0 4.1 4.3 4.4 

 

3.2.2. Effect of the loading type 

The identifiability analysis is also performed using the trapezoidal, exponential and sinusoidal 

numerical tests (Table 6). Three parameters (𝐸, 𝑐1, 𝜂) are potentially identifiable (𝐼 ≤ 2) when 

the Poisson’s ratio is known using trapezoidal loading. Comparing the results from single 

nanoindentation test in terms of 𝐼-index, the addition of a plateau just after the loading phase 

does not appear very helpful. It is observed that the better identifiability of the three parameters 

(𝐸, 𝑐1, 𝜂) is obtained using the exponential loading. Finally, the addition of a sinusoidal signal 

at the chosen frequency to the triangular loading phase is no more interesting for this material 

and all combinations of parameters are in the best case difficult to identify. 

 

Table 6. 𝐼-index for different loading types ([𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥]): triangular, trapezoidal, exponential and a 

sinusoidal loading with max rate (1020 nm/min). 𝐼 ≤ 2 (green, potentially identifiable), 2 < 𝐼 ≤ 3 

(difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination   Triangular 

load-unload 

Trapezoidal 

load-unload  

Exponential  

load-unload 

Triangular 

load   

Sinusoidal  

load 

𝐸, 𝑐1 [0.6; 4.2] [0.6; 4.2] [0.6; 5.7] 2.5 2.5 

𝑐1, 𝜂 [0.6; 2.3] [0.7; 2.5] [0.7; 2.6] 2.1 2.1 

𝑐1, 𝜈 [0.8; 3.2] [0.9; 3.2] [1.1; 4.6] 2.1 2.1 

𝐸, 𝜂 [1.3; 2.5] [1.2; 2.3] [1.1; 3.8] 2.8 2.7 

𝐸, 𝜈 [1.6; 3.4] [1.6; 3.3] [1.6; 4.1] 3.1 3.1 

𝜈, 𝜂 [1.1; 1.9] [0.9; 1.9] [0.7; 2.3] 3.0 2.9 

𝐸, 𝑐1, 𝜂 [1.8; 4.3] [2.0; 4.4] [1.6; 5.7] 3.5 3.4 

𝑐1, 𝜈, 𝜂 [2.0; 3.4] [2.3; 3.6] [2.1; 4.7] 3.2 3.1 

𝐸, 𝜈, 𝜂 [1.8; 4.3] [2.3; 4.4] [1.8; 4.5] 3.8 3.7 

𝐸, 𝑐1, 𝜈 [2.9; 4.4] [3.1; 4.5] [2.7; 5.7] 3.7 3.7 

𝐸, 𝑐1, 𝜈, 𝜂 [3.5; 4.4] [3.6; 4.5] [3.7; 5.7] 3.9 3.8 

 

3.2.3. Effect of the indenter tip angle 

A study has also been conducted to investigate the influence of the half angle   of the indenter 

tip on the 𝐼-index. Five indenter tips with equivalent half angle of  = 42.28° (cube corner), 

57°, 60°, 65° and 70.3° (Berkovich) are considered. The 𝐼-index results obtained for a 

nanoindentation depth rate of 500 nm/min using these indenter tips are given in Table 7. 



19 

 

Comparing the values of the 𝐼-index, it is found that the angle of the indenter does not have a 

great influence on the identifiability. The 𝐼-index values are almost the same and the four 

material parameters are, in the best case difficult to identify.  

 

Table 7. I-index for all combinations of parameters using the nanoindentation load-unload test of 500 

nm/min with five indenter angles tips for the solution �̂�(5). 𝐼 ≤ 2 (green, potentially identifiable), 2 <
𝐼 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination  Cube corner ( = 42.28°) 

 

 = 57°  = 60°  = 65° Berkovich ( = 70.3°) 

𝐸, 𝑐1 0.5 0.6 0.6 0.6 0.6 

𝑐1, 𝜂 0.6 0.6 0.6 0.6 0.6 

𝑐1, 𝜈 1.4 1.1 1.1 1.1 1.1 

𝐸, 𝜂 1.5 1.6 1.6 1.6 1.6 

𝐸, 𝜈 1.8 1.6 1.6 1.6 1.6 

𝜈, 𝜂 1.0 1.0 1.0 1.1 1.1 

𝐸, 𝑐1, 𝜂 1.7 1.8 1.8 1.8 1.8 

𝑐1, 𝜈, 𝜂 2.2 2.3 2.3 2.3 2.3 

𝐸, 𝜈, 𝜂 1.9 1.8 1.8 1.8 1.8 

𝐸, 𝑐1, 𝜈 2.7 2.8 2.8 2.8 2.9 

𝐸, 𝑐1, 𝜈, 𝜂 2.8 3.2 3.1 3.4 3.6 

 

3.2.4. Link between dissipation and identifiability 

The loss factor (intrinsic damping) tan(𝛿), which is used to measure a viscoelastic material 

property in the case of tensile and harmonic loading can be approached for any of the considered 

loading signals considered herein, by discording any signal harmonic so that:  

 tan(𝛿) =
2𝜋𝑓𝐸𝜂

𝑐1(𝐸 + 𝑐1) + (2𝜋𝑓)2𝜂2
 (16) 

where 𝑓 is the fundamental frequency. In the case of the nanoindentation test 𝑓 = 1 𝑡𝑚𝑎𝑥⁄ . 

 

The 𝐼-index is calculated for the numerical nanoindentation triangular tests with equivalent 

cube corner and Berkovich indenter tips using displacement-controlled and force-controlled 

modes to investigate the effect of nanoindentation rate. 

Fig. 10 presents the results for three combinations of parameters calculated using the solution 

�̂�(5) with the equivalent cube corner indenter tip.  It can be observed that the 𝐼-index values of 

the four parameters fall for the three slowest rates (60, 120 and 600 µN/min) (Fig. 10b). This 

numerical problem disappears if the Poisson’s ratio is known. The better identifiability of the 

material parameters is obtained with a nanoindentation depth rate between 500 nm/min (𝑡𝑚𝑎𝑥 =

120 𝑠) and 1000 nm/min (𝑡𝑚𝑎𝑥 = 60 𝑠) in displacement-controlled mode and a 

nanoindentation load rate 600 µN/min (𝑡𝑚𝑎𝑥 = 120 𝑠) and 1200 µN/min (𝑡𝑚𝑎𝑥 = 60 𝑠) in 

force-controlled mode. It also shows that the 𝐼-index is well correlated to the loss factor (Fig. 
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10). In particular, we note that when the loss factor is maximum, (i.e when the dissipation is 

maximum) the 𝐼-index is minimum, (i.e the identifiability is the maximum). 

 

 

Fig. 10. 𝐼-index for the nanoindentation triangular tests and the loss factor using the solution �̂�(5) with 

equivalent cube corner indenter tip, (a) displacement-controlled mode. (b) force-controlled mode. 

 

For the equivalent Berkovich indenter tip (Fig. 11), it can be seen that the better identifiability 

of the material parameters is obtained with a nanoindentation depth rate between 500 nm/min 

(𝑡𝑚𝑎𝑥 = 120 𝑠) and 1000 nm/min (𝑡𝑚𝑎𝑥 = 60 𝑠) in displacement-controlled mode and a 

nanoindentation load rate about 1200 µN/min (𝑡𝑚𝑎𝑥 = 60 𝑠) in force-controlled mode. It also 

shows that the 𝐼-index is well correlated to the loss factor (Fig. 11), similarly to equivalent cube 

corner indenter tip.   

 

 

Fig. 11. 𝐼-index for the nanoindentation triangular tests and the loss factor using the solution �̂�(5) with 

equivalent Berkovich indenter tip, (a) displacement-controlled mode. (b) force-controlled mode. 

 

600 µN/min1200 µN/min1000 nm/min 500 nm/min (a) (b)

1200 µN/min1000 nm/min 500 nm/min (a) (b)
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The link between tan(𝛿) and the 𝐼-index is also investigated for trapezoidal and exponential 

loading types using equation (Eq.16). Fig. 12 shows the 𝐼-index results for 3 combinations of 

material parameters with equivalent Berkovich indenter tip as function of the loss factor using 

the solution �̂�(5). It can be seen that, whatever the loading type, the better identifiability 

corresponds to conditions which maximize the loss factor. The link between tan(𝛿) and the 𝐼-

index depends on the nanoindentation rate to solicit the dissipative phenomena, which is 

different from a loading to the other. 

 

Fig. 12. 𝐼-index versus 𝑡𝑎𝑛(𝛿) using three loading types with the solution �̂�(5) for three combinations 

of parameters, (a) 𝐼(𝐸, 𝜈). (b) 𝐼(𝐸, 𝑐1, 𝜂). (c) 𝐼(𝐸, 𝑐1, 𝜈, 𝜂). 

 

3.3. Combining tests for a well-posed inverse problem 

In order to determine the better identifiability of the four material parameters, the combination 

of numerical nanoindentation triangular tests and indenter angle tips is investigated. The 

combination of the equivalent 2D cube corner ( = 42.28°) and Berkovich ( = 70.3°) 

indenter tips is considered to determine a unique solution for the inverse problem. 

(b)(a)

(c)

𝐼(𝐸, 𝜈) 𝐼(𝐸, 𝑐1, 𝜂)

𝐼(𝐸, 𝑐1, 𝜈, 𝜂)
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3.3.1. Several nanoindentation triangular tests 

The identifiability analysis is carried out using a set of 2 to 8 nanoindentation triangular 

numerical tests (50, 100, 500, 1000, 2500, 5000, 10000, 20000 nm/min) for the solution �̂�(5). 

Table 8 summarizes the 𝐼-index values for all subsets of nanoindentation tests. The combination 

of nanoindentation triangular tests decreases the maximum 𝐼-index values, and therefore 

improves the identification robustness. All combinations of two parameters can be identified 

from the subset of two nanoindentation tests. The subset of multiple nanoindentation tests 

allows to identify 9 combinations of parameters. The identification of the four material 

parameters is still impossible despite the additional information. The value of the 𝐼-index for 

the four material parameters is never less than 3.5. Comparing the 𝐼-index results from single 

nanoindentation test (Table 4) and the subset of several tests (Table 8), it is observed that the 

set of eight nanoindentation rates does not necessarily lead to better 𝐼-index compared to a 

single but properly chosen one. 

 

Table 8. 𝐼-index for all combinations of parameters ([𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥]) for all subsets of nanoindentation 

triangular load-unload tests using the solution �̂�(5). 𝐼 ≤ 2 (green, potentially identifiable), 2 < 𝐼 ≤ 3 

(difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination  2 tests  3 tests  4 tests  5 tests  6 tests  7 tests  8 tests  

𝐸, 𝑐1 [0.5; 3.9] [0.5; 3.3] [0.5; 2.6] [0.5; 1.7] [0.6; 1.2] [0.6; 0.8] 0.7 

𝑐1, 𝜂 [0.4; 2.3] [0.3; 2.2] [0.3; 1.7] [0.3; 1.0] [0.4; 0.9] [0.4; 0.7] 0.6 

𝑐1, 𝜈 [0.5; 2.9] [0.5; 2.4] [0.5; 1.7] [0.5; 1.1] [0.5; 0.9] [0.5; 0.8] 0.7 

𝐸, 𝜂 [1.2; 2.3] [1.1; 2.1] [1.2; 2.0] [1.2; 1.8] [1.3; 1.6] [1.3; 1.5] 1.4 

𝐸, 𝜈 [1.6; 3.1] [1.6; 2.8] [1.5; 2.5] [1.6; 2.2] [1.6; 2.0] [1.7; 1.8] 1.7 

𝜈, 𝜂 [0.7; 1.5] [0.7; 1.3] [0.8; 1.2] [0.8; 1.1] [0.8; 1.0] [0.9; 0.9] 0.9 

𝐸, 𝑐1, 𝜂 [1.3; 4.2] [1.3; 3.8] [1.3; 3.2] [1.3; 2.1] [1.3; 1.6] [1.3; 1.5] 1.4 

𝑐1, 𝜈, 𝜂 [1.1; 3.4] [1.1; 3.0] [1.0; 2.3] [1.0; 1.9] [1.1; 1.6] [1.2; 1.4] 1.3 

𝐸, 𝜈, 𝜂 [1.7; 4.3] [1.6; 4.1] [1.6; 3.9] [1.6; 3.1] [1.7; 2.5] [1.8; 2.0] 1.9 

𝐸, 𝑐1, 𝜈 [2.5; 4.2] [2.4; 4.0] [2.4; 3.6] [2.4; 2.9] [2.5; 2.7] [2.5; 2.6] 2.6 

𝐸, 𝑐1, 𝜈, 𝜂 [3.5; 4.3] [3.5; 4.3] [3.5; 4.2] [3.5; 4.1] [3.6; 3.9] [3.7; 3.8] 3.7 

 

3.3.2. Dual nanoindentation 

In the following, the combination of the indenter tip angles is used in order to determine the 

better approach to identify the four viscoelastic material properties. Table 9 presents the 𝐼-index 

values for all dual nanoindentation using triangular numerical test at 500 nm/min in 

displacement-controlled mode with the solution �̂�(5). Whatever the combination, it is possible 

to identify two parameters, however, for three parameters, the indenter tips have to be carefully 

chosen. The value of the 𝐼-index for the combination of four parameters from the combination 

of equivalent cube corner ( = 42.28°) and Berkovich ( = 70.3°) indenter tips is equal to 2. 

The identification of all combinations of parameters using loading and unloading phases may 

thus provide a unique solution. The identifiability is difficult from unloading phases and 
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impossible if only loading phases are considered. Fig. 13 displays the simulated P-h curves for 

the two indenter tips at 500 nm/min for the solution �̂�(5). 

 

Fig. 13. Nanoindentation pseudo-experimental (P-h) curves for equivalent cube corner and Berkovich 

indenter tips at 500 nm/min obtained using the solution �̂�(5) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 =
0.4, 𝜂 = 17.08 GPa.s). 

 

Table 9. 𝐼-index for all combinations of parameters for all dual nanoindentation data at 500 nm/min with 

the solution �̂�(5). 𝐼 ≤ 2 (green, potentially identifiable), 2 < 𝐼 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not 

identifiable). 

Combination   Dual nanoindentation 

[𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥] 

Loads-unloads ( 1 =

42.28°,  2 = 70.3°) 

Loads Unloads 

𝐸, 𝑐1 [0.6; 0.6] 0.6 2.1 0.8 

𝑐1, 𝜂 [0.6; 0.6] 0.6 1.8 0.8 

𝑐1, 𝜈 [1.1; 1.2] 1.1 1.5 1.5 

 

 

𝐸, 𝜂 [1.6; 1.6] 1.6 2.9 0.9 

𝐸, 𝜈 [1.5; 1.6] 1.5 1.9 0.9 

𝜈, 𝜂 [1.0; 1.1] 1.0 1.6 0.4 

𝐸, 𝑐1, 𝜂 [1.8; 1.8] 1.8 3.0 1.7 

𝑐1, 𝜈, 𝜂 [1.7; 2.3] 1.7 2.1 2.0 

𝐸, 𝜈, 𝜂 [1.7; 1.8] 1.7 3.0 1.3 

𝐸, 𝑐1, 𝜈 [1.9; 2.8] 1.9 2.2 2.1 

𝐸, 𝑐1, 𝜈, 𝜂 [2.0; 3.3] 2.0 3.1 2.1 

 

The results of the identifiability analysis suggest that dual nanoindentation technique may 

provide a unique solution for the full set of four unknown parameters. Three updating processes 

are thus performed using equivalent cube corner and Berkovich indenter tips with the pseudo-

experimental tests at 500 nm/min (Fig. 13). These updating processes make use of the three 
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starting points 𝛉(01), 𝛉(02) and 𝛉(03). As expected from 𝐼-index results, the obtained solutions 

are the same for the three starting points (Table 10) and almost equal to the solution �̂�(5). The 

evolution of the four parameters during the algorithm iterations is illustrated in Fig. 14.  

 

Table 10. Estimated solutions for the three starting points using dual nanoindentation. 

  Parameter Starting value Estimated value 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 

Starting point 5: 𝛉(05) 

1 𝐸 (GPa) 1.50 1.47 

2 𝑐1 (GPa) 12.25 0.94 

3 𝜈 0.4 (imposed) 0.4 (imposed) 

4 𝜂 (GPa. s) 65 17.08 

Objective function ω(5)   4.59 × 10−2 1.31 × 10−5 

Starting point 1: 𝛉(01) 

1 𝐸 (GPa) 1.50 1.45 

2 𝑐1 (GPa) 12.25 0.95 

3 𝜈 0.4 0.39 

4 𝜂 (GPa. s) 65 17.40 

Objective function ω(1)   8.56 × 10−1 2.79 × 10−5 

Starting point 2: 𝛉(02) 

1 𝐸 (GPa) 1.40 1.45 

2 𝑐1 (GPa) 8.0 0.95 

3 𝜈 0.3 0.39 

4 𝜂 (GPa. s) 45 17.40 

Objective function ω(2)   4.40 × 10−1 2.79 × 10−5 

Starting point 3: 𝛉(03) 

1 𝐸 (GPa) 1.20 1.45 

2 𝑐1 (GPa) 4.0 0.95 

3 𝜈 0.2 0.39 

4 𝜂 (GPa. s) 30 17.40 

Objective function ω(3)   1.17 × 10−1 2.79 × 10−5 
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Fig. 14. Evolution of the 4 parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process using the three starting 

points 𝜽(01), 𝜽(02) and 𝜽(03) with dual nanoindentation technique. 

 

The I-index results using two nanoindentation numerical tests performed at nanoindentation 

depth rate of 500 nm/min with equivalent cube corner and Berkovich indenter tips indicate that 

it is possible to identify the four parameters (𝐼(𝐸, 𝑐1, 𝜈, 𝜂) = 2) (Table 9). This value of the I-

index indicates that the inverse problem is correctly conditioned (i.e not very sensitive to noise). 

To illustrate the effect of noise on the updating process, a white Gaussian noise is used to disrupt 

the nanoindentation forces 𝑃 from the numerical tests at nanoindentation depth rate of 500 

nm/min using equivalent cube corner and Berkovich indenter tips. For a single test, the 

disrupted force �̃� is given by: 

 �̃�(𝑡) = 𝑃(𝑡) +𝒩(0, 𝑠)𝑃𝑚𝑎𝑥 (17) 

where 𝒩(0, 𝑠) is a normal (Gaussian) distribution with zero mean and standard deviation 𝑠. 

𝑃𝑚𝑎𝑥  is the maximum value of the force 𝑃(𝑡). 

𝛉(01)

𝛉(02)

𝛉(03)

𝛉(01)

𝛉(02)

𝛉(03)

𝛉(01)

𝛉(02)

𝛉(03)

𝛉(01)

𝛉(02)

𝛉(03)

(c)

(a) (b)

(d)
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Fig. 15. Disrupted pseudo-experimental nanoindentation P-h curves (ℎ̇ = 500 nm/min) for three 

levels of noise with equivalent cube corner and Berkovich indenter tips obtained using �̂�(5). 

 

Both the nanoindentation forces obtained with 500 nm/min using equivalent cube corner and 

Berkovich indenter tips are corrupted by noise according to equation (Eq.17) (Fig. 15). The 

estimated solutions (Eq.6) and the uncertainties (Eq.11) for three noise standard deviations are 

presented in Table 11. The four material parameters tend towards the same values whatever the 

starting point (Fig. 16) and these values are close to the reference solution (lower than 5%). The 

solution is not very sensitive to this type of noise, thereby proving the proposed procedure is 

adequate to retrieve a unique set of viscoelastic parameters. 

 

Table 11. Estimated solutions for the three levels of measurement noise using dual nanoindentation with 

the starting point 𝜽(02). Reference �̂�(5) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s). 

 Noise   Parameter Starting value Estimated value Uncertainty 

 𝑠 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗  ∆𝜃𝑗/𝜃𝑗  (%) 

 

10−2 

1 𝐸 (GPa) 1.40 1.453 29 

 2 𝑐1 (GPa) 8.0 0.954 18 

 3 𝜈 0.3 0.381 57 

 4 𝜂 (GPa. s) 45 17.58 46 

ω    4.90 × 10−2 4.89 × 10−4  

 

5 × 10−3 

1 𝐸 (GPa) 1.40 1.460 16 

 2 𝑐1 (GPa) 8.0 0.946 10 

 3 𝜈 0.3 0.388 31 

 4 𝜂 (GPa. s) 45 17.30 25 

ω    4.96 × 10−2 1.47 × 10−4  

70.3 

42.28 
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10−3 

1 𝐸 (GPa) 1.40 1.453 7.5 

 2 𝑐1 (GPa) 8.0 0.947 4.7 

 3 𝜈 0.3 0.388 15 

 4 𝜂 (GPa. s) 45 17.41 12 

ω    4.94 × 10−2 3.26 × 10−5  

 

0 

1 𝐸 (GPa) 1.40 1.454 6.9 

 2 𝑐1 (GPa) 8.0 0.947 4.3 

 3 𝜈 0.3 0.388 14 

 4 𝜂 (GPa. s) 45 17.40 11 

ω    4.40 × 10−1 2.79 × 10−5  

  

 

Fig. 16. Evolution of the 4 parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process for the three starting 

points of the minimization algorithm 𝜽(01), 𝜽(02) and 𝜽(03) using noisy force values of dual 

nanoindentation data. 

 

3.4. Estimation of the viscoelastic law parameters from dual nanoindentation 

experimental data 

In this section, two experimental nanoindentation tests (𝑛 = 2) carried out using the cube corner 

and Berkovich indenter tips at depth rate of 500 nm/min are considered. For the updating 

process, the starting point 𝛉(01) is chosen to initialize the minimization algorithm. The 

(a) (b)

(c) (d)
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identified viscoelastic (VE) parameters are summarized in Table 12. Unlike the updating 

process using single test for the viscoelastic behavior (Table 1), the Poisson’s ratio tends to the 

limit value (𝜈 = 0.5). The nanoindentation experimental P-h curves and the numerical results 

are plotted in Fig. 17. The results show a poor agreement between the experimental data and 

the updating process results. 

 

Table 12. Estimated parameters of the viscoelastic behavior using the dual nanoindentation (cube corner 

and Berkovich indenter tips). 

  Parameter Starting value Estimated value 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 

Starting point: 𝛉(01) 

1 𝐸 (GPa) 1.50 1.03 

2 𝑐1 (GPa) 12.25 0.17 

3 𝜈 0.4 0.5 

4 𝜂 (GPa. s) 65 49.17 

Objective function ω   2.24 6.71 × 10−2 

 

As it can be seen in the optical images displayed in Fig. 18, residual imprints can be observed. 

This is a clear indication that plasticity occurs during the indentation of PP. It thus seems 

necessary to assess the impact of plastic deformation on the identified VE parameters. 

 

 

Fig. 17. Nanoindentation (P-h) experimental and simulated curves for the viscoelastic behavior from 

dual nanoindentation with cube corner and Berkovich indenter tips at 500 nm/min. 

70.3 

42.28 
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Fig. 18. Optical images of imprints on PP sample. (a) cube corner indenter tip (2.48 × 2.48 𝜇𝑚2).  

(b) Berkovich indenter tip (6.55 × 6.55 𝜇𝑚2). 

 

3.5. Viscoelastic-plastic law 

For a complete description of the material behavior, plasticity should be taken into account. In 

order to identify the mechanical behavior of PP, viscoelastic-plastic (VEP) behavior has been 

considered. In this case, the dissipation potential 𝛺 is defined as follows: 

 𝛺 =
𝐸

2𝜂
(𝛔 − 𝐗𝑎𝑛): 𝐒: (𝛔 − 𝐗𝑎𝑛) +

1

2𝐾
〈𝑓〉2 (18) 

where 𝐾 is the viscosity coefficient in the viscoplastic domain. In this case, 𝐾 is set to 1 MPa.s 

to enable the plastic deformation. 

The function 𝑓 is given by: 

 𝑓(𝛔) = σ̅ − 𝜎𝑦 (19) 

where 𝜎𝑦 is the yield strength and σ̅ is the von Mises stress. The symbols 〈 〉 denote 

Macaulay’s brackets such as 〈𝑓〉 = 0 if 𝑓 < 0 and 〈𝑓〉 = 𝑓 if 𝑓 ≥ 0. 

This viscoelastic-plastic behavior law is controlled by five material parameters, which define 

the parameter set 𝛉 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) = (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦). The updating process is presented 

in the following paragraphs. 

 

3.5.1. Results of the updating process for the viscoelastic-plastic law 

In this case, the same dual nanoindentation tests (cube corner, Berkovich) are used and three 

starting points (𝛉(06), 𝛉(07), 𝛉(08)) are considered (Table 13). The starting point 𝛉(06) is built 

by including the yield strength of the PP (Ashby, 1994) with the estimated solution for the 

viscoelastic behavior �̂�(5) (𝛉(06) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4 (imposed), 𝜂 =

17.08 GPa.s, 𝜎𝑦 = 60 MPa). The updating process lasts about 23 days of computation for each 

starting point. The minimization starting from 𝛉(06) has been performed under the constrain 

𝜈 = 0.4; whereas no constrain was imposed for the starting points 𝛉(07) and 𝛉(07).  It can be 

observed that the Poisson’s ratio tends to the value 𝜈 = 0.5 when 𝜈 is free. The parameters 

(b)(a)
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𝐸, 𝑐1, 𝜂 and 𝜎𝑦 tend towards different values with almost the same objective function ω for all 

three cases. Comparing the objective function values to that obtained for the viscoelastic law 

(Table 12), one can conclude that the viscoelastic-plastic law is more adequate to the description 

of the material behavior. Then, it is obvious that the numerical and experimental P-h curves are 

very close for both indenter tips (Fig. 19). 

 

Table 13. Estimated parameters set �̂� (Eq. 6) for the viscoelastic-plastic law using three starting points. 

  Parameter Starting value Estimated value 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 

Starting point 6: 𝛉(06) 

1 𝐸 (GPa) 1.47 1.77 

2 𝑐1 (GPa) 0.94 1.43 

3 𝜈 0.4 (imposed) 0.4 (imposed) 

4 𝜂 (GPa. s) 17.08 15.75 

5 𝜎𝑦(MPa) 60 76.70 

Objective function ω(6)   9.78 × 10−2 2.07 × 10−3 

Starting point 7: 𝛉(07) 

1 𝐸 (GPa) 4.0 1.61 

2 𝑐1 (GPa) 3.0 1.31 

3 𝜈 0.4 0.5 

4 𝜂 (GPa. s) 60 14.41 

5 𝜎𝑦(MPa) 90 69.96 

Objective function ω(7)   1.44 1.86 × 10−3 

Starting point 8: 𝛉(08) 

1 𝐸 (GPa) 2.0 1.57 

2 𝑐1 (GPa) 1.5 1.32 

3 𝜈 0.3 0.5 

4 𝜂 (GPa. s) 40 15.25 

5 𝜎𝑦(MPa) 70 70.28 

Objective function ω(8)   5.39 × 10−2 1.88 × 10−3 
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Fig. 19. Experimental (ℎ̇ = 500 nm/min) and simulated nanoindentation P-h curves using cube corner 

and Berkovich indenter tips for the three viscoelastic-plastic solutions (Table 13). 

 

Another updating process is also performed by imposing the yield strength 𝜎𝑦 = 60 MPa and 

the Poisson’s ratio 𝜈 = 0.4. The three viscoelastic parameters 𝐸, 𝑐1 and 𝜂 are estimated using 

the starting point: (𝛉(09) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4 (imposed), 𝜂 = 17.08 

GPa.s, 𝜎𝑦 = 60 MPa (imposed)). It can be observed that imposing the yield strength increases 

the values of the instantaneous 𝐸 and anelastic 𝑐1 moduli and decreases the viscosity coefficient 

𝜂 (Table 14). The obtained P-h curves are in good agreement with the experimental data 

compared to those in viscoelastic case (Fig. 20). This means that the addition of a yield strength, 

even when is set to a wrong value, allows a better prediction of the viscoelastic part of the PP 

behavior. The identifiability analysis shows that when the yield strength σy and Poisson’s ratio 

𝜈 are known, the identifiability of the three parameters 𝐸, 𝑐1 and 𝜂 is possible 𝐼(𝐸, 𝑐1, 𝜂) = 2.0. 

The identification of the five viscoelastic-plastic parameters from this dual nanoindentation is 

difficult (𝐼(𝐸, 𝑐1, ν, 𝜂, 𝜎𝑦) = 2.8). 

 

Table 15. Estimated solution for the viscoelastic-plastic law with imposing yield strength. 

  Parameter Starting value Estimated value 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 

Starting point 9: 𝛉(09) 

1 𝐸 (GPa) 1.47 1.90 

2 𝑐1 (GPa) 0.94 1.91 

3 𝜈 0.4 (imposed) 0.4 (imposed) 

4 𝜂 (GPa. s) 17.08 10.80 

5 𝜎𝑦(MPa) 60 (imposed) 60 (imposed) 

Objective function ω(9)   9.78 × 10−2 5.36 × 10−3 

70.3 

42.28 

�̂�(6)

�̂�(7)

�̂�(8)
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Fig. 20. Experimental (ℎ̇ = 500 nm/min) and simulated nanoindentation (P-h) curves with cube corner 

and Berkovich indenter tips for the viscoelastic and viscoelastic-plastic laws. 

 

3.5.2. Assessment of the viscoelastic-plastic behavior 

In order to validate the identified behavior, tensile tests have been performed using PP 

dumbbell-shaped specimens with gauge section (20 × 4 × 0.5 mm3). Fig. 21 shows the 

repetitive progressive loading test carried out at 2 N/s. The full-field strains have been measured 

by global digital image correlation (DIC) assuming an affine displacement field over the region 

of interest in both longitudinal (3) and transversal (2) directions. The comparison between the 

simulation results obtained using the solution �̂�(6) = (𝐸 = 1.77 GPa, 𝑐1 = 1.43 GPa, 𝜈 = 0.4 

(imposed), 𝜂 = 15.75 GPa.s, 𝜎𝑦 = 76.70 MPa) and the tensile test data illustrates that the 

identified viscoelastic-plastic law predicts the PP behavior better than the viscoelastic one using 

the solution �̂�(5) (Fig. 21). 

 

Fig. 21. Experimental data of the tensile test and simulation response using the viscoelastic and 

viscoelastic-plastic laws. 

�̂�(9)
�̂�(5)

�̂�(6)
�̂�(5)

 2  3
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4. Conclusion 

In this study, the uniqueness\non-uniqueness of the viscoelastic properties of polypropylene 

determined by the FEMU of the nanoindentation test is studied. A four-parameter viscoelastic 

behavior law has been implemented in a 2D axisymmetric finite element model. The FEMU 

process of nanoindentation test illustrates that a single nanoindentation experimental triangular 

load-unload test realized at constant nanoindentation depth rate (~1000 nm/min) is not 

sufficient to uniquely determine the four viscoelastic properties of the material. The updating 

process of the FE 2D-axisymmetric model on these experimental data leads to multiple 

solutions for the values of the four parameters (𝐸, 𝑐1, 𝜈, 𝜂) of the viscoelastic behavior law. The 

identification of the four parameters from a single nanoindentation triangular test is thus 

considered as impossible. The identifiability analysis allows the quantification of the ill-posed 

character of the inverse problem by a scalar 𝐼-index and shows that it is possible to identify 

three parameters (𝐸, 𝑐1, 𝜂) even if only the unloading phase is taken in account, which proves 

that the relevant information is in the unloading phase. 

The effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, 

sinusoidal) and indenter tip angle on the identifiability is numerically investigated. The 

comparison between the results from the different loading types shows that the identification 

of the four material parameters is not possible. The included half angle   of the indenter tip 

does not have a significant influence on the identifiability results.  

The comparison between the loss factor and the 𝐼-index results from the nanoindentation 

triangular tests indicates that the better identifiability of the material parameters is obtained at 

the maximum loss factor, which corresponds to the maximum of the dissipated energy. It is also 

observed that, whatever the loading type, the best identifiability is obtained if the loss factor is 

maximum. 

The combination of several triangular load-unload tests improves the identification robustness 

and does not lead to better 𝐼-index for the four material parameters compared to a single but 

properly chosen one. We show that the combination of two numerical nanoindentation 

triangular tests carried out at a constant nanoindentation depth rate using equivalent cone apex 

angles of cube corner (42.28°) and Berkovich (70.3°) indenter tips allows for the retrieval of a 

unique solution of the inverse problem, which is robust with respect to the noise. The four 

material parameters are potentially identifiable using this experimental protocol if the material 

behavior is viscoelastic. These results are agree with those obtained for elastoplastic behavior. 

The viscoelastic-plastic law with five parameters (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦) improves the description of 

the material behavior. The identifiability results show that if the yield strength and Poisson’s 

ratio 𝜈 are known, the identification of the three viscoelastic parameters (𝐸, 𝑐1, 𝜂) from dual 

nanoindentation experimental data (cube corner, Berkovich) is possible (𝐼 = 2.0). The 

comparison between the simulation results of the identified viscoelastic and viscoelastic-plastic 

laws and the tensile test data shows that viscoelastic-plastic law is more adequate to the 

description of the PP behavior. 
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This work paves the way for the design of robust experimental protocols based on the 𝐼-index 

in order to identify more complex behaviors, such as the viscoelastic with non-constant 

Poisson’s ratio, viscoelastic-plastic or viscoelastic-viscoplastic. Indeed, the 𝐼-index can be used 

to numerically design the nanoindentation tests which allow to activate the dissipative 

phenomena as much as possible, thus to identify intrinsic and reliable properties. 
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