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Abstract— We consider the port-Hamiltonian formulation of
systems of two conservation laws with canonical interdomain
coupling in one spatial dimension. Based on the structure-
preserving discretization in space and time, we propose two di-
rections for the estimation of the discrete states from boundary
measurement. First, we design full state Luenberger observers
for the linear case. To guarantee unconditional asymptotic
stability of the discrete-time error system, special attention is
paid to the implementation of the correction term in the sense of
implicit damping injection. Second, we exploit the flatness of the
considered class of possibly nonlinear hyperbolic systems, which
is preserved under the applied geometric discretization schemes,
to obtain a state estimation based on boundary measurement.
Numerical experiments serve as a basis for the comparison and
discussion of the two proposed discrete-time estimation schemes
for hyperbolic conservation laws.

I. INTRODUCTION

In order to implement state feedback control, observer
design is necessary for the lack of complete state measure-
ment in real physical applications. Deterministic observer
design for linear finite dimensional systems has been estab-
lished in the 1960s and 1970s by Luenberger [1]. However,
in the nonlinear and infinite dimensional cases, observer
design is still an open research problem. In the last two
decades, a powerful modeling and control approach, the port-
Hamiltonian (PH) framework, has been proposed to cope
with nonlinear and distributed parameter systems. Based on
the energy and a structured representation of the power
flows and dissipation in the system, the PH framework is
particularly suited to describe the complex behavior of multi-
physical systems [2]. The PH approach has been gener-
alized to infinite-dimensional systems described by partial
differential equations (PDEs) in [3], [4]. Observer design for
finite-dimensional PH systems has been investigated in the
last ten years. It has been shown that the passivity of PH
systems is very useful for observer design [5]. The idea of
Interconnection and Damping Assignment has been extended
to the observer design for PH systems in [6], [7].

In the infinite-dimensional case, particular attention has to
be paid to numerical issues associated with the design and
implementation of finite-dimensional observers. Recently,
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progress has been made on the structure-preserving spatial
discretization of PH systems, applicable to arbitrary spa-
tial dimension and complex geometries, see e. g. [8], [9].
A definition of discrete-time PH systems based on time
discretization with collocation methods, which extends the
notion of symplectic integration schemes to open systems,
has been proposed in [10]. The simplest approach, which
leads to such a discrete-time PH system is the symplectic
Euler scheme, applied to partitioned systems. In [11], it
is shown that beyond the preservation of the PH structure,
also the flatness property of the corresponding outputs is
preserved, which allows for the explicit computation of
discrete-time feedforward controls.

In this paper, we present two state estimation schemes
based on the full structure-preserving discretization of hy-
perbolic systems of conservation laws. First, we present
Luenberger observers based on implicit damping injection
with collocated and non-collocated measurements. Second,
we exploit the flatness of the discrete-time finite-dimensional
approximate models to construct an explicit scheme for the
state estimation.

The paper is structured as follows. Section II gives an
overview of 1D PH systems of conservation laws and their
structure-preserving discretization in space and time. The
main results of the paper, the implicit damping injection
based observer and the flatness-based state estimation, are
introduced in Section III. In Section IV, we show the
effectiveness of the proposed observers on the benchmark
example of the 1D wave equation, for which the solution
is exactly known. At last, we conclude this paper with final
remarks and some future perspectives.

II. PRELIMINARIES

A. Port-Hamiltonian systems of conservation laws

We consider 1D systems of two conservation laws in
PH form, written in terms of exterior differential calculus1.
According to [3], the PDE representation can be split into
structure, dynamics and constitutive equations,[

fp

fq

]
=

[
0 d
d 0

] [
ep

eq

]
, (Structure) (1a)[

ṗ
q̇

]
=

[
−fp
−fq

]
, (Dynamics) (1b)[

ep

eq

]
=

[
δpH
δqH

]
. (Constit. Eq.) (1c)

1See [12] for an introduction to differential forms.
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Considering an open domain Ω = (0, L) ⊂ R, the state
differential forms p, q ∈ L2Λ1(Ω) represent the conserved
quantities. Flows fp, fq ∈ L2Λ1(Ω) and efforts (or co-states)
ep, eq ∈ H1Λ0(Ω) represent dual, power-conjugated port
variables. The exterior derivative d : Λ0(Ω) → Λ1(Ω) as
a unifying differential operator in exterior calculus plays
the role of the spatial derivative in 1D. δpH and δqH are
the variational derivatives2 of the energy or Hamiltonian
functional H =

∫ L
0
H with the Hamiltonian density H :

Λ1(Ω) × Λ1(Ω) × Ω → Λ1(Ω). With the definition of
boundary inputs, i. e. imposed boundary conditions (BCs)[

u1

u2

]
=

[
eq(0)
ep(L)

]
(Input BCs) (2)

and the collocated power-conjugate outputs[
y1

y2

]
=

[
ep(0)
−eq(L)

]
, (Coll. outputs) (3)

the application of the generalized Stokes’ theorem yields the
structural balance equation∫ L

0

ep ∧ fp +

∫ L

0

eq ∧ fq + y1u1 + y2u2 = 0. (4)

In 1D, the exterior product ∧ : Λ0(Ω) × Λ1(Ω) → Λ1(Ω)
of a 0-form (function) with a 1-form simply coincides with
the scalar product. After substitution of (1b) and (1c), one
obtains the energy balance

Ḣ = y1u1 + y2u2, (5)

which shows that the considered class of systems (assuming
H to be bounded from below) is passive, even lossless.

In this paper, we consider linear constitutive equation of
the form ep = ∗p, eq = ∗q, which represent a linear wave
equation with speed of propagation v = 1. The result for
flatness-based state estimation can be extended, with the
appropriate discretization of the constitutive equations3 in
a straightforward manner to nonlinear hyperbolic systems
like the Saint-Venant equations or the Euler equations of
isentropic gas flow [13].

In some applications, the measured output is different from
the power-conjugated output4. We shall also see how to use
such kind of information in the observer design.

B. Structure-preserving spatial discretization
The structure-preserving discretization of the system (1),

(2), (3) with mixed Whitney finite elements according to
[8] (with a flow mapping parameter α = 0) yields the state
representation5[

−fp
−fq

]
=

[
0 D
−DT 0

] [
ep

eq

]
+

[
g1 0
0 g2

] [
u1

u2

]
,[

y1

y2

]
=

[
ep1
−eqN

]
(6)

2For the definition, see [2], p. 232.
3In the spirit of [11].
4Consider as an example the laser measurement of the displacement at

the end of a flexible structure.
5The same equations are obtained with finite volumes [14] or finite

differences [9] on regularly staggered grids.

with the discretized flow and effort vectors fp =[
fp1 , . . . , f

p
N

]T
, fq =

[
fq1 , . . . , f

q
N

]T
, ep =

[
ep1, . . . , e

p
N

]T
and eq =

[
eq1, . . . , e

q
N

]T
and the matrices

D =


−1
1 −1

. . . . . .
1 −1

 , g1 =


1
0
...
0

 , g2 =


0
...
0
−1

 . (7)

The discrete flows fpi = −ṗi, fqi = −q̇i are the negative
time derivatives of the lumped states pi and qi, i = 1, . . . , N ,
which have the interpretation of integral conserved quantities
over the discretization edges. epi , eqi denote the approxima-
tions of the nodal efforts (co-states), with eq0 = u1 and
epN+1 = u2 the boundary inputs. It is straightforward to
verify from the (skew-)symmetry of this state representation
that the discretized structural balance equation

N∑
i=1

epi f
p
i +

N∑
i=1

eqi f
q
i + y1u1 + y2u2 = 0 (8)

holds, which approximates (4).
In the case of a linear wave equation on the interval Ω =

(0, 1) with Hamiltonian density H = 1
2p ∧ ∗p + 1

2q ∧ ∗q,
which is treated as an example in the paper, the consistent
effort approximation is given by

epi =
pi
∆z

, eqi =
qi

∆z
, ∆z =

1

N
. (9)

C. Structure-preserving discretization in time

With the symplectic Euler scheme, the simplest possible
structure-preserving time integration method6 is applied to
the finite-dimensional approximation (6). The result is

1

∆t

[
pk+1−pk
qk+1−qk

]
=

1

∆z

[
0 D

−DT 0

] [
pk+1

qk

]
+

[
g1 0
0 g2

] [
uk1
uk+1

2

]
[
yk+1

1

yk2

]
=

1

∆z

[
gT1 0T

0T gT2

] [
pk+1

qk

]
. (10)

The inputs are sampled according to their physical charac-
ter, consistent with the symplectic Euler scheme, i. e. uk1 =
eq,k0 and uk+1

2 = ep,k+1
N+1 . With the definition of the outputs,

we obtain an approximation of the energy balance of the
form
1

∆t

[
ep,k+1 eq,k

] [pk+1 − pk
qk+1 − qk

]
= (yk+1

1 )Tuk1 +(yk2 )Tuk+1
2 .

(11)
For a more general definition of discrete-time Dirac struc-
tures/PH systems, and the discussion of the discrete-time
(structural) energy balance, we refer to the recent paper [10].

III. FINITE-DIMENSIONAL STATE OBSERVERS

We use the fully discretized model of the wave equation
(10) for the design of two different observers in the sequel.
The output vector is written in terms of the two sampling
instants k and k + 1, according to the occurrence in the
discrete balance equation (10).

6See [15] for geometric numerical integration of Hamiltonian systems.
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A. Luenberger observer

For observer design, we consider two different application
cases. First, the observer is designed from the measured
collocated output according to (10). Second, the case of
non-collocated measurement is investigated. If the considered
wave equation represents the dynamics of deflection w(z, t)
of a string, the boundary measurement

ym =

∫ 1

0

p (z, t) dz = w (1, t)− w (0, t) (12)

with p = ∂w
∂z corresponds to the total deflection, which can be

easily measured by a laser sensor in an experimental setup.
An interesting issue, which requires some care in the

design of the full state observer is the fact that the model
(10) is not in the form xk+1 = Axk + Buk, yk = Cxk of
an (explicit) discrete-time linear system. Instead, due to the
use of the symplectic Euler scheme, the difference equations
are partially implicit.

1) Observer based on collocated measurement: We set
up the following copy of the system (10), including the
correction term. The sampling instants, at which the output
error is evaluated, are written α and β.

1

∆t

[
p̂k+1−p̂k
q̂k+1−q̂k

]
=

1

∆z

[
0 D

−DT 0

] [
p̂k+1

q̂k

]
+

[
g1 0
0 g2

] [
uk1
uk+1

2

]
+

[
l1 0
0 l2

]([
yα1
yβ2

]
−
[
ŷα1
ŷβ2

])
(13)[

ŷk+1
1

ŷk2

]
=

1

∆z

[
gT1 0T

0T gT2

] [
p̂k+1

q̂k

]
.

The choice of α and β is crucial for unconditional asymptotic
stability7 of the observer error dynamics (p̃k = p̂k − pk,
q̃k = q̂k − qk)[
I 0

cDT I

][
p̃k+1

q̃k+1

]
=

[
I cD
0 I

][
p̃k

q̃k

]
−
[
cl1g

T
1 0

0 cl2g
T
2

][
p̃α

q̃β

]
,

(14)
where c = ∆t

∆z > 0 denotes the ratio of time and spatial
discretization step.

Proposition 1: The error system (14) with l1 = r1g1, l2 =
r2g2, r1, r2 > 0, is unconditionally asymptotically stable for
c ≤ 1 and the choice α = β = k + 1.

Proof: For the given choices, Eq. (14) becomes[
I + cR1 0
cDT I + cR2

] [
p̃k+1

q̃k+1

]
=

[
I cD
0 I

] [
p̃k

q̃k

]
(15)

with R1, R2 ≥ 0 matrices of rank 1, which justifies the
designation “damping injection observer”. For R1 = R2 = 0,
the eigenvalues of the generalized eigenvalue problem (A,E)
associated with (15) lie on the unit circle for 0 < c ≤ 1. The
proof for c = 1 is shown in the appendix, for c = 0 all eigen-
values are 1, for 0 < c < 1, the eigenvalues are distributed
between these extrema on the unit circle. Depending on
whether α and β are k or k+1, the damping matrices appear
either on the right or on the left hand side of (15). The former

7The equilibrium of the discrete-time model is unconditionally asymptot-
ically stable if it is asymptotically stable for arbitrary ratio c = ∆t

∆z
.

Fig. 1. Eigenvalues of (A,E), implicit observer damping injection.

Fig. 2. Eigenvalues of (A,E), explicit observer damping injection.

case corresponds to damping injection with the explicit,
the latter with the implicit Euler scheme, which is known
to be unconditionally numerically stable. From asymptotic
stability of the corresponding continuous-time observer error
dynamics8, and the unconditional numerical stability of the
discrete-time implementation, the unconditional asymptotic
stability of (15) follows.

Figures 1 and 2 illustrate the effects of implicit and explicit
damping injection to the locations of the eigenvalues of
(A,E). For explicit damping injection, the eigenvalues leave
the unit circle above a certain threshold of r1 = r2 = r,
depending on c. In the implicit case, the eigenvalues remain
confined to the unit circle.

Remark 1: Figure 3 justifies the possibility of implicit
damping injection in a digital control system. If the cycle
times for the tasks “read measurement data” (1), “update
observer (and controller)” (2) and “set reference values” (3)
are small compared to the main cycle time, the knowledge
of yk+1

1 and yk+1
2 can be assumed for the computation of

p̂k+1 and q̂k+1.
2) Observer based on non-collocated measurement: We

now consider observer design with a measurement (12). The

8The introduced damping is pervasive and the corresponding system
eigenvalues lie in C−.

Fig. 3. Task cycles in a simplistic digital control system without commu-
nication delays.
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spatial and time discretization of this output is given by

yk+1
m =

1

∆z

[
gT3 0

] [pk+1

qk

]
(16)

with gT3 =
[
1, . . . , 1

]
∈ RN . We propose an observer based

on this non-collocated output (16) under the following form:

1

∆t

[
p̂k+1−p̂k
q̂k+1−q̂k

]
=

1

∆z

[
0 D

−DT 0

] [
p̂k+1

q̂k

]
+

[
g1 0
0 g2

] [
uk1
uk+1

2

]
+

[
l3
0

]
(yαm − ŷαm) (17)

ŷk+1
m =

1

∆z
[gT3 0T ]

[
p̂k+1

q̂k

]
.

The observer error dynamics with c = ∆t
∆z > 0 is[

I 0
cDT I

] [
p̃k+1

q̃k+1

]
=

[
I cD
0 I

] [
p̃k

q̃k

]
−
[
cl3g

T
3

0

]
p̃α. (18)

Proposition 2: The error system (18) with l3 = r3g3,
is unconditionally asymptotically stable for c ≤ 1 and the
choice α = k + 1.

Proof: With α = k+1, Eq. (18) becomes Eq. (15) with
R1 = r3g3g

T
3 ≥ 0 a matrix of rank 1 and R2 = 0. Then the

proof follows the same way as the one of Proposition 1.

B. Flatness-based state estimation

We exploit the flatness of the fully discretized system
model (10) for state estimation. Flatness of (10) and its im-
plication for the explicit computation of feedforward control
trajectories has been studied in [11]. Flatness of discrete-time
systems, see e. g. [16] with a unified definition of forward
and backward difference flatness, and of hyperbolic systems
[17] are characterized in an analogous way, by the ability to
express states and inputs in terms of forward and backward
time shifts of the outputs9. Therefore, the fully discretized
model (10) – in contrast to only semi-discretization in space
– is adequate for feedforward control, but also for state
estimation of hyperbolic systems.

To obtain the state estimates p̂l and q̂l for the wave
equation at discrete time k = l, based on current and
past boundary inputs and measurements, we consider the
single equations of the fully discretized model (10) for
i = 1, . . . , N

pk+1
i = pki +

∆t

∆z
(qki−1 − qki ), (A1)

qk+1
i = qki +

∆t

∆z
(pk+1
i − pk+1

i+1 ), (B1)

where

qk0 = ∆zuk1 ,

pkN+1 = ∆zuk2 ,
and

pk1 = ∆zyk1 ,

qkN = −∆zyk2 .
(20)

9Depending on the system operator, time derivatives of the output can be
necessary in the infinite-dimensional case [17].

Fig. 4. Computation of states on the spatio-temporal grid based on the
update equations for p (first row) and q (second row). Blue circles denote
given data, red squares the computed quantity. Filled objects stand for p,
empty objects for q. The arrows indicate the information flow.

Depending on which data on the spatio-temporal grid
is known, Eqs. (A1) and (B1) can be solved for different
variables, e. g.

qki = qki−1 −
∆z

∆t
(pk+1
i − pki ), (A2)

qki−1 = qki +
∆z

∆t
(pk+1
i − pki ), (A3)

pk+1
i+1 = pk+1

i − ∆z

∆t
(qk+1
i − qki ), (B2)

pk+1
i = pk+1

i+1 +
∆z

∆t
(qk+1
i − qki ). (B3)

The six (out of 8) indicated possibilities are depicted in Fig.
4, where red squares stand for the unknowns and blue circles
stand for given data. The p and q variables are represented
as solid or empty objects, respectively.

Assuming the knowledge of boundary inputs and mea-
sured outputs, the unknown states can be estimated by a
two phase explicit scheme. We assume an even number of
discretization intervals and define M = N

2 :

Given:
– Inputs ul−1

1 , . . . , ul−N+1
1 , ul2, . . . , u

l−N+2
2 .

– Outputs yl1, . . . , y
l−N+1
1 , yl2, . . . , y

l−N+1
2 .

Phase 1:
– Evaluate (A2) with i = 1 and (B3) with i = N .
– For j = 1 to M − 1 do:
◦ Eval. (B2) with i = j and (A3) with i = N − j + 1.
◦ Eval. (A2) with i = j + 1 and (B3) with i = N − j.

Phase 2:
– Evaluate (B1) with k = l −M .
– For k = l −M + 1 to l − 1 do:
◦ Evaluate (A1).
◦ Evaluate (B1).

Result:
– Estimates p̂l2, . . . , p̂

l
N and q̂l1, . . . , q̂

l
N−1.

Remark 2: The algorithm is “flatness-based” according to
the definitions in [16] and [17]: Treating the boundary inputs
as additional outputs, all system states can be expressed in
terms of the outputs and their time shifts.
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Fig. 5. Schematic of the state estimation at instant k: Starting with the
boundary in- and outputs (red), in a first phase (yellow) the update equations
are solved according to A2/B2 from the left and B3/A3 from the right to
obtain a representation of past states in terms of the boundary port variables.
In a second phase (blue), the current state estimation is obtained by solving
the update equations according to B1/A1.

Fig. 6. Surface plots of the estimation error q̃ for c = 1, N = 160 and
two different values of r.

Remark 3: The algorithm can be extended to explicit state
estimation in the nonlinear case. The key issue then is
an appropriate consistent approximation of the constitutive
equations, which allows for the transport of information
through the spatio-temporal grid as sketched in Figures 4
and 5 for the linear case. See for this issue also [11] in the
context of flatness-based feedforward control.

IV. NUMERICAL EXAMPLE AND DISCUSSION

To assess the estimation of the distributed states of the
wave equation with the presented techniques, we consider
the linear wave equation on Ω = (0, 1) with homogeneous
boundary conditions u1 = u2 = 0. The exact solution,
including the (measured) boundary outputs, is obtained ac-
cording to d’Alembert, and is composed of left and right
traveling waves, which are reflected at the boundaries with
and without a change in sign. We study initial conditions

p(z, 0) = e−
(z−0.5)2

0.0252 and q(z, 0) = 0. (22)

A. Damping injection observer

Figures 6 to 8 display the errors q̃(z, t) = q̂(z, t)− q(z, t)
between the exact solution and the estimated states10 for

10The plots for p̃(z, t) show qualitatively the same results and are omitted.

Fig. 7. Surface plots of the estimation error q̃ for c = 1
2

, N = 160 and
two different values of r.

Fig. 8. Surface plots of estimation errors with non-collocated measurement,
N = 160, c = 1 and c = 1

2
.

the Luenberger observers with different values r ∈ {1, 5}
and c ∈ {1, 1

2} of the observer parameter and the ratio
of temporal and spatial step. In the case of collocated
measurement, r = 1 has the effect of a absorbing boundary
condition for the error system, which brings the estimation
error (up to a bounded residual due to discretization) to zero
in finite time. This effect does not appear for a different value
of r, nor in the case of distributed measurement, see Fig. 8.
In these cases, the observer corrections cannot be interpreted
in terms of a perfectly absorbing boundary condition, which
leads to an asymptotic decay of the estimation error.

B. Flatness-based estimation

The flatness-based estimation of the state with the pre-
sented algorithm leads to the expected convergence in finite
time (again up to the bounded discretization error) of the
estimation error, see Fig. (9). An advantage of this approach
is that, with the appropriate approximation of the constitutive
equations, it is applicable to nonlinear conservation laws.
The occurrence of an oscillating error over the whole spatial
domain around time t = 1

2 (when the necessary informa-
tion for the state estimation is gathered) is remarkable. It
strongly motivates the analysis of its origin and an improved
implementation of the numerical state estimation scheme.
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Fig. 9. Surface plot of the estimation error, N = 160, c = 1.

V. CONCLUSIONS AND FUTURE WORK

We presented two approaches to estimate the state of
infinite-dimensional PH systems of conservation laws us-
ing a finite-dimensional discrete-time model. Based on the
structure-preserving discretization in space and time, we
first proposed a classical Luenberger observer. Discrete-time
damping injection to the error system needs to be imple-
mented in an implicit way to guarantee its unconditional
asymptotic stability. Second, we exploited the notion of flat-
ness in hyperbolic/discrete-time systems to construct a state
estimation based on a finite number of past measurements.

Future work will be concerned with the embedding of the
finite-dimensional observers in the closed loop, the numerical
error analysis, guarantees for closed-loop error bounds and
the application of the flatness-based state estimation to
nonlinear systems of conservation laws.
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structures and geometric discretization of port-Hamiltonian systems,”
Journal of Computational Physics, vol. 361, pp. 442–476, 2018.

[9] V. Trenchant, H. Ramı́rez, Y. Le Gorrec, and P. Kotyczka, “Finite
differences on staggered grids preserving the port-Hamiltonian struc-
ture with application to an acoustic duct,” Journal of Computational
Physics, vol. 373, pp. 673–697, 2018.

[10] P. Kotyczka and L. Lefèvre, “Discrete-time port-Hamiltonian systems:
A definition based on symplectic integration,” Systems & Control
Letters, vol. 133, 104530, 2019.

[11] P. Kotyczka, “Discrete-time flatness-based feedforward control for
the 1D shallow water equations,” in Joint 8th IFAC Symposium on
Mechatronic Systems and 11th IFAC Symposium on Nonlinear Control
Systems, Vienna, Austria, pp. 44–49, Sept. 2019.

[12] H. Flanders, Differential forms with applications to the physical
sciences. Academic Press, New York, 1963.

[13] P. J. Morrison, “Hamiltonian description of the ideal fluid,” Reviews
of Modern Physics, vol. 70, no. 2, pp. 467–521, 1998.

[14] P. Kotyczka, “Finite volume structure-preserving discretization of 1D
distributed-parameter port-Hamiltonian systems,” IFAC-PapersOnLine,
vol. 49, no. 8, pp. 298–303, 2016.

[15] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Inte-
gration: Structure-Preserving Algorithms for Ordinary Differential
Equations, vol. 31. Springer Science & Business Media, 2006.

[16] P. Guillot and G. Millerioux, “Flatness and submersivity of discrete-
time dynamical systems,” IEEE Control Systems Letters, vol. 4, no. 2,
pp. 337–342, 2019.

[17] F. Woittennek, “On flatness and controllability of simple hyperbolic
distributed parameter systems,” in 18th IFAC World Congress, Milano,
pp. 14452–14457, 2011.

[18] J. R. Silvester, “Determinants of block matrices,” The Mathematical
Gazette, vol. 84, no. 501, pp. 460–467, 2000.

APPENDIX

We investigate the stability of Exk+1 = Axk with

E =

[
I 0

cDT I

]
, A =

[
I cD
0 I

]
, (23)

where c > 0 is a constant and D = −DT as given in (7).
Lemma 1: For c = 1, the eigenvalues of the generalized

eigenvalue problem (A,E) are e±jθi with θi = (i− 1
2 ) 2π

2N+1 .
Proof: The eigenvalues of the generalized eigenvalue

problem given by the discrete-time dynamics Exk+1 = Axk

are the roots of

det(A− Eλ) =

∣∣∣∣(1− λ)I cD
−λcDT (1− λ)I

∣∣∣∣ . (24)

By commutativity of the matrices in the second row, we can
use the formula given in [18], which yields

det(A− Eλ) = det((1− λ)2I + cλDDT ). (25)

The determinant of the tridiagonal matrix∣∣∣∣∣∣∣∣∣∣

(1− λ)2 + 2cλ −cλ

−cλ
. . .

. . .
. . . (1− λ)2 + 2cλ −cλ

−cλ (1− λ)2 + cλ

∣∣∣∣∣∣∣∣∣∣
(26)

is obtained by recursion. For c = 1, the characteristic
polynomial is

2N∑
i=0

(−1)iλi = 1 +

N∑
i=1

λ2i −
N∑
i=1

λ2i−1

= 1 + (λ2 − λ)

N−1∑
i=0

λ2i =
1 + λ2N+1

1 + λ
, (27)

where we exploited
∑n−1
i=0 r

i = 1−rn
1−r . The roots, which due

to λ 6= −1 must be conjugate complex numbers λi = e±jθi ,
have to satisfy

e±jθi(2N+1) = ejπ(2i−1) = −1, i = 1, . . . N, (28)

from which θi = (i− 1
2 ) 2π

2N+1 follows.
Note that with ∆t = 1

N , the continuous-time counterparts
± 1

∆tθij = ± (2i−1)

2+ 1
N

πj of the discrete-time eigenvalues
converge for N → ∞ to the exact locations ± 2i−1

2 πj of
the eigenvalues of the wave equation under homogeneous
boundary conditions on u1 and u2.
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