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In order to overcome mode aliasing limitation in linear mode-localized sensors, we demonstrate in this letter both
theoretically and experimentally how to tune the electrostatic nonlinearity and exceed the ultimate sensitivity reachable
in the linear regime. A mass sensor composed of two coupled micro-cantilevers with different lengths is considered
and the results show that the sensitivity can be significantly enhanced up to 67 %. By performing experiments on
the fabricated device and depositing the mass perturbation with a focused ion beam, the same phenomenon has been
observed. These promising results open the way towards ultrasensitive multimodal microsensors with functionalized
nonlinearities.

The ability of detecting a small mass with MEMS sen-
sor constitutes a major interest for biomedical and chemical
applications. The common principle used by mass sensors
consists of a detection based on a frequency shift of a sin-
gle resonator1–4. In order to bring enhancements to these de-
vices, other sensing methods like mode localization5,6 have
been investigated. It uses the change in the vibration mode
of weakly coupled resonators to detect a small perturbation.
With this method, the normalized sensitivity of the sensor is
improved7 and the effects of the ambient condition changes
are reduced by the common mode rejection8. Most of mode
localized mass sensors use two coupled resonators9–11 but oth-
ers use more than two12,13. It also concerns other applications
like stiffness sensing14,15 and acceleration sensing16. So far,
all of these sensors use coupled linear resonators and the way
to increase the sensitivity of the device is to reduce the ra-
tio between the stiffness of the coupling and that of the res-
onator. However, the more the coupling decreases, the closer
the frequencies of each mode are to each other. Due to the
energy loss that defines the quality factor of the device, this
coupling ratio has a minimum value that prevents the mode
aliasing17. This corresponds to the minimum coupling that al-
lows the separation between the peaks of each vibration mode.
Thus, the sensitivity in the linear regime is limited. In order to
overcome this limitation, we propose in this letter to tune the
nonlinearities to enhance the sensitivity without changing the
coupling. Devices with coupled nonlinear resonators have al-
ready been studied18–22 and proposed for energy harvesting to
increase the frequency bandwidth23,24. Nevertheless, nonlin-
earity functionalization and its benefits for mass sensing uti-
lizing mode localization have not yet been deeply addressed
and experimentally demonstrated with respect to the ultimate
sensitivity in the linear regime. In case of electrostatically ac-
tuated device, nonlinearities can be introduced by driving the
device at high vibration amplitude, and the functionalization
of these nonlinearities is their implementation and tuning in
order to improve the device performances. So, we consider
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two weakly coupled cantilevers with electrostatic actuation
in this study. An analytical analysis of its dynamic behav-
ior is briefly presented, and the problem is solved with the
method of multiple scale25, which has already been used for
other nonlinear systems26,27. Simulations are then performed
to compare the results between the linear case involving low
vibration amplitudes and the nonlinear case involving high vi-
bration amplitudes, when a same mass perturbation is added
on the sensor. Furthermore, experiments are also conducted
to validate the theoretical trends.

The considered device is composed of two mechanically
coupled polysilicon cantilevers with different lengths, as de-
scribed in Fig. 1, and its dimensions are given in Table. I. The
quality factor used for the simulation was determined from ex-
perimental measurements and its value is Q = 770. From this,
we set the coupling ratio, which is equal to the ratio between
the apparent stiffness of the coupling beam and the cantilever,
to be near the limit of the aliasing mode. This minimum cou-
pling ratio has been identified in the case of a discrete coupled
model17 as the inverse of the quality factor, i.e. 1/Q= 0.13 %.
For the actuation, the short microbeam is actuated with a com-
bined AC/DC voltage. The design of the device has already
been studied on the basis of a theoretical linear approach28.

Short cantilever

Long cantileverActuation 

electrode

Coupling beam

FIG. 1. The device composed of two mechanically coupled can-
tilevers with an actuation electrode under the short cantilever

Mode localized sensors require identical resonators, but the
microfabrication technologies induce manufacturing defects
preventing from getting this. With two microbeams of differ-
ent lengths, we can counterbalance the manufacturing defects
and the length difference by using the softening effect of the
DC voltage29. Thus, we can reduce the apparent stiffness of
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TABLE I. Dimensions of the device

Dimension Value
Lengths of the cantilevers 98 µm and 100 µm
Width of the cantilevers 19 µm

Thickness of the cantilevers 1.3 µm
Length of the coupling beam 65 µm
Width of the coupling beam 3 µm

Position of the coupling from the fixed end 4.6 µm

the short cantilever and equilibrate the system when the two
cantilevers have the same resonant frequency. According to
a previous work20,28, the device can be modeled by two cou-
pled Euler-Bernoulli beams, and the equation describing the
bending vibration of this system after discretization is similar
to the equation of a nonlinear resonator (Short cantilever 1)
coupled with a linear resonator (Long cantilever 2). A second
order multiple scale method is used to solve the problem and
the equation of the system is rewritten as follows

ä1 +ω1
2 a1 =−2ε

2
µ1 ȧ1 − ε

2k (γ1 a1 − γ2 a2)

−εα2 a1
2 − ε

2
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where dots denote the partial differentiation with respect to
the time, ai are the deflection of the cantilever i (i = 1,2), ωi
are the eigenfrequency, 2ε2µi are the damping coefficient, ε2k
is the coupling, εα2 is the coefficient for the quadratic nonlin-
earity, ε2α3 is the coefficient for the cubic nonlinearity, ε2 f1
is the amplitude of the excitation force, Ω is the excitation fre-
quency and ε is a low-value parameter (ε � 1). To proceed,
we introduce different scales of time Tn depending on ε and
defined by

Tn = ε
nt (n = 1,2) (3)

As the frequency Ω of the harmonic load and the frequencies
ω1 and ω2 of the two resonators are very close, we can also
set the following relationships
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2
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2
σ2 (4)

For more details about the solving method, readers can see
supplementary material. This leads to the two following equa-
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where the amplitude of a1 and a2 are respectively equal to
2u1 and 2u2. Eq. 5 is a sixth order equation which can be
reduced to a cubic equation after a variable change. Solving
this equation gives us the value of u1 for each frequency, thus
the frequency response of the short cantilever can be plotted.
In nonlinear regime, Eq. 5 can give three real solutions that
is why multivalued region is formed in the amplitude curve,
while for the long cantilever, we just use Eq. 6.

In order to investigate the effects of electrostatic nonlinear-
ities on the mode localization, we first review its principle.
When two identical resonators are weakly coupled, we have
two modes of vibration corresponding to the symmetric and
the antisymmetric modes. When a small mass perturbation is
added only on the first resonator, its resonant frequency de-
creases, so it vibrates more in the first mode of the coupled
system, i.e. at the lowest frequency. The second resonator vi-
brates more in the second mode of the coupled system. The
vibration of the system thus becomes localized on the first res-
onator for the first mode, and on the second one for the second
mode. Because only the first resonator is actuated to generate
the vibration of the system, the mode localization will be more
marked on mode 1, so the ratio of vibration amplitudes on
mode 1 will be used as output metrics to measure the mass per-
turbation. If we now introduce electrostatic nonlinearities in
the first resonator, its resonant frequency becomes amplitude-
dependent. More precisely, the nonlinearity bends the fre-
quency response graph to the left when the vibration ampli-
tude increases, so the resonant frequency decreases. This ap-
pears when we only have electrostatic nonlinearity, leading to
softening behavior. We have on the one hand, the mass pertur-
bation decreasing the resonance frequency and increasing the
vibration amplitude of the first resonator on the first mode,
and on the other hand, the electrostatic nonlinearities further
decreasing the resonance frequency when the vibration ampli-
tude increases. As the added mass and the nonlinearity both
lead to a decrease in the resonant frequency, we should have a
more localized vibration than in coupled linear resonators, for
the same mass perturbation. Thus, the sensitivity of the sensor
can be improved.

In order to highlight the benefits of electrostatic nonlinear-
ities on mass sensing, several simulations are performed. We
first consider the linear case and find the DC voltage balancing
the system. With a capacitance gap of 1.24 µm, the theoret-
ical frequency response of the device at the balanced state is
shown in Fig. 2(a), where the actuation is vAC = 6 mV and
VDC = 6.82 V . Given that the DC voltage is not very close
to the pull-in voltage that is theoretically evaluated and ex-
perimentally measured around 14 V , the small AC voltage al-
lows us to ensure that vibrations are linear. If we add a dis-
crete mass of 10 pg at the end of the short cantilever, the vi-
bration becomes localized as shown in Fig.2(b). On the first
mode, the ratio between the amplitude of the short cantilever
and the long cantilever which is initially close to 1 becomes
W1/W2 = 2.2 (measured on the circled dots). Afterwards,
we perform simulations with high AC voltage. The result is
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shown in Fig. 2(c) in which the actuation is vAC = 25 mV and
VDC = 6.74 V . We notice that a lower DC voltage is required
because of the additional softening effect of the electrostatic
nonlinearities20. With the same added mass of 10 pg, the re-
sult in Fig. 2(d) shows that the vibration on the first mode is
more localized than in the linear case. The amplitude ratio
on the first mode becomes W1/W2 = 3. We notice that the
short cantilever that is actuated shows a softening behavior
due to the high vibration amplitude. As the long cantilever
is connected to the shorter one, there is a bifurcation topol-
ogy transfer30 between the two resonators when the sensor is
driven beyond its critical amplitude. Consequently, the long
cantilever also shows a softening behavior even if it is not
electrostatically actuated.
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FIG. 2. Theoretical frequency responses of the device before and
after adding a discrete point mass of 10 pg at the end of the short
cantilever. (a) and (b): vAC = 6 mV and VDC = 6.82 V . (c) and (d):
vAC = 25 mV and VDC = 6.74 V .

To study the sensor sensitivity, we perform simulations over
a mass range from 0 pg to 10 pg for different values of the
AC voltage. For an AC voltage lower than 6 mV , the results
in Fig. 3(a) show that the same amplitude ratio is obtained for
a given added mass reflecting the linear regime. For higher
AC voltage values, the amplitude ratio clearly increases for
a given added mass. Fig. 3(a) also shows that the amplitude
ratio is still a linear function of the added mass, therefore the
sensitivity of the device remains constant over the mass range
for a given AC voltage. Then, the evolution of the sensitiv-
ity is plotted as a function of the AC voltage in Fig. 3(b). As
the sensitivity also depends on the location of the added mass,
Fig. 3(b) incorporates the influence of this parameter as the
normalized position xm of the mass (ratio between its posi-
tion from the fixed end and the length of the short cantilever).
For an added mass near the fixed end of the cantilever, the
sensitivity is almost equal to zero, so we start the analysis
from xm = 0.6. The sensitivity increases as we move away
towards the free end (when xm increases). Therefore, the func-

tionalized surface of the sensor to receive the elements to be
weighed should be as close as possible to the free end of the
cantilever (i.e. xm = 1). In the case of the linear regime below
6 mV AC voltage and an added mass at the free end of the
cantilever, the sensitivity is around 0.12/pg. For higher AC
voltages, the sensitivity increases in the nonlinear regime to
reach 0.20/pg for vAC = 25 mV . Thus, by introducing elec-
trostatic nonlinearities, the sensitivity of the device has been
increased by about 67 %. As the coupling ratio is at its opti-
mal value in terms of sensitivity in the linear regime (i.e. the
lowest value allowed by the aliasing mode phenomenon), it
can be considered that this limit has been overcome by the
implementation of electrostatic nonlinearities.
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FIG. 3. (a) Variation of the amplitude ratio on the first mode as a
function of the mass added at the end of the short cantilever and the
AC voltage. (b) Variation of the sensitivity as a function of the AC
voltage and the normalized position xm of the mass

We also notice that the vibration amplitude of the nonlinear
case is almost four times higher than those of the linear case.
As the mode localization uses a detection based on the am-
plitude measurement, the minimal detectable mass depends
directly on the minimal detectable amplitude. Thus, using the
nonlinearities with high vibration amplitude also enhances the
mass resolution of the device.

In support of the theoretical results, experimental investi-
gation is also conducted. The device (Fig. 4(a)) is fabricated
with the Multi-User MEMS Processes and the mass perturba-
tion is added by using focused ion beam deposition of plat-
inum on the first cantilever (Fig. 4(b)). The device is first
placed in a vacuum chamber where the pressure is around
0.50 mbar, and the actuation voltage is applied with a micro
probe. To measure the vibration amplitude at the end of each
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FIG. 4. (a): SEM image of the device. (b): SEM image of the
deposited mass at the end of the short cantilever

cantilever, we first use a laser Doppler vibrometer in order to
experimentally prove the concept, but a piezoresistive readout
can in an applicative framework be implemented on this kind
of mass sensor. Without the mass perturbation, the experi-
mental frequency responses of the device are shown in Fig. 5.
Fig. 5(a) corresponds to the linear case where vAC = 6mV
and VDC = 6.82V , and Fig. 5(c) to the nonlinear case where
vAC = 25mV and VDC = 6.74V . Once we get these results,
we deposit a mass around 10 pg on the short cantilever and
plot again the frequency responses with the same actuation
voltages used previously. By measuring the amplitude ratio
of the first mode for the linear case, we found in Fig. 5(b)
W1/W2 = 2.3 (measured on the circled dots). With a higher
AC voltage where the vibrations are nonlinear, Fig. 5(d) gives
an amplitude ratio equal to W1/W2 = 3.9. As shown by the
simulation, the vibration of the sensor becomes more local-
ized when the electrostatic nonlinearities are introduced at
high vibration amplitudes.
We note a slight difference between experimental and theoret-
ical amplitude ratios in the nonlinear regime. It could be due
to the fact that we have some uncertainties about parameters
used in the model. The first parameter concerns the quality
factor which can change the vibration amplitude and the ef-
fect of electrostatic nonlinearities. As the pressure inside the
vacuum chamber can change slightly, the quality factor before
and after depositing the mass may not be the same. The sec-
ond parameter concerns the gap which can change the cubic
nonlinearity, the effect of electrostatic nonlinearities, and thus
the sensitivity in the nonlinear regime. In addition, the ana-
lytical model may have limitations. A linear damping force is
used while other authors proposed a model with a quadratic
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FIG. 5. Experimental frequency responses of the device before and
after adding a mass of 10 pg at the end of the short cantilever. (a)
and (b): vAC = 6mV and VDC = 6.82V . (c) and (d): vAC = 25mV and
VDC = 6.74V .

damping coefficient31. A third order Taylor series is used to
expand the electrostatic force in the model, but this method
may not be very accurate with very high vibration amplitudes.
We also have some uncertainties about the actual deposited
mass. As the device is more sensitive when it is operated in
the nonlinear regime, the influence of these uncertainties be-
comes more important.
One also notes a small difference between the frequencies of
the short and the long cantilevers at peak amplitude, especially
in Fig. 5(d) where we have the jump phenomenon. It is due to
the fact that the amplitude measurement on each cantilever is
not simultaneous. After experimental verification, we do not
have this difference if we just measure the vibration around
the first mode. The two cantilevers are also connected, so they
should have the same behavior.

In conclusion, the functionalization of the electrostatic non-
linearities to improve the sensitivity of a mode-localized mass
sensor without changing the coupling is demonstrated in this
letter. By using an analytical model, the comparison between
the linear and nonlinear frequency responses of the sensor
shows that we have more localized vibrations on the nonlin-
ear case when the same mass is added on the same device. By
using a high AC voltage involving high vibration amplitude,
a nonlinearity is introduced and easily tuned, which results in
a higher amplitude ratio. Following this, the sensitivity lim-
itation due to mode aliasing is overcome with a significant
improvement of up to 67 %. In addition, the mass resolution
of the device is improved, due to the use of a higher vibration
amplitude accurately detectable. After experimental measure-
ments, we have also obtained the same improvement in the
device response, which confirms the simulations. For future
works, several devices can be considered in order to determine
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the accuracy of the mass sensing.

The data that supports the findings of this study are avail-
able within the article and its supplementary material.

See supplementary material for more details about the solv-
ing of Eq. 1 and 2.
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