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The Cryogenic Sapphire Oscillator (CSO) is currently the best available technology that can provide a relative frequency
stability better than 10−15 for integration times between 1 s and 10,000 s. But, the CSO remains a complex instrument
requiring multiple loop controls to achieve the best frequency stability. The possibility to use of the sapphire resonator
in a self-sustained MASER oscillator constitutes an elegant alternative to the CSO. Here, the sustaining amplification is
achieved through the interaction between a high-Q factor whispering gallery mode and the paramagnetic Fe3+ ions, which
are present in small concentration in the sapphire crystal. The Fe3+ ion exhibits three energy states enabling to realize a
self-sustaining solid-state maser. Although, this principle has been already experimentally demonstrated few years ago,
its development as a truly usable ultra-stable source has not yet been completed, mainly due to the lack of control of the
complex physical phenomena involved. This paper completes the previous theoretical work based on the rate equations
model. Here we derive the full quantum equations describing the evolution of the Fe3+ ions inside the sapphire lattice
and submitted to a pump and a maser signal. The influence of the ions concentration and spin-spin relaxation time will be
pointed out.

1. INTRODUCTION

The need for microwave sources exhibiting ultra-high spectral purity and high temporal stability is a key point highlighted
by the performance limitations in major strategic applications such as radar, spatial communications, ultra-high accuracy
navigation systems, and high bit rate optical telecommunications. The Cryogenic Sapphire Oscillator (CSO) is currently
the only available technology able to provide a relative frequency stability better than 1×10−15 for integration time
between 1 s and 104 s [1, 2, 3, 4, 5, 6]. The CSO is a classical transmission oscillator that uses as a frequency determining
element a passive cryogenic high-Q sapphire resonator based on a cylindrical dielectric resonator made in a high purity
sapphire monocrystal. To provide high Q-factor, the sapphire resonator is excited on a high order electromagnetic mode
(Whispering Gallery mode or WG mode) and cooled down near the liquid helium temperature [7]. At 10 GHz, the Q-factor
typically reaches 109. Nevertheless, the CSO remains a complex instrument. For technical raisons, mainly to limit the
required cooling power, the sustaining amplifier is placed outside the cryostat at room temperature. Two long microwave
lines join the cryogenic resonator and the sustaining stage. Any variation in the phase or power of the signal injected in the
resonator will produce an oscillator frequency variation limiting drastically the achievable frequency stability. To solve
this issues, additional sophisticated electronical controls are mandatory to stabilize both the signal phase and power.

In 1959, Bogle and Symmons [8] discussed in detail the study of the resonance of Fe3+ in alumina and presented accurate
measurements of transition frequencies. We reported in [9, 10] the possibility to use the sapphire resonator in another
way. Here, the sustaining amplification is achieved through the interaction between a high-Q factor whispering gallery
mode and the paramagnetic Fe3+ ions, which are present in small concentration in the sapphire crystal. The Fe3+ ion
exhibits three energy states enabling to realize a self-sustaining solid-state maser. The population inversion is obtained
by submitting the Fe3+ ions to a 31 GHz signal. The maser oscillation takes place at 12.04 GHz, i.e. the ground state
electron spin resonance (ESR) frequency of Fe3+. As the sapphire resonator whispering gallery mode exhibits at low
temperature extremely low losses, the Fe3+ ions concentration required to get enough gain is very low : typically, below
1ppm (part-per-million).

Since the experimental demonstration of this new type of solid-state maser [11, 12, 13, 14], few theoretical works have
been published to explain its main features [15, 16, 17]. Particularly, the effectiveness of the maser process, i.e. the output
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FIGURE 1. Bloembergen’s three-level sapphire maser.

power as a function of the pumping power and the resonator coupling has been derived by using the classical rate equations
model [18] as stated by Siegman in the early 60s.

In this paper, we derive the exact equations describing the sapphire maser operation using a quantum mechanics approach
considering the coherences that are created between the different quantum states of the paramagnetic ion. These cohe-
rences were assumed negligible in the previous approach based on the rate equations. The effect on the maser operation
of these coherences increases as a function of the spin-spin relaxation time and of dopant concentration. Conversely, it
decreases as a function of the spin-lattice relaxation time.

2. THE WG MODE MASER OSCILLATOR

Fe3+ ions are present in high quality sapphire Hemex crystals in quantities of few parts per million. The Fe3+ ion in
the sapphire lattice presents 3 energy levels at zero-magnetic-field [19, 20] corresponding to the classical Bloembergen
3 levels scheme [21] represented in Figure 1. To create the inversion population between the first two levels, Fe3+ ions
are pumped to the third level by applying a microwave signal 31.34 GHz. Then relaxation occurs between E3 (i.e. state
|5/2 >) and E2 (i.e. state |3/2 >) causing population inversion between states |1/2 > and |3/2 >. The system is able to
amplify signal at the Fe3+ EPR frequency, i.e. 12.04 GHz. If the amplifier gain is sufficient to compensate for the resonator
loss, the system becomes self sustained and a stable 12.04 GHz can be extracted from the cryogenic oscillator.

The Whispering Gallery Mode Maser prototype consists in a cylindrical sapphire resonator, 50 mm diameter and 30 mm
thick. It is placed in the center of a cylindrical cavity and this assembly is cooled down the liquid helium temperature. The
resonator WGH17,0,0 mode frequency coincides with the Fe3+ ESR, i.e. 12.04 GHz. Around the pump signal frequency,
i.e. 31.3 GHz, the resonator mode spectrum is dense and several high-Q factor modes liying in the ESR bandwidth can
be used to pump the ions and get oscillation [22, 23]. Depending on the coupling factors, the chosen pump mode and the
active ions concentration, the maser signal power detected outside the cryostat can be as high as -30 dBm.

3. FE3+ IONS PARAMETERS IN THE SAPPHIRE CRYSTAL

The maser operation depends on the concentration N and relaxation times of the Fe3+ paramagnetic ions. In our experi-
ments, the sapphire resonator are machined in high quality crystals HEMEX type [24] containing very small amount of
defect and paramagnetic impurities. This situation greatly differs from those of previous works undertaken in the 60’s for
which crystal quality was poor compared to the current technology.



3.1. N effective ions concentration :

Quantitative ionic impurities concentration measurements have been conducted on HEMEX crystals with different me-
thods [25]. All these measurements agree within the resolution measurements and give a total iron ion concentration at a
level of 2 ppm. The given concentration corresponds to the total amount of iron ions including both Fe2+ and Fe3+, among
which only the latter is paramagnetic and gives rise to the maser effect. The effective concentration of Fe3+ ions has been
evaluated in several resonators by measuring the real part of the magnetic susceptibility [26]. It appears the number of ions
that effectively contribute, is very small, i.e. N is typically in the range 10-20 parts-per-billion (10-20 ppb). This low value
is compatible with the maser signal power experimentally observed [24]. It indicates that in typical HEMEX crystals,
Fe2+ dominates. This was confirmed in 2000 [27] : a conversion Fe2+ to Fe3+ was achieved by thermally annealing a
HEMEX resonator [28] in air resulting in a large increase of the effective ion concentration and consequently of the maser
signal power [26]. This led to assume that the Fe3+ concentration that can be found in high quality sapphire crystal should
be in the range :

10 ppb < N < 300 ppb (1)

3.2. τ1 longitudinal or spin-lattice relaxation time :

τ1 describing the time required for the populations to recover their thermal equilibrium after any perturbation. The spin-
lattice relaxation time for Fe3+ in sapphire has been measured by several groups [8, 24, 29] and at the liquid helium
temperature is in the range :

5 ms < τ1 < 20 ms (2)

3.3. τ2 transversal or spin-spin relaxation time :

τ2 is the rate at which, the transverse component of the magnetization, exponentially decays towards zero. τ2 is pheno-
menologically introduced in the rate equation model as related to the ESR linewidth by : ∆ν = 1/πτ2. The transversal
relaxation time is ultimately limited by the interaction between neighboring spins : spin-to-spin coupling. According to
the Van Vleck’s theory [30], the ESR linewidth resulting from the dipole coupling should be proportional to the ions
concentration N :

∆ν≈ 6g2
β

2µ0N
√

S(S+1)/h (3)

where g is Landé g-factor, β the Bohr magneton, µ0 permeability constant and the spin S = 5/2. Applied to the Fe3+

ions, the equation (3) was only approximately verified for relatively high concentrations [8, 20]. For high quality sapphire
crystals observed ∆ν are always several tens of MHz wide, and thus can not be attributed to the spin-to-spin coupling nor
to the crystal defects, but to the hyperfine interaction between Fe3+ ion and Al nuclei that surround it.

If the crystal is perfectly homogeneous and presents homogeneous distribution of ions, then the lineshape is determined
by the relaxation times and therefore lorentzian lineshapes are a common result. The EPR spectrum is the sum of a
large number of lines each having the same Larmor frequency and linewidth. In general, the ions are not all in the
same environment, the lineshape is determined by unresolved couplings because the EPR spectrum is the sum of a large
number of narrower individual homogeneously broadened lines that are each shifted in frequency with respect to each
other [20, 24, 26].

1ns < τ2 < 20ns (4)

4. MASTER EQUATION FOR FE3+

ρ(t) is the density matrix operator. The diagonal elements ρii or ni are the energy level populations, which at thermal
equilibrium reduces to Ni with :

N j

Ni
= exp(−

hνi j

kBT
) = e−∆i j and

3

∑
i=1

Ni = 1 (5)

where νi j is the Bohr frequency. We will deal with the varying population differences : ni j=ρii-ρ j j.



The off-diagonal elements ρi j= < i|ρ| j >, (i 6= j) represent the coherence between levels |i > and | j >. We assume
solutions of the form :

ρ12 = δ12eiω21t ; ρ13 = δ13eiω31t ; ρ23 = δ23eiω32t

where δi j are complex slow time-varying functions. The master Liouville-Bloch equations of the system are [31] :
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where, δ∗i j=Conjugate[δi j]. The factors τ
(i j)
1 and τ

(i j)
2 are respectively the spin-lattice relaxation time and the spin-spin

relaxation time of the pair of levels (i, j).

Pace [32] introduced measures showing that relaxation times are of the same order of magnitude. We therefore assume
that τ

(12)
1 =τ

(23)
1 =τ

(13)
1 =τ1 ∀ i and j.

Similarly for the spin-spin relaxation time, we therefore assume that, τ
(12)
2 =τ

(23)
2 =τ

(13)
2 =τ2 ∀ i and j.

The resolution of the previous system of equations is complex, Therefore we’ll focus only the steady state of the system :

dni/dt = 0 and dδi j/dt = 0 (7)

In addition, the equations are not independent of each other. A seventh equation is necessary. It corresponds to the sum of
population differences such as :

n12 +n23−n13 = 0 (8)

The relationship [24, 31] between Ω2
Rp and WP is Ω2

Rp = 2WP/τ2, where WP is the absorption probability (same relation-
ship between Ω2

Rs and WS with that WS is the emission probability).

The stationary solutions of the general model are the following :

n12ac =
a(3+2τ1WP)N12−2bS τ1WPN23

6+ c+d +4τ1(2τ1− τ2)WPWS
(9a)

n13ac =
a(3+2τ1WS)N13 +2bP τ1WSN23

6+ c+d +4τ1(2τ1− τ2)WPWS
(9b)

where :


a = 2+ τ2(WS +WP)

bS = 2+ τ2(WP−2WS)
bP = 2+ τ2(WS−2WP)

c = (8τ1 +3τ2)(WP +WS)
d = 4τ1τ2(W 2

P +W 2
S )

To derive the rate equations model (Without coherence) from the general model, we eliminate the terms of coherence,
assuming that the coherence time τ2 tends to zero. The stationary solutions of the rate equations model are :

n12sc =
2τ1(N12−N23)WP +3N12

4τ1(1+ τ1WS)WP +4τ1WS +3
(10a)



n13sc =
2τ1(N13 +N23)WS +3N13

4τ1(1+ τ1WS)WP +4τ1WS +3
(10b)

5. THE POWERS

5.1. Evolution of the emitted power as a function of pump power

In this paragraph we will defined the relation at the resonator input between the pump power (Pp) and the maser power
(Ps). The power that can be emitted by a maser system is define as [18] :

Ps = hν12WSn21Ve f f12 (11)

Ve f f12 is the effective volume of the whispering gallery mode involved in the emmission process [15]. The emission
probability is represented as follow [18] :

WS =
1
4

γ
2gsignal(ν)Q0S H2

acsignalσ
2
12 (12)

From the definition of the Poynting vector, the power in the resonator is directly proportional to the magnetic field. It leads
to :

H2
acsignal =

2Ps

ZcSe f f12

(13)

Therefore :

WS = γ
2
τ
(12)
2 Q0S

σ2
12

ZcSe f f12

Ps = wS0Ps (14)

This representation can also be applied to the absorption probability :

WP = γ
2
τ
(13)
2 Q0P

σ2
13

ZcSe f f13

Pp = wP0Pp (15)

γ is the gyromagnetic factor. Se f f12 and Se f f13 are respectively the effective surface of the whispering gallery mode in the
meridian resonator plan for the maser signal and the maser pump. Zc is the characteristic resonator impedance, σ2

i j is the
transition parameter between the two levels i and j, which their value can be obtained through the calculation of the spin
Hamiltonian. Q0S and Q0P are the quality factors of the whispering gallery modes for the maser signal (the ions from the
second to the first level) and the maser pump (the ions from the first to the third level) respectively [15].

To remain in the validity field, we neglect the second order term and suppose that τ2 << τ1 and write C = hν12NVe f f12 wS0 .
From equations (9a, 11, 14 and 15) we can now determined the maser power (Ps) as a function of the pump power (Pp) :

Ps =
1

wS0

(−1+ 1
2C(N23−N12))Pp− 3

4τ1wP0
(1+CN12)

1
wP0

+τ1(1+x)Pp
(16)

x =
{

0 Without Coherence
Cτ2
4τ1

(N13 +N23) With Coherence

For the production of a maser, we need to calculate the threshold pump power and maximum power of the maser in the
resonator.
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FIGURE 2. Schematic of stimulated emission at 12.04 GHz.

5.2. threshold Pump power

The pump power threshold PpT h is when the population inversion occurs, that is to say, when n12=0. The rate absorption
threshold (WPT h ) can be written,

WPT h =
3

2τ1

N12

N23−N12
(17)

Then, substituting the expressions of WPT h (equation (17)) and n13T h (equation (9b) or (10b)) in the expression for the
power pump :

PpT h =
3

2τ1
hν13N12NVe f f13 (18)

5.3. Maximum output power

If the power applied to pump ions continues to increase, the system will eventually become saturated. In another form,
the power Ps in a resonator will be maximum when the pump has a power strong enough. Using the equation (16), the
maximum power of the signal maser reads :

Psmax = lim
Pp→∞

Ps =
C

2τ1wS0

N23−N12

1+ x
(19)

5.4. Outside the resonator

The injected power (Ppump) is recycled by a high-order whispering gallery mode with a coupling coefficient βpump. For
[15], the transmitted pump power can be expressed as [18] :

Pp = (1− (
1−βpump

1+βpump
)2)Ppump (20)

The output power due to stimulated emission of the ions will be recycled within the WG17,0,0 mode centered on the Fe3+

EPR due to the high Q-factor, a schematic is shown in figure 2. The output power (Pout ) is a function of the different losses
and gain of the three-level spin system and also of the whispering gallery mode characteristics. For a maser oscillator this
output power can be written as a function of the output coupling βout :

Pout =
βout

βout +1
Psmax (21)

with βout the coupling coefficient at the output of the maser.
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FIGURE 3. Evolution of the maximum output power (nW) versus concentration for three values of τ2 : 3 ns, 10 ns and 20
ns. τ1 was assumed to be 10 ms.

6. RESULTS AND DISCUSSION

To determine an order of these powers, we will consider the parameters at 4.2K of a resonator. The Bohr frequencies
are ν12= 12.04GHz and ν13= 31.32GHz. At thermal equilibrium we have : N12= 0.050, N23= 0.067 and N13= 0.117. The
values of the transition parameters σ2

i j for Fe3+ paramagnetic ion in the sapphire are σ2
12= 2 and σ2

13= 0.0026 [8]. The total
volume of cristal is equal V = 58.9cm3. According [33], the effectif volumes of the WGM are Ve f f12 ≈

2V
7 and Ve f f13 ≈

2V
17 .

The quality factors are equal Q0S = 6×108, Q0P = 108, the value of the characteristic resonator impedance is Zc=119Ω.
To understand the influence of the ions concentration and coherence time on our models, we plot the maximum emitted
power as a function of concentration for three values of τ2. The results are given in the Figure 3.

FIGURE 4. Evolution of the Threshold pump power versus concentration.

The coherence time τ2 is limited by the interaction between neighboring spins (spin-spin coupling). When the return to the
equilibrium of the transverse magnetization component is slow, i.e. long coherence time, the power that can be extracted
from the maser is lower than in absence of spin-to-spin coupling.

In order to verify the preceding expectations, we have tested three different resonators with different values of the parame-
ters N, τ1, τ2. The resonator is loaded into a copper cavity and then cooled to the liquid helium temperature in a cryostat.
The maser output power is measured with a microwave power spectrum analyzer while the injected power is measured
with a power meter. The characteristics of the three resonators are, Pinocchio (16ppb, 18 ms, 2 ns) [15, 24], Jeanne (11
ppb, 18 ms, 2 ns) [15, 24], and a particular resonator dubbed Geppetto (150 ppb, 7 ms, 5.9 ns) [26]. In figure 4, we plot
the threshold Pump power for the first and the third resonator from equation 20.

In figure 5 we plot the theoretical results (with and without coherence) and the experimental data from equation 21.

Experimentally, the cryogenic resonator is connected to room temperature via a microwave K-cable with 5 dB loss. The
resonator is loaded into a copper cavity and then cooled to the liquid helium temperature in a cryostat. Two microwave
cables enable us to inject the pump power in the cryogenic sapphire resonator (5 dB loss) and to extract the maser output
power (the data of the first and second resonator are 2 dB loss). Therefore, these losses have been deducted from the
theoretical curve to consider the microwave cable losses.
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FIGURE 5. Maser output power as a function of the output coupling βout for three resonators.

7. APPLICATION TO OTHER IONS

In the case of Fe3+, the effect of coherence is limited. Other paramagnetic ions, as Mo3+ and Cr3+, can validate the
difference between the two models, using a static magnetic field.

Cavity masers using ruby were developed at the Jet Propulsion Laboratory (JPL) at 960 megahertz (MHz) and at 2388
MHz. The 2388-MHz maser was used to receive and amplify microwave radar echoes from the planet Venus [34]. The
total number of spins in pink ruby crystal with slightly more than 0.05 percent Cr3+ is about 2.5×1025 per cubic meter. A
magnetic field strength of 2500 gauss (G) is applied to the ruby in a direction that is perpendicular to the c-axis. The four
ground-state microwave spin levels that occur are called paramagnetic levels or Zeeman levels. The population inversion
(maser signal) between levels 2 and 1, resulting from pumping between levels 1 and 4.

By repeating the previous calculation, but respecting the new conditions, we find the maximum power of the signal maser :

Psmax = lim
Pp→∞

Ps =
4C

9τ1wS0

N24−N12

1+ x
(22)

x =
{

0 f or Psc (Without Coherence)
2Cτ2
9τ1

(N14 +N24) f or Pac (With Coherence)

In this case, the Bohr frequencies are ν12= 2.398GHz, ν13=12.88GHz and ν14= 24.44GHz. At thermal equilibrium (T=
4.2K) we have : N12= 0.0075, N13= 0.038 and N14= 0.068. The values of the transition parameters σ2

i j for Cr3+ parama-
gnetic ion in the Ruby are σ2

12= 1.59, σ2
13= 0.59 and σ2

14= 0.076.

For different ions in crystals, we present in Table 1 the values of the spin-lattice and spin-spin relaxation times, the
concentrations, the parameter x, the calculated and experimental powers. In that case, the coherences will have a large
effect on the maser functioning as showed by the parameter x.

TABLE 1. Application of the model on other ions.
Ion in crystal τ2 (ns) τ1(ms) N(ppb) x Psc (dBm) Pac (dBm) Pexp (dBm)

Fe3+ in Pinocchio 2 18 16 0.0043 -52.03 -52.05 -53 [15]
Fe3+ in Geppetto 5.9 7 150 0.5 -35.36 -37.13 -37 [26]

Cr3+ in Ruby 60 [35] 157 [36] 500000 605 -10.43 -38.26 -40 [37]
Mo3+ in Sapphire >21 [38] <0.1 [39] 300 >500 - - -

8. CONCLUSION

In this paper, we apply a full quantum model to the paramagnetic impurities that can used to design a maser source based
on a high-quality sapphire monocrystal. We show that the maser power decreases as the coherence time τ2 increases.
The rate equation model predicts that the maser power linearly with paramagnetic dopant concentration N. Our model
including coherence predicts a more realistic behavior for the maser power that converges to a limit independent of N.
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