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a b s t r a c t

An observer-based boundary controller for infinite-dimensional port-Hamiltonian systems defined on
1D spatial domains is proposed. The design is based on an early-lumping approach in which a finite-
dimensional approximation of the infinite-dimensional system derived by spatial discretization is used
to design the observer and the controller. As long as the finite-dimensional approximation approaches
the infinite-dimensional model, the performances also do. The main contribution is a constructive
method which guarantees that the interconnection between the controller and the infinite-dimensional
system is asymptotically stable. A Timoshenko beam model has been used to illustrate the approach.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Boundary control systems (BCS) (Fattorini, 1968) are a class
of control systems where the dynamics are described by partial
differential equations (PDEs) with actuation and measurement
situated at the boundaries of the spatial domain. Motivated by
technological advances, these type of systems have been of great
interest for engineers and mathematicians during the last decades
since a large class of physical processes can be represented as BCS.
This is for instance the case of beams and waves in mechanical
systems, heat bars and bed reactors in chemical systems or tele-
graph equations in electronic systems, among others (Curtain &
Zwart, 2012).

Recently, the control of BCS has been addressed by using the
framework of port-Hamiltonian systems (PHS) (Le Gorrec et al.,
2005; van der Schaft & Maschke, 2002). Boundary controlled PHS
(BC-PHS) are an extension of the Hamiltonian formulation of me-
chanical systems to open multi-physical systems (Duindam et al.,
2009). This formalism has been proven to be particularly suitable
for the modeling and control of complex physical systems, such as
systems described by infinite-dimensional or non-linear models.
The stability, stabilization and control synthesis of BC-PHS have
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been addressed in Augner and Jacob (2014), Macchelli et al.
(2017), Ramirez et al. (2014), Villegas et al. (2009) and Ramirez
et al. (2017). More recently, the framework has been extended to
deal with robust and adaptive regulation (Humaloja & Paunonen,
2018; Macchelli & Califano, 2018).

In the case of observer-based control design there are gener-
ally two approaches. The first one is the late-lumping approach in
which the observer is designed from the infinite-dimensional sys-
tems (Guo & Xu, 2007; Meurer, 2013). The main problem comes
from the infinite-dimensional aspect of the controller structure
that needs to be reduced for practical and real-time implemen-
tation. The second one is the early-lumping approach. In this
case, the system is first approximated and a finite-dimensional
observer is implemented on the reduced order system. The main
drawback is the spillover effect induced by the use of a reduced
order controller on the infinite-dimensional system, leading to
high-frequency mode destabilization (Bontsema & Curtain, 1988).

The main result of this paper is the proposition of a systematic
synthesis method for observer-based boundary controller design
for BC-PHS defined on one dimensional spatial domains. A finite-
dimensional PHS approximation of the BC-PHS is used to design
a strictly positive real PHS observer-based state feedback. This
approximation is considered precise enough such that in the
frequency range of interest the modes of the approximated model
are close enough to the one of the original system.

The observer is then used to compute the boundary con-
trol law for the infinite-dimensional system. Using the passivity
properties of power preserving interconnection of PHS it is then
possible to guarantee the asymptotic stability of the closed-loop
system. The controller hence allows to assign the low-frequency
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modes while guaranteeing stable high-frequency modes, avoid-
ing spillover effects. This paper is organized as follows: Sec-
tion 2 gives a background on port-Hamiltonian systems. Section 3
gives the main result of this work. Section 4 presents a nu-
merical example, namely a boundary actuated one-dimensional
Timoshenko beam.

2. Background on port-Hamiltonian systems

2.1. Some notation

In this paper, Mn(R) denotes the space of real n × n matrices
and I denotes the identity matrix of appropriate dimensions.
By ⟨·, ·⟩L2 or only ⟨·, ·⟩ we denote the standard inner product
on L2(a, b;Rn) and the Sobolev space of order p is denoted by
Hp(a, b;Rn). A detailed description of the class of boundary con-
trol systems under consideration can be found in Le Gorrec et al.
(2005) and Jacob and Zwart (2012). In the next section, we recall
some basic properties of this class of systems.

2.2. Boundary controlled port-Hamiltonian systems

The class of one-dimensional PDEs under study, with inputs
and outputs at the spatial boundaries, is given by the following
set of equations

P

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂z
∂t

(ζ , t) = P1
∂

∂ζ
(L(ζ )z(ζ , t)) + (P0 − G0)L(ζ )z(ζ , t),

u(t) = W
( f∂ (t)
e∂ (t)

)
, z(ζ , 0) = z0(ζ ),

y(t) = W̃
( f∂ (t)
e∂ (t)

)
, t ≥ 0, ζ ∈ [a, b],

(1)

with t > 0 the time variable and ζ ∈ [a, b] the 1D spatial
coordinate, and z(ζ , t) ∈ Rn the state variable. P1 = PT

1 ∈ Mn(R) is
a non-singular matrix, P0 = −PT

0 ∈ Mn(R), G0 = GT
0 ≥ 0 ∈ Mn(R),

L(·) ∈ Mn(L2(a, b)) is a bounded and continuously differentiable
matrix-valued function satisfying for all ζ ∈ [a, b], L(ζ ) = LT (ζ )
and mI < L(ζ ) < MI with M > m > 0 both scalars independent
on ζ . The state space is Z = L2(a, b;Rn) with inner product
⟨z1, z2⟩L = ⟨z1,Lz2⟩ and norm ∥z∥2

L = ⟨z, z⟩L, hence Z is a
Hilbert space. The norm ∥·∥

2
L is usually proportional to the stored

energy of the system, hence z(ζ , t) is called energy variable and
L(ζ )z(ζ , t) is called co-energy variable. For simplicity, we write z
and Lz instead of z(ζ , t) and L(ζ )z(ζ , t) unless otherwise stated
and arguments of dependent variables may be omitted.

Definition 1. Let Lz ∈ H1(a, b;Rn). Then, the boundary port
variables associated with (1) are the vectors f∂ and e∂ ∈ Rn,
defined by(
f∂ (t)
e∂ (t)

)
=

1
√
2

(
P1 −P1
I I

)(
L(b)z(b, t)
L(a)z(a, t)

)
. (2)

Note that, the port-variables are nothing else than a linear
combination of the boundary variables. We also define the matrix
Σ ∈ M2n(R) as follows

Σ =

(
0 I
I 0

)
. (3)

The following theorem ensures the existence and uniqueness
of solutions of (1).

Theorem 2 (Le Gorrec et al., 2005). Let W be a n×2n real matrix. If
W has full rank and satisfies WΣW T

≥ 0 then the system (1) with
input

u(t) = W
(
f∂ (t)
e∂ (t)

)
(4)

is a BCS on Z. Furthermore, the operator Az = P1 ∂
∂ζ

(Lz) + (P0 −

G0)Lz with domain

D(A) =

{
Lz ∈ H1(a, b;Rn)

⏐⏐⏐⏐⏐
(
f∂ (t)
e∂ (t)

)
∈ ker W

}
generates a contraction semigroup on Z.

Let W̃ be a full rank matrix of size n × 2n with [ W T W̃ T ]
T

invertible and PW ,W̃ given by

PW ,W̃ =

(
WΣW T WΣW̃ T

W̃ΣW T W̃ΣW̃ T

)−1

. (5)

Define the output of the system as the linear mapping C :

L−1H1(a, b;Rn) −→ Rn

y(t) = Cz(ζ , t) = W̃
(
f∂ (t)
e∂ (t)

)
(6)

Then, for u ∈ C2(0, ∞;Rn), Lz(ζ , 0) ∈ H1(a, b;Rn) and u(0) =

W
(
f∂ (0)
e∂ (0)

)
the following balance equation is satisfied

1
2

d
dt

∥z(ζ , t)∥2
L =

1
2

(
u(t)
y(t)

)T

PW ,W̃

(
u(t)
y(t)

)
(7)

Remark 3. The matrix(
W
W̃

)
Σ

(
W
W̃

)T

=

(
WΣW T WΣW̃ T

W̃ΣW T W̃ΣW̃ T

)
(8)

is invertible if and only if [ W T W̃ T ]
T is invertible.

In this work, we shall consider an early-lumping approach,
i.e., the controller and observer are designed on a
finite-dimensional approximation of (1). The following assump-
tion is considered

Assumption 4. There exists the following finite-dimensional
approximation of (1)

P
{
ẋ(t) = (J − R)Qx(t) + Bu(t)
y(t) = BTQx(t)

(9)

where x ∈ Rnc with nc given by the order of the approximation,
J = −JT , R = RT

≥ 0, Q = Q T > 0 all of them in Mnc (R)
and B ∈ Rnc×n. Furthermore we assume (9) to be controllable
and observable. For simplicity, we shall define A = (J − R)Q
and C = BTQ and we will refer to the system (A, B, C) as the
approximated model of (1).

Remark 5. Approximation schemes which preserve the port-
Hamiltonian structure of the original system using mixed finite
elements or finite differences on staggered grids for instance, can
be found in Seslija et al. (2012) and Trenchant et al. (2018). The
achievable closed-loop performances depend on the quality of
the approximated model. The order of the approximation nc has
then to be chosen large enough such that in the frequency range
of interest the approximated system poles behave similar to the
original ones.

3. The observer-based controller

The main objective of this work is to design a
finite-dimensional controller that achieves some desired per-
formances on the finite-dimensional system (9) while ensuring
closed-loop stability when applied to the infinite-dimensional
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Fig. 1. (a): λ(A): discretized model eigenvalues with nc = 59, λ(AK ): A −

BK eigenvalues and λ(AL): A − LC eigenvalues. (b): λ(Ah): discretized model
eigenvalues with nc = 67, λ(Acl): closed-loop eigenvalues.

system (1). The considered controller is an observer-based state
feedback

u(t) = r(t) − Kx̂(t) (10)

where x̂ ∈ Rnc , r ∈ Rn and the Luenberger observer
˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t) − Cx̂(t)) (11)

with matrices K ∈ Rn×nc , L ∈ Rnc×n to be designed and (A, B, C)
defined in (9). Note that, nc is the size of the observer given by the
chosen discretization scheme and n is the number of boundary
variables.

Several issues can arise when using an early-lumping ap-
proach to design the control, the most critical one being the
loss of stability when the controller is applied on the infinite-
dimensional system. It is known as the spillover effect (Bontsema
& Curtain, 1988). Consider the following illustrative example.

Example 6. Consider the 1D wave equation with unitary param-
eters and Neumann boundary control. The system can be written
(see Jacob and Zwart (2012) for more details) in the form (1) with

P1 =

[
0 1
1 0

]
, P0 = G0 = 0,L = I2.

This model is discretized by using finite differences on staggered
grids in order to preserve the structure of the system. Consider
nc = 59 elements for the discretization. G0 = 0 implies R = 0
thus all the eigenvalues of A are on the imaginary axis as shown
in Fig. 1(a). (A, B) is controllable and (A, C) observable, hence K
and L can be designed such that AK = A − BK and AL = A − LC
are Hurwitz. Using for instance the Linear Quadratic Regulator
(LQR) method the closed-loop eigenvalues can be assigned as in
Fig. 1(a).

The question that naturally arises is if the same control law,
i.e. the same choice of matrices K and L, preserves the stability
when applied on the infinite-dimensional system. The answer in
general is no. In this particular case for instance, when increasing
the order of the discretized model to nc = 67, the closed-loop
system turns unstable as shown in Fig. 1(b).

In what follows we start from the achievable closed-loop
performances on the finite-dimensional system i.e. an appropriate
choice of K , and design the observer gain such that the Luen-
berger observer (11) is a strictly positive real PHS. Then we show

that since (10) corresponds to a power preserving interconnec-
tion between the infinite-dimensional system and the dynamic
boundary controller, the closed-loop system is asymptotically
stable.

3.1. Some technical results

Before presenting the main result we give the following defi-
nitions, lemma, corollary and theorem which are instrumental in
the proof.

Definition 7. A n × n transfer matrix G(s) is positive real (PR) if
G(s) + GT (s̄) ≥ 0 for all s such that Re(s) > 0.

Definition 8. A n× n transfer matrix G(s) is strictly positive real
(SPR) if there exists a scalar ε > 0 such that G(s − ε) is PR.

Lemma 9 (Lefschetz–Kalman–Yakubovich Tao & Ioannou, 1988).
Assume for the system (A, B, C,D) that (A, B) is controllable and
(A, C) is observable. Then, the transfer matrix G(s) = C(sI−A)−1B+D
is SPR if and only if there exist real matrices P = PT > 0, Γ , W1
and a scalar ε > 0 such that

PA + ATP = −Γ TΓ − εP (12a)

C − BTP = W T
1 Γ (12b)

D + DT
= W T

1 W1 (12c)

Corollary 10. The system (A, B, C,D) with A = (J −R)Q , C = BTQ
and D = 0 is strictly positive real if J = −JT , R = RT > 0 and
Q = Q T > 0.

Proof. From Lemma 9 choose P = Q and W1 = 0, then (12c) is
trivial, (12b) is C = BTQ and (12a) becomes

Γ TΓ = 2QRQ − εQ (13)

then, for R > 0 there exists a constant ε > 0 such that the right
hand side is positive definite, giving a solution for Γ , using for
instance Cholesky factorization. See Corollary 7.2.9 in Horn and
Johnson (2012). ■

The next theorem assures the stability of (1) interconnected in
a power preserving way with a SPR controller.

Theorem 11 (Villegas, 2007, Ch. 5.1.2). Consider (1) with u(t)
defined according to Theorem 2 and y(t) such that

1
2

d
dt

∥z(ζ , t)∥2
L = uT (t)y(t), (14)

i.e. WΣW T
= W̃ΣW̃ T

= 0 and W̃ΣW T
= I . Consider also a

finite-dimensional controller with input uc(t) and output yc(t) such
that its transfer matrix is SPR. Then, the closed-loop system with the
passive interconnection

uc(t) = y(t) (15a)

u(t) = −yc(t) (15b)

is well-posed and asymptotically stable.

3.2. Equivalent observer based control by interconnection

In what follows we consider the finite-dimensional approxi-
mation (9) of (1).
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Fig. 2. Control scheme.

Definition 12. Control by interconnection with a SPR-PH con-
troller. The considered control scheme is shown in Fig. 2, where
the SPR-PH controller is given by

C

⎧⎪⎪⎨⎪⎪⎩
˙̂x(t) = (Jc − Rc)Qc x̂(t) + Bcuc(t) + Br(t)

yc(t) = BT
cQc x̂

yr (t) = BTQc x̂,

(16)

with Jc = −JTc , Rc = RT
c > 0, Qc = Q T

c > 0 ∈ Rnc×nc ,
Bc ∈ Rnc×n and B defined in (9), and (16) is interconnected in
a power preserving way to the system (9), i.e. such that

uc(t) = y(t), u(t) = r(t) − yc(t) (17)

Furthermore we assume that ((Jc − Rc)Qc, Bc) is controllable.

Theorem 13. The control scheme of Definition 12 is asymptotically
stable and converges to zero when r(t) = 0.

Proof. Consider the total energy as Lyapunov function

V (x, x̂) =
1
2
xTQx +

1
2
x̂TQc x̂

Then from (9) and (16) we have

V̇ (x, x̂) ≤ −x̂TQcRcQc x̂,

where Rc > 0 from Definition 12. From Lasalle’s invariance
principle the system converges to the invariant set corresponding
to V̇ (x, x̂) = 0, i.e. ∥x̂∥2 = 0. In this case, from (16), (17) and r = 0
we have uc = y = 0, the controller being controllable. The system
(9) being observable the only equilibrium point is 0. ■

In what follows, we propose to start from the achievable
closed-loop performances obtained by state feedback to build an
observer based controller, i.e. Jc , Rc , Qc and Bc in (16) that is
strictly positive real, i.e. satisfies the conditions of Corollary 10.

Proposition 14. The interconnection of the system (9) with the
observer based controller (10)–(11) is equivalent to the control by
interconnection with the SPR-PH controller of Definition 12 if the
following matching conditions are satisfied

(Jc − Rc)Qc = A − BK − LC

BT
cQc = K
Bc = L.

(18)

Proof. The matching equations (18) are directly obtained replac-
ing (10) in (11) and identifying with (16) in order to get a passive
and collocated dynamic controller. ■

3.3. Main result

The following proposition is the main contribution of this
work. It is based on two main assumptions.

Assumption 15. The matrix K has been designed such that
A − BK is Hurwitz by using traditional methods such as LQR
design, pole-placement or LMI passivity based control, such as for
instance in Prajna et al. (2002).

Assumption 16. The matrix Rc is chosen such that the following
matrix

HM =

(
AK 2Rc

−CK −AT
K

)
(19)

with

AK = A − BK , CK = −(K TC + CTK ), (20)

has no pure imaginary eigenvalues.

Remark 17. A simple choice for Rc is Rc = αI for some α > 0
small enough such that the matrix (19) has no pure imaginary
eigenvalues.

Proposition 18. Under Assumptions 15 and 16, there exists a
matrix Qc = Q T

c > 0, solution of the algebraic Riccati equation (ARE)

AT
KQc + QcAK + 2QcRcQc + CK = 0, (21)

such that the matching equations (18) are satisfied with

Jc =
1
2

[
AKQ−1

c − Q−1
c AT

K − Q−1
c (K TC − CTK )Q−1

c

]
Bc = Q−1

c K T

L = Bc .

(22)

Furthermore, the matrix A − LC is Hurwitz.

Proof. From Kosmidou (2007) it is known that if the Hamiltonian
matrix (19) has no pure imaginary eigenvalues then there exists
a solution Qc = Q T

c > 0 for (21). Hence we only need to prove
that (21) is compatible with the matching equation (18) for Jc and
L as in (22). Since Qc is invertible and solution of (21) we have

Rc = −
1
2

[
Q−1
c AT

K + AKQ−1
c + Q−1

c CKQ−1
c

]
= −

1
2

[
Q−1
c AT

K + AKQ−1
c − Q−1

c (K TC + CTK )Q−1
c

] (23)

Then using (22) and (23) we have

(Jc − Rc)Qc =
1
2
(2AKQ−1

c − 2Q−1
c K TCQ−1

c )Qc

= AK − Q−1
c K TC

= AK − LC
= A − BK − LC

(24)

which correspond to (18). From Theorem 13 the closed-loop
system

d
dt

(
x
x̂

)
=

(
A −BK

BcC (Jc − Rc)Qc

)(
x
x̂

)
+

(
B
B

)
r (25)

is asymptotically stable. Applying the following transformation(
x
x̃

)
=

(
I 0
I −I

)(
x
x̂

)
the closed-loop system (25) can be written

d
dt

(
x
x̃

)
=

(
AK BK

AK − BcC − Ac Ac + BK

)(
x
x̃

)
+

(
B
B

)
r

(26)
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with AK = A − BK , Bc = L and Ac = (Jc − Rc)Qc = A − BK − LC or
equivalently
d
dt

(
x
x̃

)
=

(
A − BK BK

0 A − LC

)(
x
x̃

)
+

(
B
0

)
r (27)

Since AK is Hurwitz, and the closed-loop system asymptotically
stable, A − LC is also Hurwitz. ■

Theorem 19. Let us consider the infinite-dimensional system (1)
with u = −Kx̂ and x̂ solution of the dynamic equation (16) in
Proposition 18. The closed-loop system is asymptotically stable.

Proof. The proof is a direct application of Theorem 11, Propo-
sitions 14 and 18. Choosing Rc > 0 satisfying Assumption 16
from Proposition 18 there exists a matrix Qc = Q T

c > 0
solution of (21) such that the finite-dimensional observer defined
by (11) is stable and the matching equations (18) are satis-
fied. Then, from Proposition 14 the control is equivalent to the
control by interconnection with a SPR-PH controller. From Theo-
rem 11 the closed-loop system is well posed and asymptotically
stable when the finite-dimensional controller is applied to the
infinite-dimensional system. ■

Remark 20. One special case of Proposition 18 is proposed in
Wu et al. (2018) in the context of reduced order control of finite-
dimensional PHS. There the matrix K obtained by a LQR method
and the matrix Qc = Q .

4. Example: the Timoshenko beam

We consider the boundary control of a Timoshenko beam
clamped at the left side and controlled through force and torque
at the right side. Both longitudinal and angular velocities at the
right side are used for control purposes. The port Hamiltonian
formulation of the Timoshenko beam can be found in Macchelli
and Melchiorri (2004). It can be written in the form (1) with

P1 =

⎡⎢⎣0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎦ , P0 =

⎡⎢⎣0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

⎤⎥⎦ ,

L(ζ ) =

⎡⎢⎢⎣
T (ζ ) 0 0 0
0 1

ρ(ζ ) 0 0
0 0 EI(ζ ) 0
0 0 0 1

Iρ (ζ )

⎤⎥⎥⎦ ,G0 = 0

where T (ζ ) is the shear modulus, ρ(ζ ) the mass per length unit,
EI(ζ ) the product of the Young’s modulus of elasticity E and the
moment of inertia of a cross section I , and Iρ(ζ ) the moment of
inertia of a cross section.

The state variables are: the shear displacement, the transverse
momentum distribution, the angular displacement and the an-
gular momentum distribution defined respectively by z1(ζ , t) =
∂w
∂ζ

(ζ , t) − φ(ζ , t), z2(ζ , t) = ρ(ζ ) ∂w
∂t (ζ , t), z3(ζ , t) =

∂φ

∂ζ
(ζ , t) and

z4(ζ , t) = Iρ(ζ ) ∂φ

∂t (ζ , t), where w(ζ , t) and φ(ζ , t) are respectively
the transverse displacement of the beam and the rotation angle
of a neutral fiber of the beam. Note that, T (ζ )z1(ζ , t) is the
shear force, 1

ρ(ζ ) z2(ζ , t) the longitudinal velocity, EI(ζ )z3(ζ , t) the

torque and 1
Iρ (ζ )

z4(ζ , t) the angular velocity.
We choose as inputs and outputs

u(t) =

⎛⎜⎜⎜⎜⎝
1

ρ(a) z2(a, t)
1

Iρ (a)
z4(a, t)

T (b)z1(b, t)

EI(b)z3(b, t)

⎞⎟⎟⎟⎟⎠ , y(t) =

⎛⎜⎜⎜⎜⎜⎜⎝
−T (a)z1(a, t)

−EI(a)z3(a, t)
1

ρ(b) z2(b, t)
1

Iρ (b)
z4(b, t)

⎞⎟⎟⎟⎟⎟⎟⎠

The total energy of the beam is defined as

H(t) =
1
2
∥z(ζ , t)∥2

L =
1
2

∫ b

a
zT (ζ , t)L(ζ )z(ζ , t)dζ .

and satisfies
d
dt

H(t) = yT (t)u(t).

4.1. Discretization

The infinite-dimensional system is discretized using finite dif-
ferences on staggered grids (Trenchant et al., 2018) considering
20 elements per state variable, which leads to nc = 80. The
finite-dimensional model (9) is then given by

J =

⎡⎢⎣ 0 D 0 −F
−DT 0 0 0
0 0 0 D
F T 0 −DT 0

⎤⎥⎦

R = 0, Q = h

⎡⎢⎣Q1 0 0 0
0 Q2 0 0
0 0 Q3 0
0 0 0 Q4

⎤⎥⎦
where Qi, i ∈ {1, . . . , 4} are diagonal matrices containing the
evaluation of T (ζ ), 1

ρ(ζ ) , EI(ζ ) and
1

Iρ (ζ )
respectively, at the specific

points chosen for the discretization.

D =
1
h2

⎡⎢⎢⎢⎣
1 0 · · · 0

−1 1
. . . 0

...
. . .

. . .
. . .

0 0 · · · 1

⎤⎥⎥⎥⎦ , F =
1
2h

⎡⎢⎢⎢⎣
1 0 · · · 0

1 1
. . . 0

...
. . .

. . .
. . .

0 0 · · · 1

⎤⎥⎥⎥⎦ ,

and

B =

⎡⎢⎣b11 b12 0 0
0 0 b23 0
0 b32 0 0
0 0 b43 b44

⎤⎥⎦
with

b11 =
1
h

⎡⎢⎢⎣
−1
0
...

0

⎤⎥⎥⎦ , b12 =
1
2

⎡⎢⎢⎣
−1
0
...

0

⎤⎥⎥⎦ ,

b23 =
1
h

⎡⎢⎢⎣
0
0
...

1

⎤⎥⎥⎦ , b43 =
1
2

⎡⎢⎢⎣
0
0
...

1

⎤⎥⎥⎦
b32 = b11, b44 = b23.

The state variables are

x(t) =
[
xd1(t)

T xd2(t)
T xd3(t)

T xd4(t)
T
]T

where xdi (t) ∈ R20, i ∈ {1, . . . , 4} and the jth component of
xd1, x

d
2, x

d
3 and xd4 correspond respectively to the approximation

of z1((j − 0.5)h, t), z2(jh, t), z3((j − 0.5)h, t) and z4(jh, t), with
h = 2 b−a

2∗20+1 = 0.0146, and b − a = 0.3 m with a = 0. The
beam is clamped at the left side and force and torque actuators at
the right side are considered, Tz1(b, t) and EIz3(b, t) respectively.
Hence b11 = b12 = b32 = 0, which give pairs (A, B) controllable
and (A, C) observable. In this case C = BTQ .
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Table 1
Plant parameters.
Parameters Values Unit

T 3.4531 × 105 Pa
ρ 0.0643 kg m−1

EI 37.0116 Pa m4

Iρ 2.1485 × 10−6 Kg m2

[a, b] [0, 0.3] m

Fig. 3. (a): λ(A): eigenvalues of the discretized model with nc = 80, λ(AK ):
eigenvalues of A − BK and λ(AL): eigenvalues of A − LC . (b): λ(Ah): discretized
model eigenvalues with nc = 200, λ(Acl): closed-loop eigenvalues.

4.2. The observer-based state feedback design

We use the parameters of Table 1.
Two different state feedbacks K minimizing the cost function

JLQR =

∫
∞

0
{xTQLQRx + uTRLQRu + 2xTNLQRu}dt

are designed using the Matlab@ Control System Toolbox lqr.m. In
both designs the ARE algorithm proposed in Lanzon et al. (2008)
has been used to solve (21).

For the first design, the matrix K is performed choosing QLQR =

0.8Inc , RLQR = 10I4 and NLQR = 0, while the matrix L is designed
following Proposition 18 with Rc = 10Inc . The eigenvalues of
the matrices A, A − BK and A − LC are shown in Fig. 3(a). The
eigenvalues of the closed-loop system using the same controller
on a higher order discretization of the beam, choosing nc = 200,
are given in Fig. 3(b).

For the second design, the matrix K is performed choosing
QLQR = 0.8Inc , RLQR = 1.33I4 and NLQR = 0, while the matrix
L is designed following Proposition 18 with Rc = 4Inc . The
eigenvalues of the matrices A, A − BK and A − LC are shown
in Fig. 4(a). The eigenvalues of the closed-loop system using the
same controller on a higher order discretization of the beam,
choosing nc = 200, are given in Fig. 4(b). In both cases, the closed-
loop system remains stable and the high frequency modes are not
destabilized. Even if nc → ∞, the closed-loop eigenvalues do not
cross the imaginary axis.

4.3. Simulations

Simulations are performed using Matlab over the time interval
t ∈ [0, 0.4] s. The simulation starts from the initial condition
z1(ζ , 0) = 0.2896 × 10−4, z2(ζ , 0) = 0, z3(ζ , 0) = −0.2702ζ +

Fig. 4. (a): λ(A): eigenvalues of the discretized model with nc = 80, λ(AK ):
eigenvalues of A − BK and λ(AL): eigenvalues of A − LC . (b): λ(Ah): eigenvalues
of the discretized model with nc = 200, λ(Acl): closed-loop eigenvalues.

Fig. 5. wi(b, t): end tip displacement for the design i = {1, 2}.

0.0811 and z4(ζ , 0) = 0 corresponding to the equilibrium po-
sition associated to a force of 10 N applied at the end tip of
the beam. The initial condition for the observer is set to zero,
i.e. x̂(0) = 0. An external force r(t) = 100 N is applied at
t = 0.2 s at the end of the tip to modify the equilibrium position.
In the first simulation the observer-based controller of size 80
and designed on the discretized model for 20 elements is applied
to the large scale system obtained considering 50 discretization
elements, i.e. 200 state variables. Fig. 5 shows the time responses
for the two controllers proposed in sub Section 4.2, where w1(b, t)
and w2(b, t) are the end tip displacements of the beam for the
first and second design respectively. Note that, before t = 0.2 s
the convergence to the null equilibrium is due to the observer
and state feedback dynamics. After the step at t = 0.2 s, the
convergence is mostly due to the state feedback as the observer
already converged to the system state over the considered range
of frequencies.

The estimated values are given by ŵ1(b, t) and ŵ2(b, t), the
error is obtained by w̃i(b, t) = wi(b, t) − ŵi(b, t) and it is shown
in Fig. 6 for both designs.

In Fig. 7 is given the evolution of the norm of the error
between the system state, that has been used for control design,
and the observer state, with respect to time when considering
different initial conditions. Fig. 7 illustrates the convergence rate
of the observer on the reduced order system.

Since the controller is designed based on a finite-dimensional
approximation P of the system, but at the end, has to be imple-
mented on the infinite-dimensional system P , it is interesting
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Fig. 6. w̃i(b, t): observer error of the end tip displacement for the design
i = {1, 2}.

Fig. 7. Evolution of the norm of the error between the observer and the
discretized model to initial conditions.

Fig. 8. Discretization error ei(b, t) = wP
i (b, t)−wP

i (b, t) for the design i = {1, 2}.
.

to compare the behavior of both closed-loop systems. For that
purpose, we denote by wP (b, t) the end tip displacement when
applying the controller to the finite-dimensional model P used
for the design (20 elements) and by wP (b, t) the end tip displace-
ment when applying the controller to a higher dimensional model
stemming from a fine approximation of the infinite-dimensional
model P (obtained for 50 elements). The approximation error
ei(b, t) = wP

i (b, t) − wP
i (b, t) is shown in Fig. 8 for both designs.

We can notice that the approximation error increases for high
frequencies signals, meaning performances cannot be guaranteed
over all frequencies. Yet the error remains small with respect to
the higher order approximation.

Finally, a new simulation is done using the second design for
t ∈ [0.0.2] with the same initial conditions than before and an
external force step applied at t = 0.1 s. The deformation of

Fig. 9. Displacement of the beam for time t ∈ [0, 0.2] and space ζ ∈ [0, 0.3].

Fig. 10. Evolution of the system and observer energy functions with respect to
initial conditions.

the beam along the space and over time is shown in Fig. 9. The
oscillations occurring during the first 0.1 s are due to the observer
convergence since the system and the observer do not have the
same initial conditions.

Fig. 10 shows the evolution of the system and observer en-
ergies with respect to time when considering different initial
conditions. We can see that the observer energy function con-
verges to the plant energy function, and at the same time the
control brings the closed-loop energy function to zero.

5. Conclusion

An observer based boundary controller has been proposed
for a class of boundary controlled PHS defined on a 1D spatial
domain. The design is based on an early-lumping approach in
which a finite-dimensional PHS approximation of the infinite-
dimensional system is used to design the observer and the con-
troller. The main contribution is a constructive method that guar-
antees that the finite-dimensional dynamic boundary controller
is a strictly positive real PHS. This guarantees that the inter-
connection between the controller and the infinite-dimensional
system is asymptotically stable. As soon as the finite-dimensional
approximation of the system that is used for the observer de-
sign is close to the infinite-dimensional system over the con-
sidered range of frequencies, the closed-loop performances on
the infinite-dimensional system are close to the ones obtained
on the finite-dimensional approximation. The stabilization of a
Timoshenko beam with force and torque actuators and collo-
cated measurements (velocities) has been used to illustrate the
approach.
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