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A B S T R A C T

This paper deals with the finite dimensional modelling and control of an electro-active polymer (EAP) actuated
flexible structure. This model reproduces the basic mechanical properties of a class of one dimensional flexible
endoscope. The flexible structure and the EAP actuator are both modelled as port-Hamiltonian systems. The
EAP actuator is interconnected with the flexible structure in a power preserving manner such that the global
system is again a PHS. Using the obtained model, two passivity based control strategies are applied to
derive the controllers which achieve a desired equilibrium configuration with desired dynamic behaviour. An
experimental benchmark composed of the Ionic Polymer Metal Composites patches glued to a flexible beam
is used to validate the proposed model and control law.

1. Introduction

The use of medical endoscopes for minimally invasive surgery be-
comes more and more popular in clinical applications in order to
alleviate the suffering of patients. The study of endoscopes can be re-
called to the last century (Anderson, Horn, & of Mechanical Engineers,
1967). Due to the recent technological progresses most of medical
endoscopes are based on compliant continuum robotics. Continuum
robots have been developed for different applications such as: laser
manipulators, catheters and micro-endoscopes (Webster I.I.I. & Jones,
2010). Due to the development of smart materials and manufactur-
ing techniques, embedded actuators are used in endoscopic robotics
to provide additional degrees of freedom. The authors in Chikhaoui,
Rabenorosoa, and Andreff (2014) have proposed a micro endoscope
for endonasal skull base surgery. The bending of the endoscope is
performed by electro-active polymer (EAP) actuators. One of the most
important EAP actuators is the Ionic Polymer Metal Composites (IPMC)
which has attractive properties such as: low actuation voltage, ease
of fabrication and relatively high strain. These properties have been
experimentally pointed out in Shahinpoor and J.K.im (2001). However,
the complexity of this material and the flexibility of its structure lead
to particularly challenging modelling and control issues.
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This paper proposes a 1D physically based model and control strat-
egy for an IPMC actuated flexible structure representative of the me-
chanical properties of a flexible endoscope suitable for medical appli-
cations. To this end, we use the port-Hamiltonian (PH) approach. Port-
Hamiltonian systems (PHS) (Maschke & van der Schaft, 1992) have
proven to be powerful for the modelling and control of complex phys-
ical systems (Duindam, Macchelli, Stramigioli, & Bruyninckx, 2009),
such as multi-physical (Doria-Cerezo, Batlle, & Espinosa-Perez, 2010)
and non-linear (Ramírez, Le Gorrec, Maschke, & Couenne, 2016). This
approach has been generalized to distributed parameter systems de-
scribed by partial differential equations (Le Gorrec, Zwart, & Maschke,
2005; Ramírez, Le Gorrec, Macchelli, & Zwart, 2014; van der Schaft
& Maschke, 2002) and irreversible thermodynamic systems (Ramírez,
Maschke, & Sbarbaro, 2013). PHS modelling is based on the char-
acterization of energy exchanges between the different components
of a system. This framework is particularly adapted for the modular
modelling of multi-physical systems. Hence, it is well suited for the
modelling of flexible structure actuated with IPMC patches. A precise
PH model of IPMC actuators accounting for multi-scale phenomena
has been proposed in Nishida, Takagi, Maschke, and Osada (2011)
but we shall consider in this paper a simplified equivalent lumped
electrical circuit coping with the main dynamics of the actuator. On
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the other hand, the PHS approach is well suited for the application of
passivity based control tools with clear physical interpretation, such
as energy shaping and control by interconnection and damping assign-
ment (IDA-PBC) (Macchelli, Le Gorrec, Ramírez, & Zwart, 2017; Ortega
& Garcia-Canseco, 2004; Ortega, van der Schaft, Mareels, & Maschke,
2001; Ortega, van der Schaft, Maschke, & Escobar, 2002).

The main contributions of this paper are the proposition of a lumped
scalable model suitable for the modelling of flexible actuated struc-
tures, different control strategies which take into account the electro-
mechanical coupling and the experimental validation of the approach.
Firstly, a simple but realistic approximation model of the IPMC actuated
medical endoscope (Chikhaoui et al., 2014) using the PHS formalism is
proposed. For this purpose, we consider the model composed of IPMC
patches glued on a flexible structure. A 1-D lumped model based on
interconnected links is considered to model the flexible structure as
shown in Fig. 1. We consider that the bending of the flexible structure
is due to the torques generated by the IPMC patches when a voltage
is applied on the actuators as shown in Fig. 2. Both the 1-D finite
dimensional structure and the IPMC actuators are modelled using PHS
and interconnected in a power preserving manner. The final model is
non-trivial because of the electro-mechanical/mechano-electrical cou-
pling between the flexible structure and the IPMC actuator. Then,
two passivity based control strategies, IDA-PBC and the Control by
Interconnection-Proportional Integral control are used to achieve a
desired equilibrium position of the flexible structure with guaranteed
performances. Because of the inter-domain coupling, the closed-loop
Lyapunov function has to contain cross terms between electrical and
actuated mechanical variables which is also studied in Delgado and
Kotyczka (2014). In order to properly select the cross terms while
guaranteeing the overall stability, a set of auxiliary design parameters
are defined and used to solve the matching conditions associated
with the control design problem. Finally an experimental set-up which
reproduces the endoscope’s behaviour is used to validate the proposed
model and to test the effectiveness of the control design method.

The paper is organized as follows: Section 2 presents the PH formu-
lation of the IPMC actuated flexible structure. In Section 3, different
passivity based control designs to achieve desired closed loop perfor-
mances are proposed. The identification of parameters and the model
validation on an experimental set-up are presented in Section 4. The
simulation and the experimental results are shown in Section 5 to show
the effectiveness of the proposed control laws. Some final remarks and
perspectives of future works are given in Section 6.

2. PHS Modelling of IPMC actuated flexible structure

The flexible structure is approximated by a mechanical structure
composed of 𝑛 inertia interconnected through flexible joints made up
with springs and dampers as shown in Fig. 1. We assume a planar
model, and so all the links are allowed to move only in the 𝑥-𝑦 plane.

We suppose that the flexible structure is under-actuated and that
there are 𝑚 ≤ 𝑛 IPMC actuators inducing torques on 𝑚 ≤ 𝑛 joints as
shown in Fig. 2. Each (actuated or non-actuated) joint of the flexible
structure contains a spring and a damper, as shown in Fig. 1.

2.1. PHS Formulation of a flexible structure

In this subsection, we introduce the PH model of the IPMC actuated
flexible structure shown in Fig. 1. The parameters of the 𝑛-degrees of
freedom mechanism (𝑖 = 1, 2,… , 𝑛) are:

• 𝑞𝑖 the 𝑖th joint angular;
• 𝑚𝑖 the 𝑖th link’s mass;
• 𝐼𝑖 the moment of inertia about the axe passing through the Centre

of Mass (CoM) of the 𝑖th link;
• 𝑎𝑖 length of the 𝑖th link;
• 𝑎𝐶𝑖 distance between the 𝑖th Joint and the CoM of the 𝑖th link;

Fig. 1. Lumped parameters flexible structure.

Fig. 2. Flexible structure modelling with the actuators.

• 𝜏𝑖 applied torque on the 𝑖th joint;
• �̃�𝑖 stiffness of the 𝑖th joint;
• 𝑐𝑖 viscous damping at the 𝑖th joint;
• 𝑃𝑖 𝐸𝑖 Potential and Kinetic energy of the 𝑖th link.
• 𝐹0 is the inertial frame;
• 𝐹𝑖 is the reference frame attached to the CoM and with axe

parallel to the principal axe of inertia of the 𝑖th link .

2.1.1. The Hamiltonian function
In this subsection we derive the Hamiltonian function of the flexible

structure with respect to the chosen coordinate frame. The Hamiltonian
corresponds to the total mechanical energy which is the sum of the
kinetic and potential energies. The kinetic energy of the 𝑖th link has
the form

𝐸𝑖 =
1
2
𝑚𝑖𝑣

𝑇
𝐶𝑖𝑣𝐶𝑖 +

1
2
𝜔𝑇
𝑖 𝐼𝑖𝜔𝑖, (1)

where 𝑣𝐶𝑖 is the velocity of the centre of mass (CoM) of the 𝑖th link,
𝜔𝑖 is the angular velocity of the 𝑖th link with respect to 𝐹0, 𝐼𝑖 is the
inertia matrix of the 𝑖th link with respect to 𝐹𝑖. The goal is to express
the kinetic energy of every link only with respect to the joint angular
velocities �̇�𝑖 (derivatives of every joint angular). Thanks to the rigidity
of the links, it is possible to relate both the velocities of the CoM 𝑣𝐶𝑖 and
the angular velocities 𝜔𝑖 to the joint angular velocities �̇�𝑖. The relation
that links joint angular velocities to angular velocities is trivial

𝜔𝑖 = �̇�1 + �̇�2 +⋯ + �̇�𝑖. (2)

This relation can be expressed through the use of the so called angular
Jacobian,

𝜔𝑖 = 𝐽 𝑖
𝜔�̇�, (3)

where 𝑞 = [𝑞1,… , 𝑞𝑖]𝑇 and �̇� = [�̇�1,… , �̇�𝑖]𝑇 . In this case, the angular
Jacobian does not depend on the angular displacements. This is not
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the case for the Jacobian related to the velocities of the centre of mass.
The velocity Jacobian of the 𝑖th link is obtained by differentiating the
position of the 𝑖th centre of mass with respect to time in the 𝐹0 frame,

𝑞𝐶𝑖 =
[

𝑥𝐶𝑖
𝑦𝐶𝑖

]

=
[

𝑓𝑥𝑖(𝑞)
𝑓𝑦𝑖(𝑞)

]

= 𝑓𝑖(𝑞), (4)

where,

𝑓𝑥𝑖(𝑞) =
𝑖−1
∑

𝑘=1
𝑎𝑘 cos

( 𝑘
∑

𝑗=1
𝑞𝑗

)

+ 𝑎𝐶𝑖 cos

( 𝑖
∑

𝑘=1
𝑞𝑘

)

,

𝑓𝑦𝑖(𝑞) =
𝑖−1
∑

𝑘=1
𝑎𝑘 sin

( 𝑘
∑

𝑗=1
𝑞𝑗

)

+ 𝑎𝐶𝑖 sin

( 𝑖
∑

𝑘=1
𝑞𝑘

)

.

Differentiating 𝑞𝐶𝑖 with respect to time, we obtain �̇�𝐶𝑖 = 𝑣𝐶𝑖 =
𝜕𝑓𝑖(𝑞)
𝜕𝑞 �̇�,

hence the velocity Jacobian is

𝐽 𝑖
𝑣 =

𝜕𝑓𝑖(𝑞)
𝜕𝑞

. (5)

Now it is possible to express the kinetic energy of every link with
respect to the derivative of the displacement vector

𝐸𝑖 =
1
2
�̇�𝑇

(

𝑚𝑖𝐽
𝑖𝑇
𝑣 (𝑞)𝐽 𝑖

𝑣(𝑞) + 𝐽 𝑖𝑇
𝜔 𝐼𝑖𝐽

𝑖
𝜔
)

�̇�. (6)

The total kinetic energy of the flexible structure is then

𝐸 = 1
2
�̇�𝑇𝑀(𝑞)�̇�, (7)

where 𝑀(𝑞) is the mass matrix of the system, given by

𝑀(𝑞) =
𝑛
∑

𝑖=1

(

𝑚𝑖𝐽
𝑖𝑇
𝑣 (𝑞)𝐽 𝑖

𝑣(𝑞) + 𝐽 𝑖𝑇
𝜔 𝐼𝑖𝐽

𝑖
𝜔
)

. (8)

The mass matrix allows to relate the generalized velocity with the
momentum of the mechanical system

𝑝 = 𝑀(𝑞)�̇�, (9)

where 𝑝 =
[

𝑝1 𝑝2 ⋯ 𝑝𝑛
]𝑇 . The kinetic energy expressed as a

function of the momentum is then

𝐸(𝑞, 𝑝) = 1
2
𝑝𝑇𝑀−1(𝑞)𝑝. (10)

In our framework we are supposing that the work plane is parallel
to the ground, therefore we ignore the effect of the gravity on the
dynamics of the system. Then, the potential energy is only due to the
springs deformation. To find the potential energy we first define the
stiffness matrix of the system

𝐾 = diag
[

�̃�1, �̃�2, ⋯ , �̃�𝑛
]

. (11)

The constitutive relation between elastic torques and springs defor-
mation is given by 𝜏𝑒 = 𝐾𝑞, hence the total potential energy is

𝑃 (𝑞) = 1
2
𝑞𝑇𝐾𝑞. (12)

Finally, the Hamiltonian, i.e., the total energy of the flexible structure,
is given by

𝐻𝑏(𝑞, 𝑝) = 𝐸(𝑞, 𝑝) + 𝑃 (𝑞) = 1
2
𝑝𝑇𝑀−1(𝑞)𝑝 + 1

2
𝑞𝑇𝐾𝑞. (13)

2.2. The port-Hamiltonian model of the flexible structure

By choosing as state vector of the flexible structure 𝑥𝑏 = [𝑞, 𝑝]𝑇 ,
we can write the port-Hamiltonian representation (Maschke & van der
Schaft, 1992) of the system

⎧

⎪

⎨

⎪

⎩

�̇�𝑏 =
(

𝐽𝑏 − 𝑅𝑏
) 𝜕𝐻𝑏(𝑥𝑏)

𝜕𝑥𝑏
+ 𝑔𝑏𝑢𝑏

𝑦𝑏 = 𝑔𝑇𝑏
𝜕𝐻𝑏(𝑥𝑏)

𝜕𝑥𝑏

(14)

with

𝐽𝑏 =
[

0 𝐼𝑛
−𝐼𝑛 0

]

, 𝑅𝑏 =
[

0 0
0 𝐶𝑛

]

, 𝑔𝑏 =
[

0
𝑔𝑚

]

Fig. 3. IPMC bending principle and its electrical model.

with 𝐶𝑛 = diag
[

𝑐1, 𝑐2, ⋯ , 𝑐𝑛
]

, a positive diagonal matrix contain-
ing the viscous friction coefficients of the dampers associated with the
respective joints. The structural matrix 𝐽𝑏 = −𝐽𝑇

𝑏 represents the energy
exchanges in the system, while the damping matrix 𝑅𝑏 = 𝑅𝑇

𝑏 ≥ 0
captures the internal dissipation of the system. The flexible structure
is under-actuated on 𝑚 ≤ 𝑛 joints, thus the input vector of external
torques 𝑢𝑏 = [𝜏1, 𝜏2,… 𝜏𝑚]𝑇 ∈ R𝑚 and 𝑔𝑚 ∈ R𝑛×𝑚. The power conjugate
output 𝑦𝑏 ∈ R𝑚 is the set of angular velocities on the actuated joints.
The system is passive. In fact, the Hamiltonian is such that 𝐻𝑏 > 0 and
𝐻(0) = 0, moreover its time derivative satisfies:

�̇�𝑏 = −
𝜕𝐻𝑏
𝜕𝑥𝑏

𝑇
𝑅𝑏

𝜕𝐻𝑏
𝜕𝑥𝐵

+ 𝑦𝑇𝑏 𝑢𝑏 ≤ 𝑦𝑇𝑏 𝑢𝑏. (15)

2.3. The IPMC actuator model

The bending of the IPMC with respect to the applied voltage
is mainly attributed to the cations flux and polar solvents in the
polymer membrane diffusion between the electrodes (see left side in
Fig. 3) (Shahinpoor & J.K.im, 2001). A multiscale model of an IPMC
actuator has been proposed in Nishida et al. (2011). It details the main
physical phenomena involved in this multiphysical actuator. In this
work, since we assume perfect interconnection between the actuator
and the beam, the mechanical contribution of the IPMC actuator
is considered as part of the flexible structure. Therefore, we use a
simplified and control oriented model for the IPMC’S electric dynamics.
This model is based on the lumped RLC equivalent circuit that has been
proposed in Gutta, S.L.ee, B.T.rabia, and Yim (2009) and Yim, Trabia,
Renno, Lee, and Kim (2006) (right side of Fig. 3). The output torque
of the IPMC is proportional to the voltage across the capacitor. The
interconnection ports are placed across the capacitor.

The electrical model of the IPMC actuator can be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

�̇�
�̇�

]

=

[

−𝑟1 −1
+1 − 1

𝑟2

][ 𝜕𝐻𝑎
𝜕𝜑
𝜕𝐻𝑎
𝜕𝑄

]

+

[

1
0

]

𝑢(𝑡) +

[

0
1

]

𝑢𝑎(𝑡)

𝑦 =
[

1 0
]

[ 𝜕𝐻𝑎
𝜕𝜑
𝜕𝐻𝑎
𝜕𝑄

]

, 𝑦𝑎 =
[

0 1
]

[ 𝜕𝐻𝑎
𝜕𝜑
𝜕𝐻𝑎
𝜕𝑄

] (16)

where the total energy of the system is defined as the sum of the
magnetic and electric energies

𝐻𝑎 =
1
2
𝑄2

𝐶
+ 1

2
𝜑2

𝐿
. (17)

and where the state vector is 𝑥𝑎 = [𝜑,𝑄]𝑇 with 𝜑 the flux and 𝑄 the
charge of the capacitor, 𝑟1 and 𝑟2 are the resistances, 𝑢 is the applied
voltage on the IPMC actuator and 𝑦 is the current in the inductance
and 𝑦𝑎 is the voltage across the capacitor. Furthermore the torque
applied on the flexible structure is generated by 𝑦𝑎 with a constant
coefficient [𝑘] = N⋅m

V , i.e., 𝑢𝑏 = 𝜏 = 𝑘𝑦𝑎. From the power conserving
interconnection, 𝑢𝑎 is the current applied on the capacitor due to the
mechanical movement of the structure, i.e., 𝑢𝑎 = 𝑖𝑎 = −𝑘𝑦𝑏. The
interconnection relation is defined by
[

𝑢𝑏
𝑢𝑎

]

=
[

0 𝑘
−𝑘 0

] [

𝑦𝑏
𝑦𝑎

]

. (18)
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As mentioned before, we consider an under-actuated system, i.e.,
𝑚 < 𝑛. We shall split the configuration coordinates into actuated and
non-actuated ones, i.e., 𝑞 = [𝑞1, 𝑞2]𝑇 and 𝑝 = [𝑝1, 𝑝2]𝑇 with 𝑞1, 𝑝1 ∈
R𝑚 and 𝑞2, 𝑝2 ∈ R𝑛−𝑚. Thus the interconnected model of the flexible
structure and the IPMC actuators can be written as

⎡

⎢

⎢

⎢

⎢

⎣

�̇�
�̇�
�̇�
�̇�

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0 𝐼𝑛 0 0
−𝐼𝑛 −𝐶𝑛 0 𝐾𝑐
0 0 −𝑅1𝑚 −𝐼𝑚
0 −𝐾𝑇

𝑐 𝐼𝑚 −𝑅2𝑚

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐻
𝜕𝑞
𝜕𝐻
𝜕𝑝
𝜕𝐻
𝜕𝜑
𝜕𝐻
𝜕𝑄

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

0
0
𝐼𝑚
0

⎤

⎥

⎥

⎥

⎥

⎦

𝑢

𝑦 =
[

0 0 𝐼𝑚 0
]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐻
𝜕𝑞
𝜕𝐻
𝜕𝑝
𝜕𝐻
𝜕𝜑
𝜕𝐻
𝜕𝑄

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(19)

where 𝑢, 𝑦 ∈ R𝑚 and 0 are zero matrices of appropriate dimensions,
𝑅1𝑚 = diag[𝑟1, 𝑟1,… , 𝑟1] ∈ R𝑚×𝑚, 𝑅2𝑚 = diag[1∕𝑟2, 1∕𝑟2,… , 1∕𝑟2] ∈
R𝑚×𝑚 are the resistance matrices and the coupling matrix 𝐾𝑐 is

𝐾𝑐 =
[

𝐾𝑚
0

]

∈ R𝑛×𝑚 (20)

with 𝐾𝑚 = diag[𝑘1, 𝑘2,… , 𝑘𝑚] ∈ R𝑚×𝑚.
The total Hamiltonian of the interconnected system is:

𝐻 = 𝐻𝑎 +𝐻𝑏
= 𝐻𝑄(𝑥) +𝐻𝜑(𝑥) + 𝐸(𝑥) + 𝑃 (𝑥)
= 1

2𝑄
𝑇𝐶−1𝑄 + 1

2𝜑
𝑇𝐿−1𝜑 + 1

2 𝑝
𝑇𝑀−1𝑝 + 1

2 𝑞
𝑇𝐾𝑞.

(21)

with the capacitance matrix 𝐶 = diag[𝐶1, 𝐶2,… , 𝐶𝑚] and the inductance
matrix 𝐿 = diag[𝐿1, 𝐿2,… , 𝐿𝑚].

3. Control design

For the current application the control objective is to change the
equilibrium position of the IPMC actuated beam and assign a de-
sired performance in terms of settling time and overshoot. Due to
the fact that, unlike classical electro-mechanical systems, such as DC-
motors, the equivalent electrical circuit has a pervasive dissipative
term, at first both charge and magnetic flux equilibria have to be
changed. Secondly, from an energy balance perspective the dissipation
obstacle (van der Schaft, 2017) does not allow to use control by inter-
connection techniques for the control synthesis. As a consequence we
use interconnection and damping assignment passivity based control
(IDA-PBC) (Ortega & Garcia-Canseco, 2004; Ortega et al., 2001, 2002).
The main idea is to match the open-loop system with a target system
by using state feedback control law.

Proposition 1 (Ortega et al., 2002). Consider the open loop system:

�̇� = (𝐽 − 𝑅) 𝜕𝐻
𝜕𝑥

+ 𝑔(𝑥)𝑢. (22)

Define an asymptotically stable PHS target system

�̇� =
(

𝐽𝑑 − 𝑅𝑑
) 𝜕𝐻𝑑

𝜕𝑥
(23)

with matrices 𝐽𝑑 (𝑥) = −𝐽𝑑 (𝑥)𝑇 , 𝑅𝑑 (𝑥) = 𝑅𝑇
𝑑 (𝑥) ≥ 0 and function 𝐻𝑑 that

verifies the PDE:

𝑔⟂
(

𝐽𝑑 − 𝑅𝑑
) 𝜕𝐻𝑑

𝜕𝑥
= 𝑔⟂ (𝐽 − 𝑅) 𝜕𝐻

𝜕𝑥
, (24)

with 𝑔⟂ a full rank left annihilator of 𝑔, i.e., 𝑔⟂𝑔 = 0 and the Hamiltonian
function 𝐻𝑑 (𝑥) such that

𝑥∗ = argmin𝐻𝑑 (𝑥). (25)

with 𝑥∗ the equilibrium to be stabilized. The closed-loop system (22) with
the feedback law 𝑢 = 𝛽(𝑥), where

𝛽(𝑥) =
(

𝑔𝑇 𝑔
)−1 𝑔𝑇

(

(

𝐽𝑑 − 𝑅𝑑
) 𝜕𝐻𝑑

𝜕𝑥
− (𝐽 − 𝑅) 𝜕𝐻

𝜕𝑥

)

(26)

behaves as the target system (23) with 𝑥∗ (asymptotically) stable.

Remark 2 (Anti Damping Injection). The choice of the new damping
matrix 𝑅𝑑 affects the rise time of the closed loop system response.
To speed up the system it is possible to choose 0 ≤ 𝑅𝑑 ≤ 𝑅. This
scenario corresponds to an anti-damping injection: the parameter of the
resulting damping injection is negative.

In our application we perform energy shaping on the position,
charge and magnetic flux, which are coupled through a dissipative
electrical circuit. This implies that the closed-loop energy/Lyapunov
function will present cross terms between these variables. Hence in the
following Proposition we present a non-trivial solution to the control
problem. For the sake of readability of the paper, the Proof of this
Proposition is given in Appendix.

Proposition 3. Consider the open loop system (19) and define an
asymptotically stable PHS target system:

�̇� =
(

𝐽𝑑 − 𝑅𝑑
) 𝜕𝐻𝑑

𝜕𝑥
(27)

with the desired structure matrix 𝐽𝑑 = 𝐽 and the desired damping matrix
defined as

𝑅𝑑 = 𝑅 + 𝑅𝑐 with 𝑅𝑐 = diag
[

0, 0, 𝑟𝑐 , 0
]

. (28)

with 𝑟𝑐 > −𝑅1𝑚. The desired closed-loop Hamiltonian is defined as

𝐻𝑑 (𝑥) =
1
2
𝑥𝑇𝑑𝑄𝑑𝑥𝑑 (29)

where 𝑥𝑑 =
[(

𝑞1 − 𝑞∗1
)

, 𝑞2, 𝑝, (𝜑 − 𝜑∗) , (𝑄 −𝑄∗)
]𝑇 and the sym-

metric matrix 𝑄𝑑 is defined as:

𝑄𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐾 ′
1 0 0 𝐾𝑚𝑅2𝑚�̃� 𝐾𝑚�̃�
∗ 𝐾2 0 0 0
∗ ∗ 𝑀1 0 0
∗ ∗ ∗ 𝐿′−1 𝑅2𝑚�̃�
∗ ∗ ∗ ∗ 𝐶 ′−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(30)

with �̃� =
(

𝐶 ′−1 − 𝐶−1), 𝐾 ′
1 = 𝐾1 + 𝐾2

𝑚�̃� and 𝐿′−1 = 𝐿−1 + 𝑅2
2𝑚�̃�. The

desired equilibrium position of the system is 𝑥∗ =
[

𝑞∗1 , 0, 0, 𝜑
∗, 𝑄∗] with

𝑄∗ =
𝐾1𝐶
𝐾𝑚

𝑞∗1 , 𝜑∗ =
𝑅2𝑚𝐿𝐾1

𝐾𝑚
𝑞∗1 , (31)

and 𝑥∗ = argmin𝐻𝑑 (𝑥). Then the system (19) with feedback law 𝑢 = 𝛽(𝑥),
where
𝛽(𝑥) = −

(

𝑅1𝑚𝐿′−1 + 𝑅2𝑚�̃�
)

(𝜑 − 𝜑∗)
−

(

𝑅1𝑚𝑅2𝑚 + 𝐼𝑚
)

𝐾𝑚�̃�
(

𝑞1 − 𝑞∗1
)

−
(

𝑅1𝑚𝑅2𝑚�̃� + 𝐶 ′−1) (𝑄 −𝑄∗)
+𝑅1𝑚𝐿−1𝜑 + 𝐶−1𝑄 − 𝑟𝑐𝐿′−1𝜑

(32)

behaves as the target system (27) with 𝑥∗ (asymptotically) stable.

Proof. See Appendix. □

The control law (32) that corresponds to the general solution of
the control problem stated in Proposition 3 is a state feedback. As
a consequence its implementation requires the use of an observer.
A possible solution consists in choosing the control parameters such
that (32) can be implemented as an output feedback. Indeed since
the output of the PHS model is the electrical current of the actuator
i.e., 𝑖 = 𝐿′−1𝜑, an appropriate choice of the control parameters leads
to an output feedback rather than a state feedback, simplifying its
experimental implementation while guaranteeing the global stability.

Proposition 4. Consider the control law (32) and assume 𝑅2𝑚 negligible
since the resistance in parallel to the capacitor 𝑟2 is large enough. Then (32)
becomes a Proportional integral control:

𝑢 = −�̃� ∫

𝑡

0
𝑖(𝑠)𝑑𝑠 +

(

𝐾𝑚�̃� +
𝐾1𝐶
𝐾𝑚𝐶 ′

)

𝑞∗1 − 𝑟𝑐 𝑖. (33)

where 𝑖 ∈ R𝑚 is the measured current.
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Fig. 4. Experimental set-up.

Proof. We assume the dissipation matrix 𝑅2𝑚 is negligible then the
control law (32) becomes:

𝑢𝑐 = −𝑅1𝑚𝐿′−1 (𝜑 − 𝜑∗) −𝐾𝑚�̃�
(

𝑞1 − 𝑞∗1
)

−𝐶 ′−1 (𝑄 −𝑄∗) + 𝑅1𝑚𝐿−1𝜑 + 𝐶−1𝑄
= −𝑅1𝑚

(

𝐿′−1 − 𝐿−1)𝜑 −𝐾𝑚�̃�𝑞1 − �̃�𝑄
+𝐾𝑚�̃�𝑞∗1 + 𝐶 ′−1𝑄∗

(34)

Because 𝐿′−1 = 𝐿−1 + 𝑅2
2𝑚�̃�, then 𝐿′−1 = 𝐿−1 with 𝑅2𝑚 ≈ 0. The above

control law becomes

𝑢𝑐 = −𝐾𝑚�̃�𝑞1 − �̃�𝑄 +𝐾𝑚�̃�𝑞∗1 + 𝐶 ′−1𝑄∗

= −�̃�
(

𝐾𝑚𝑞1 +𝑄
)

+𝐾𝑚�̃�𝑞∗1 + 𝐶 ′−1𝑄∗ (35)

where 𝑞1, 𝑄 and 𝜑 ∈ R𝑚, and is completed by damping injection
through

𝑢 = 𝑢𝑐 − 𝑟𝑐
𝜑
𝐿′ = 𝑢∗ − 𝑟𝑐 𝑖. (36)

By taking into account the last equation of the complete system (19)
and 𝑅2𝑚 = 0, one can get:

𝑖 = 𝑦 = 𝑘1�̇�1 + �̇� (37)

and since 𝑄∗ = 𝐾1𝐶
𝐾𝑚

𝑞∗1 , the control law (35) becomes:

𝑢𝑐 = −�̃� ∫

𝑡

0
𝑖(𝑠)𝑑𝑠 + +

(

𝐾𝑚�̃� +
𝐾1𝐶
𝐾𝑚𝐶 ′

)

𝑞∗1 (38)

Substituting the former equation in (36), we obtain Eq. (33). □

Table 1
Physical parameters of the flexible beam.
𝐿 Length 0.16 m
𝑊 Width 7 × 10−3 m
𝑇 Thickness 0.22 × 10−3 m
𝜌 mass density 936 kg∕m3

Table 2
Fixed parameters of the Lumped parameter model.
𝑎𝑖 Length of the 𝑖−link 4 × 10−3 m
𝑚𝑖 Mass of the 𝑖−link 0.58 × 10−4 kg
𝐼𝑖 Inertia of CoM of the 𝑖−link 0.77 × 10−8 kg m3

Other passivity based control strategies can be used to overcome the
dissipation obstacle, using an output feedback instead of a state feed-
back. For instance the Control by Interconnection-Proportional Integral
(CbI-PI) method based on a power-shaping output (Borja, Cisneros, &
Ortega, 2016) uses a ‘‘power shaping output’’ 𝑦𝑝𝑠 instead of the classical
conjugated output 𝑦 (19):

𝑦𝑝𝑠 = −𝑔𝑇𝐹−𝑇
(

𝐹 𝜕𝐻
𝜕𝑥

+ 𝑔𝑢
)

, (39)

where 𝐹 = 𝐽 − 𝑅 is defined in (19) and 𝐻 is the open loop energy
defined in (21). Following Borja et al. (2016), we implement the control
law as:

𝑢𝑃𝑆 ∶=
[

𝐼 +𝐾𝑃 𝑔𝑇𝐹−𝑇 𝑔
]−1 [−𝐾𝐼 (𝛾(𝑥) + 𝜅)

+𝐾𝑃 𝑔𝑇𝐹−𝑇𝐹∇𝐻(𝑥)
] (40)

where 𝛾(𝑥) is a function defined by the relation �̇�(𝑥) = 𝑦𝑝𝑠, 𝐾𝐼 , 𝐾𝑃 > 0
are the control design parameters and 𝜅 = 𝐾−1

𝐼 𝑔∗†𝐹 ∗(∇𝐻(𝑥))∗ − 𝛾∗1 is
computed from the desired equilibrium point 𝑥∗.

For the present ‘‘power shaping output’’ 𝑦𝑝𝑠 corresponds to the
currents flowing in the resistances 𝑅2𝑚, and since it is a fictitious
current inside the IPMC, it is not directly accessible. As for the control
derived in Proposition 3, a state observer is need to implement the
controller.

4. Identification and experimental validation

For the identification and experimental validation we consider a
polyethylene flexible structure equipped with one IPMC actuator. The
complete experimental set-up is shown in Fig. 4.

A dSPACE board and a computer (with Matlab Simulink) is used
to generate the control signals 𝑈 ∈ [0, 7V] on the IPMC, to get the
measurements and to implement the controller. The measurements are
the displacement of the flexible structure and the applied voltage to the
IPMC actuator. The displacement is measured by a laser displacement
sensor from KEYENCE company (LK-G152).

4.1. Identification of the flexible-structure parameters

In this section, we identify the parameters used for the finite di-
mensional modelling of the flexible structure. The physical parameters
related to the considered polyethylene beam are summarized in Ta-
ble 1. It is considered that the flexible structure is composed of four
links (𝑛 = 4) and actuated at the first joint with an IPMC actuator
(𝑚 = 1). The known parameters of the PHS lumped parameter model
(14) are shown in Table 2.

The unknown parameters are the stiffness and the damping coef-
ficients of every joint. We shall assume a uniform beam, hence we
assume identical stiffness 𝐾𝑖 and damping 𝐶𝑖 coefficients. In order to
identify these parameters, we measure the displacement at the end of
the beam with the laser sensor. The positioning of the laser sensor is at
5 mm from the tip of the flexible structure in equilibrium position.

1 𝑔† stands for the pseudo-inverse of the vector 𝑔.
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Fig. 5. (lhs) Parameter estimation with linear stiffness for every joints. The displacement measurement is taken at 𝑥𝑠 = 15.5 cm. (rhs) Model validation with 𝑥𝑠 = 14 cm.

Fig. 6. IPMC actuation identification for 𝑈1 = 2 V and 𝑈2 = 4 V.

Fig. 7. 6 links structure representation of the endoscope.

Table 3
Identified stiffness and damping coefficients.
𝐾𝑖 Stiffness of the 𝑖−joint 10.4 × 10−4 N/m
𝑐𝑖 Damping of the 𝑖−joint 7.682 × 10−6 Pa s

In the current experimental set-up, 𝑛 = 4 and the 𝑎𝑖 are given in
Table 2. The experimental data used to identify the parameters is the
displacement, taken at 𝑥𝑠 = 15.5 cm.

The identification procedure is performed using Sequential
Quadratic Programming (SQP) and trust-region-reflective algorithms
(’fmincon’). These optimal algorithms for non-linear model identifica-
tion (’nlgreyest ’) are implemented in the Matlab Identification
Toolbox®.

The identification result is shown in Fig. 5 (lhs). The curve fitting
of the model simulation with optimally identified parameters (black
dashed line) and the experimental data (red solid line) is satisfying,
with a fitting percentage of 88.39%. The identified stiffness and damping
coefficients are shown in Table 3.

To validate the identified model, we measure the displacement at
a different point, 𝑥𝑠 = 14 cm with the different initial position, and

Table 4
Parameters of the IPMC actuator.
𝐶 5.8 × 10−2 F
𝑟1 29.75 Ω
𝑟2 700 Ω

compare the measurements with the simulation. The results are shown
in Fig. 5 (rhs). The fitting percentage is 86.6%.

4.2. Identification of the IPMC parameters

The physical parameters of the RLC model of the IPMC are given in
Table 4 (Gutta et al., 2009; Nishida et al., 2011; Yim et al., 2006).

The movement of the flexible structure is due to the bending of the
IPMC when applying a voltage. Two voltages step inputs are applied,
first 𝑈1 = 2 V at 5 s, and then 𝑈2 = 4 V at 20 s. The measure is the
displacement at 𝑥𝑠 = 15.5 cm. An average of several experimental tests
is has been performed in order to avoid environmental perturbations as
much as possible. The experimental response is shown in Fig. 6. One
can observe that the flexible structure displaces 6.5 mm and 13.8 mm
when applying 2 V and 4 V respectively.

Using the same identification procedure as in the previous subsec-
tion, the coupling parameter is identified as

𝑘 = 0.98 × 10−5N m∕V (41)

The simulation result is given in Fig. 6 in red solid line and the
experimental data in black dashed line.

Remark 5. In the proposed model, the dynamics of the IPMC actuator
are simplified to a RLC circuit and the coupling between the actuator
and the flexible structure is also simplified to a constant coefficient
𝑘. However, the IPMC actuator has a nonlinear electro-stress diffusion
dynamic which is not addressed in this paper. This is why in Fig. 6,
the simulation curve (black dashed line) is slightly different from the
experimental data (red solid line) at second 22 s.

5. Control implementation by simulation and experimental vali-
dation

5.1. Control implementation by simulation

In the following, we consider the case with 𝑛 = 6 and model
parameters equal to the ones estimated in the last section. We use the
same model for the two control designs (IDA-PBC and CbI-PI) and for
the simulations.

The desired configuration of the endoscope (Fig. 7) is defined by
the angular position 𝑞∗ =

[

𝑞∗1 −
𝑞∗1
2 0 −

𝑞∗1
2 −

𝑞∗1
2

𝑞∗1
2

]

where
𝑞∗1 = 0.085 rad. We compute the control law (40) with the equilibrium

6
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Fig. 8. CbI-PI control: (lhs) Angular displacement 𝑞1; (rhs) Tip displacement 𝑦𝑠.

Fig. 9. Proposed IDA-PBC control: (lhs) Angular displacement 𝑞1; (rhs) Tip
displacement 𝑦𝑠.

𝑥∗ =
[

𝑞∗ 0 𝑄∗ 𝜑∗], where 𝑄∗ and 𝜑∗ are computed by (31), with
design parameter 𝐶 ′ = 0.005 F. The different patches are actuated
sequentially from the clamped side to the free hand side, i.e. the
different IPMC patches are actuated at time 5, 10, 15, 20 and 25 seconds,
respectively. Fig. 8 shows the angular displacement 𝑞1 (lhs) and the tip
displacement 𝑦𝑠 (rhs) for different values of 𝐾𝐼 and 𝐾𝑃 .

Fig. 9 shows the implementation of the control law (33) under same
conditions as before for different damping injections terms 𝑟𝑐 , while
the desired closed loop capacitance is selected such that 𝐶 ′ = 0.005 F.
The responses obtained with the CbI-PI (40) and the IDA-PBC (32) of
respectively Figs. 8 and 9 gives very similar results. Hence, because
of its simplicity, the output feedback (33) will be implemented on
the experimental set-up. In the following two different experimental
scenarios are considered. First the structure actuated with one IPMC
patch, and then the structure actuated with two patches.

5.2. Flexible structure with one IPMC patch

In this subsection the control strategy of Section 3 is applied and
experimentally validated on the flexible structure controlled by using
one IPMC actuator. The control law (33) is cast in the single patch
actuation case, and implemented using the voltage as control input to
the IPMC. Instead of plotting the angular displacement of the joints, the
displacement 𝑦𝑠 is plotted since it is the quantity that is experimentally
measured by the laser sensor, as explained in the previous section. The
reference position is given in terms of 𝑦𝑠. The desired angular position
𝑞∗ can be computed as

𝑞∗ = tan−1
⎛

⎜

⎜

⎝

𝑦𝑠
𝑥𝑠 −

𝐿
𝑛+1

⎞

⎟

⎟

⎠

(42)

where in this case, 𝑦∗𝑠 = 5 mm, 𝑥𝑠 = 15.5 cm, 𝐿 = 16 cm and 𝑛 = 4.
The experimental results are shown in Fig. 10. It is shown that with-

out any damping term the raising time can be drastically reduced up
to 1 second. However, in this case, since the response of the controlled
system is faster, the high frequency modes of the flexible structure
are excited and have a significant oscillatory contribution to the time
response (black dashed-dotted line with 𝑟𝑐 = 0𝛺). The use of damping

Fig. 10. Controlled response with energy shaping 𝐶 ′ = 0.005 F. Response time ↗ and
oscillation ↘ when 𝑟𝑐 ↗.

Fig. 11. Applied voltage with energy shaping 𝐶 ′ = 0.01 F.

injection allows to damps this oscillation. In Fig. 10 one can see that by
using the damping term 𝑟𝑐 = 10𝛺 the step response is less oscillatory
(blue dashed line). Finally, a good compromise between oscillations
and time response (around 1 second) can be found by choosing 𝑟𝑐 = 30𝛺
(red solid line).

In Fig. 11, the applied voltage to the IPMC actuator when using
control by energy shaping is shown. The controller sends a peak voltage
to the IPMC and then decreases until converging to the steady state
position.

5.3. Flexible structure with two IPMC patches

In this subsection, we investigate the actuation through two IPMC
patches. One patch is placed at the clamped side of the beam as in the
previous subsection and the second actuator is placed at the middle of
the flexible structure as shown in Fig. 12.

The control objective of the multi-actuated flexible structure is to
reach a desired shape for the structure (as shown at the bottom of
Fig. 12) with guaranteed performances in terms of settling time and
overshoot. In this case, we propose to use the four links structure
to design the controller as it provides a good compromise between
accuracy and complexity. The actuation is applied to the first and the
third joint of the structure respectively. Two KEYENCE laser sensors are
used to measure the tip displacement and the middle displacement of
the flexible structure.

7
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Fig. 12. Multi-actuation experimental set-up.

Fig. 13. Tip and middle displacements.

We first move the free end of the structure to the desired position
𝑦∗𝑠 = 5 mm as in the previous subsection. Then, the desired angular
position 𝑞∗1 is computed from (42) using 𝑦∗𝑠 = 5 mm. In a second
instance, we bring the free end of the structure to the original position
i.e, 𝑦𝑠 = 0 by the second IPMC actuator placed at the middle of the
structure (third joint). It applies the angular position 𝑞∗3 = −2𝑞∗1 . Hence
the desired angular positions corresponding to the desired shape of the
structure are 𝑞∗ =

[

𝑞∗1 0 −2𝑞∗1 0
]𝑇 . The control design parameters

are 𝐶 ′ = 0.05 F and 𝑟𝑐 = 30𝛺 for both actuators.
In Fig. 13, the tip and middle displacement measurements are

shown. The red dashed curve is the tip displacement and the blue solid
curve is the measurement from the middle laser sensor. First the control
law (33) is used to drive the clamped side IPMC actuator such that the
tip of the structure moves to the desired position 5 mm and then at
6 s, we control the second IPMC actuator placed at the middle of the
structure to drive the tip to its original place. One can observe that the
tip displacement (red dashed curve) first goes to the desired position
and then goes back to 0 at 6 s. The middle of the flexible structure

(blue solid line) first goes to 2.5 mm and does not move anymore apart
from a small oscillation at 6 s when the second IPMC is actuated.

6. Final remarks and perspectives

The paper presents a lumped model and control strategy for a class
of 1-D IPMC actuated flexible structure using the PHS framework. The
model reproduces the main behaviour of the IPMC actuated endoscope
and has as main feature that it is easy scalable. The control strategy
is based on IDA-PBC, and takes into account the electro-mechanical
coupling in the design of the closed-loop Hamiltonian function. The
cross terms result in non-trivial matching conditions which are solved
by using a set of auxiliary control design parameters. The resulting
controller allows to modify the closed-loop equilibrium and shape the
closed-loop Hamiltonian.

An experimental set-up has been used to test and validate the pro-
posed model and control strategy. The experimental set-up reproduces
the main properties of a compliant bio-medical endoscope process.
The comparison between simulations and the experimental data shows
that the model reproduces the experimental response in a satisfactory
way. Two control strategies are implemented, one which only changes
the closed-loop equilibrium and a second one which also shapes the
closed-loop energy function. Both controllers asymptotically stabilize
the system. It has been shown by means of simulations and experi-
mental tests that by modifying the closed-loop Hamiltonian function
the closed-loop response can be effectively tuned and rendered faster.
Furthermore, the flexible structure is actuated by two IPMC patches
which allow to get a desired configuration of the structure.

There are still several interesting points worth investigating in the
future. The actuation of IPMC is very sensible to humidity. During
experimentation it has been observed that a humid actuator is more
efficient and active than a dryer one. This is due to the physical nature
since the bending of the actuator depends on the water molecules in
the polymer of the IPMC. Ongoing work is to deal with the parameter
uncertainty caused by the humidity and to investigate robust control
design. With the same idea, the effect of external perturbations has to
be investigated. To this end, a simplified model of the IPMC actuator
has been considered, hence the dynamic of the polymer gel diffusion
has not been taken into account. Future work will consider a complete
IPMC actuator model.
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Appendix. Proof of Proposition 3

Proof. In order to get the control law shown in (32), we first define a
full rank annihilator 𝑔⟂ is

𝑔⟂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐼𝑚 0 0 0 0 0
0 𝐼𝑛−𝑚 0 0 0 0
0 0 𝐼𝑚 0 0 0
0 0 0 𝐼𝑛−𝑚 0 0
0 0 0 0 0 𝐼𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (A.1)

We will not modify the closed-loop interconnection matrix i.e., 𝐽𝑑 = 𝐽 .
By observing the open-loop system (19) and the fact that the fifth
column of the annihilator 𝑔⟂ defined in (A.1) is zero, one find that the
matching conditions do not depend on the 𝜑 coordinates. The desired
damping matrix can then be defined as

𝑅𝑑 = 𝑅 + 𝑅𝑐 with 𝑅𝑐 = diag
[

0, 0, 𝑟𝑐 , 0
]

. (A.2)

This choice of damping matrix leads to the damping injection effect in
the closed-loop system without changing any matching condition. We

8



A. Mattioni, Y. Wu, H. Ramirez et al. Control Engineering Practice 101 (2020) 104498

can use a negative damping injection to increase the response time i.e.
𝑟𝑐 < 0. However, in order to guarantee the stability in the closed-loop
system, this negative damping injection has a lower bound 𝑟𝑐 > −𝑅1𝑚.

By setting 𝐻𝑑 (𝑥) = 𝐻(𝑥) +𝐻𝑐 (𝑥) the matching condition (24) leads
to the following matching equations

𝜕𝐻𝑐
𝜕𝑝

=
𝜕𝐻𝑐
𝜕𝑞2

= 0, (A.3)

−
𝜕𝐻𝑐
𝜕𝑞1

+𝐾𝑚
𝜕𝐻𝑐
𝜕𝑄

= 0, (A.4)

𝜕𝐻𝑐
𝜕𝜑

− 𝑅2𝑚
𝜕𝐻𝑐
𝜕𝑄

= 0, (A.5)

where 𝑞1 ∈ R𝑚, 𝑞2 ∈ R𝑛−𝑚, 𝑝 ∈ R𝑛, 𝑄,𝜑 ∈ R𝑚, 𝐾𝑚 = diag[𝑘1, 𝑘2,… , 𝑘𝑚]
∈ R𝑚×𝑚 and 𝑅2𝑚 = diag[1∕𝑟2, 1∕𝑟2,… , 1∕𝑟2] ∈ R𝑚×𝑚.

We define the desired Hamiltonian as the composition of the desired
mechanical potential energy, the desired mechanical kinetic energy and
the desired electrical energy

𝐻𝑑 (𝑥) = 𝐸𝑑 (𝑥) + 𝑃𝑑 (𝑥) +𝐻𝜑
𝑑 (𝑥) +𝐻𝑄

𝑑 (𝑥). (A.6)

From the matching condition (A.3), we find that 𝐻𝑐 cannot depend on
the momentum variables 𝑝. Hence, we define the closed-loop kinetic
energy as 𝐸𝑑 (𝑥) = 𝐸(𝑥). Hence, the only part of the energy that can
be modified is 𝑃𝑑 (𝑥), 𝐻𝑄

𝑑 (𝑥) and 𝐻𝜑
𝑑 (𝑥), and more precisely the part

that depends on 𝑄, 𝜑 and 𝑞1. From the matching conditions (A.4) and
(A.5), the desired energy has cross terms between 𝑞1, 𝑄 and 𝜑. Hence,
we propose the following solution

𝜕𝐻𝑑
𝜕𝑞1

= 𝐾 ′
1
(

𝑞1 − 𝑞∗1
)

+ 𝜅1
(

𝑄 −𝑄∗) + 𝜅3
(

𝜑 − 𝜑∗)

𝜕𝐻𝑑
𝜕𝑄

= 𝐶 ′−1 (𝑄 −𝑄∗) + 𝜅1
(

𝑞1 − 𝑞∗1
)

+ 𝜅2
(

𝜑 − 𝜑∗)

𝜕𝐻𝑑
𝜕𝜑

= 𝐿′−1 (𝜑 − 𝜑∗) + 𝜅2
(

𝑄 −𝑄∗) + 𝜅3
(

𝑞1 − 𝑞∗1
)

(A.7)

with 𝐾 ′
1, 𝐶 ′ and 𝐿′ the desired stiffness, capacitance and inductance

of the closed-system. The constants 𝑞∗1 , 𝑄∗ and 𝜑∗ are the equilibrium
position of the closed loop system and 𝜅𝑖, 𝑖 = {1, 2, 3} are constant
cross terms. Now we shall compute the above design parameters such
that the desired Hamiltonian satisfies the matching condition (A.4) and
(A.5).

Taking (A.7) and the gradient of the open-loop Hamiltonian 𝜕𝐻
𝜕𝑞1

=

𝐾1𝑞1,
𝜕𝐻
𝜕𝑄 = 𝐶−1𝑄 and 𝜕𝐻

𝜕𝜑 = 𝐿−1𝜑 into account, we have that

𝜕𝐻𝑐
𝜕𝑞1

= (𝐾 ′
1 −𝐾1)𝑞1 −𝐾 ′

1𝑞
∗
1 + 𝜅1

(

𝑄 −𝑄∗) + 𝜅3
(

𝜑 − 𝜑∗)

𝜕𝐻𝑐
𝜕𝑄

= (𝐶 ′−1 − 𝐶−1)𝑄 − 𝐶 ′−1𝑄∗ + 𝜅1
(

𝑞1 − 𝑞∗1
)

+ 𝜅2
(

𝜑 − 𝜑∗)

𝜕𝐻𝑐
𝜕𝜑

= (𝐿′−1 − 𝐿−1)𝜑 − 𝐿′−1𝜑∗ + 𝜅2
(

𝑄 −𝑄∗) + 𝜅3
(

𝑞1 − 𝑞∗1
)

(A.8)

To find a solution for 𝐻𝑐 satisfying (A.8), we select

𝐾 ′
1 = 𝐾1 +𝐾2

𝑚�̃� (A.9)

𝐿′−1 = 𝐿−1 + 𝑅2
2𝑚�̃� (A.10)

𝜅1 = 𝐾𝑚�̃� (A.11)
𝜅2 = 𝑅2𝑚�̃� (A.12)
𝜅3 = 𝐾𝑚𝑅2𝑚�̃� (A.13)

where the matrix �̃� =
(

𝐶 ′−1 − 𝐶−1) With the above choice, the match-
ing conditions (A.4) and (A.5) are satisfied.

Now we compute the constants 𝐾 ′
1, 𝐶

′ and 𝐿′ such that the closed-
loop system is asymptotically stable at the desired equilibrium
[

𝑞∗𝑇1 , 𝑄∗𝑇 , 𝜑∗𝑇 ]𝑇 . From (25) it should be verified that

𝜕𝐻𝑑
𝜕𝑥

(𝑥∗) = 0,
𝜕2𝐻𝑑

𝜕𝑥2
(𝑥∗) > 0. (A.14)

From the first equation of (A.14), 𝑞1 = 𝑞∗1 , 𝑄 = 𝑄∗ and 𝜑 = 𝜑∗ satisfy
the following relations

𝐾 ′
1

(

𝑞1 − 𝑞∗1
)

+𝐾𝑚�̃� (𝑄 −𝑄∗) +𝐾𝑚𝑅2𝑚�̃� (𝜑 − 𝜑∗) = 0
𝐶 ′−1 (𝑄 −𝑄∗) +𝐾𝑚�̃�

(

𝑞1 − 𝑞∗1
)

+ 𝑅2𝑚�̃� (𝜑 − 𝜑∗) = 0
𝐿′−1 (𝜑 − 𝜑∗) + 𝑅2𝑚�̃� (𝑄 −𝑄∗) +𝐾𝑚𝑅2𝑚�̃�

(

𝑞1 − 𝑞∗1
)

= 0
(A.15)

From the open-loop dynamic (19), by computing �̇�(𝑥∗, 𝑢∗) = 0, we find
that the equilibrium 𝑞∗1 , 𝑄∗ and 𝜑∗ are related as follows

𝑄∗ =
𝐾1𝐶
𝐾𝑚

𝑞∗1 , 𝜑∗ =
𝑅2𝑚𝐿𝐾1

𝐾𝑚
𝑞∗1 . (A.16)

Finally, to guarantee the equilibrium 𝑥∗ be the strict minimum of
the closed-loop Hamiltonian, the Hessian of 𝐻𝑑 should be positive
definite at the desired equilibrium. Thus the right inequality of (A.14)
yields the following condition on the control design parameter 𝐶 ′:

𝐶 ′−1 ≥ 𝐶−1 −
𝐾1

𝐾2
𝑚
, 𝐶 ′−1 ≥

𝐾2
𝑚𝐶

−2

𝐾1 +𝐾𝑚𝐶−1
,

𝐶 ′−1 ≥
(

𝐾2
𝑚𝐿

−1 + 𝑅2
𝑚𝐾1

)

𝐶−2

𝐾1𝐿−1 +𝐾2
𝑚𝐿−1𝐶−1 + 𝑅2

𝑚𝐾1𝐶−1
.

(A.17)

From (A.9) and (A.10) we see that 𝐾 ′
1, 𝐿

′ and 𝐶 ′ are related. Hence
once we choose the parameter 𝐶 ′ satisfying the conditions (A.17), the
two other parameters are fixed. The proof of the asymptotic stability
is straightforward once it is noticed that the desired closed-loop dis-
sipation matrix is equal to the open-loop dissipation matrix, and in
particular that the dissipation sub-matrix of the electrical part is full
rank. Hence, the asymptotic stability follows in an analog manner as the
asymptotic stability of a mass–spring–damper systems (van der Schaft,
2017) by using LaSalle’s invariance principle.

Finally from Proposition 1 and the damping injection (A.2), the
following control law is obtained:

𝛽(𝑥) = −
(

𝑅1𝑚𝐿′−1 + 𝑅2𝑚�̃�
)

(𝜑 − 𝜑∗)
−

(

𝑅1𝑚𝑅2𝑚 + 𝐼𝑚
)

𝐾𝑚�̃�
(

𝑞1 − 𝑞∗1
)

−
(

𝑅1𝑚𝑅2𝑚�̃� + 𝐶 ′−1) (𝑄 −𝑄∗)
+𝑅1𝑚𝐿−1𝜑 + 𝐶−1𝑄 − 𝑟𝑐𝐿′−1𝜑 □

(A.18)
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