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The structure of 3d5 configuration ion in a trigonal field is theoretically determined on the
basis of a 252 × 252 matrix of complete energy. The spectra of paramagnetic electron resonance
and the optical absorption of the Fe3+ ion in sapphire crystal (α−Al2O3) have been calculated
by diagonalizing the matrix of total energy. The obtained results are in good agreement with
experimental observations. The strength of probability transitions between energy levels pairs
are also established to show the possibility for achieving the inversion of the population in the
fundamental state when applying the optical pumping mechanism to the crystal. The results
based on the computed parameters of transition and on the maser effect equations show that a
maser signal of a 31 GHz can be generated and that depends on the cryogenic design of the resonator.
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I. INTRODUCTION

Masers based on paramagnetic ions hosted in a crystal have been widely studied and used as stable microwave
sources or as low noise amplifiers in the 60’s [1]. The Maser action was obtained at low temperature in different
doped crystals, the most popular of which was sapphire doped with Cr3+ or Rubis. Many types of maser have been
designed generally from a doped crystal inserted in a waveguide or from a metal cavity cooled to the temperature
of liquid helium. The doping level was typically around 0.05% and for an X-band source, the cryogenic resonator
exhibited a Q-factor of the order of 10000 or less. Most systems were based on the multiplicity of ground state
levels to obtain the population inversion required by the action of microwave pumping. Some attempts to optically
pump the crystal has been made [2, 3]. But no real advantage over the classic Maser scheme has been demonstrated.
The absence of a narrow band and an easy-to-handle laser source as well as the poor quality of the doped crystals
available were certainly the main difficulties in obtaining a reliable optical pumped microwave maser. Finally, interest
in this technology was almost stopped after the development of low noise cryogenic semiconductor amplifiers, stable
quartz oscillators and low noise frequency synthesis.

More recently, we reported the possibility to get a 12 GHz maser signal presenting a short term relative frequency
instability below 1×10−14 at short term with a large marge of progress [4, 5]. Such a frequency stability performance
is required for a number of very demanding applications as metrology, space navigation, radio astronomy or
fundamental physic experiments. The search for a reliable microwave source presenting a relative frequency stability
of some 10−15 is a challenge that motivates a lot of innovative works all around the world [6–8]. In our first prototype
the sustaining amplification is achieved in a cryogenic sapphire whispering gallery mode resonator containing a small
amount of paramagnetic Fe3+ ions. The Fe3+ ion exhibits three ground state energy levels. A population inversion
is obtained between the two lower ground state levels by submitting the Fe3+ ions to a 31 GHz signal. The maser
oscillation takes place at 12.04 GHz. As the sapphire resonator exhibits at low temperature extremely low losses, the
Fe3+ ion concentration required to get enough gain is very low. Contrary to the maser of the 60’s, our WhiGMO
(Whispering Gallery Maser Oscillator) incorporates a microwave resonator presenting a Q-factor of typically one
billion at 4.2K made from a sapphire crystal containing typically 0.1 ppm or less of active ions. The experimental
validation of the 12 GHz WhiGMO and its potentiality to be competitive with the state-of-the-art microwave stable
references opens the way to revisit the Maser concept and the associated material properties. Moreover the WhiGMO
principle can be extended to other transitions of the Fe3+ ion in sapphire or to other doped crystals to design stable
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sources at higher frequencies.

With this in mind, in the current context, starting from the above introduction, this paper is organized as follows:
In section II we introduce the different parts of the molecular hamiltonian, the methods of calculation and the global
optimization method based on Shuffled Complex Evolution Model [10]. Then in section III we explain the transition
probability between two states using the expression of the dipolar transition moment operator. In section IV we shall
explore and discuss the absorbance of a material with related calculations. Then in section V, we show the 31 GHz
maser proposal by explaining the corresponding rate equations, signal power and the resonator design. Section VI is
devoted to our conclusions.

II. THE MOLECULAR HAMILTONIAN

The Fe3+ electronic configuration is [Ar]3d5. The fundamental state spectroscopic term is 6S (L= 0 and S= 5/2).
The Fe3+ ion, in a doped sapphire crystal, replaces the Al3+ cation and it is subjected to the action of the crystal
field of closest ions O2− and Al3+ (figure 1). The cation is located in a distorted octahedral. If we assume that the
cation Fe3+ is in symmetry with Oh, then the fundamental term is 6A1g(Oh).

From the articles of Racah [12], Eliot and Stevens [13] and Judd [14], the interpretation of the theory of an electronic
spectra of transition metals became easy. The molecular Hamiltonian is given by:

H = Hee +Hso +Hc +HZeeman (1)

+ Trees correction+Racah correction

We will discuss in this section the energy levels of a transition ion metal in a crystalline solid. The theory is already
discussed and determined in detail in [14–18]. The different parts of the hamiltonian are: the electrostatic Coulomb
interactions (Hee ), the spin-orbit coupling (Hso ), the ion-ligand interactions described in the case of crystal field
theory (Hc), the Zeeman interaction, and the Trees and Racah corrections.

A. Free ion

If we use the method of the ”double-zeta exponential”, and we assume that the radial function of d orbital can be
written as:

Rd(r) = a1(
(2ξ1)7

6!
)1/2r2exp(−ξ1r)

+ a2(
(2ξ2)7

6!
)1/2r2exp(−ξ2r) . (2)

The relation between the previous parameters is:

a21 + a22 + 2a1a2(
2
√
ξ1ξ2

ξ1 + ξ2
)7 = 1

We still have 3 independent parameters (a1, ξ1, ξ2).
From equation (2),the parameters of Racah B0 and C0, the spin-orbit coupling constant ζ0, and the mean values

〈rk〉0 are calculated for the free ion (Zhao [19]).
We don’t forget to take the Trees [20] and Racah [21] corrections. The Trees correction constant α0= 40 cm−1 and

the Racah correction constant β0= -131 cm−1 are fitted from the spectra of free ion [19].

B. Interaction of crystal field

The crystal field potential can be expressed as a linear combination of irreducible tensor operators Ckq [16]:

Hc =
∑
kq

BkqC
k
q (3)

where Bkq are the parameters of crystal field. For d -electrons case, the k integer values can be 0, 2, 4 and −k ≤ q ≤ +k.
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The equation (3) structure is given by the symmetry of the crystal lattice. For a (C3v) trigonal field, the summation
has only four terms: B20, B40, B43 and B4−3. For the case of a generalized crystal field model, the parameters Bkq
were given in [11]. The elements of the reduced matrix of tensor operators are given in the book of Nielson and
Koster [22] for 16× 16 matrices. Using Wigner-Eckart theorem, we develop our generalized model based on 252× 252
matrices.

C. Methods of calculation

1. Optimized parameters

The interaction term between ligand orbital and central metal ion is complex, so we use an approximation for
electrostatic parameters B and C, the spin-orbit constant ζ, the corrections parameters α and β and the average
values 〈r2〉 and 〈r4〉:

B = N4B0 , C = N4C0 , ζ = N2ζ0

〈r2〉 = N2〈r2〉0 , 〈r4〉 = N2〈r4〉0
α = N4α0 , β = N4β0

where N represents the average reduction factor due to the covalency.
In the Al2O3 crystal, the position of Al3+ cation is defined respectively to the sites of the two nearest cations as
shown in the figure 1.

FIG. 1: Local structure distortion of octahedral Fe3+ center in α-Al2O3 system.

The inter-site distances and the corresponding angles with respect to the axis of symmetry C3 are given by [23, 24]:

R0
1 =1.966Å , θ01 = 47.44o

R0
2 =1.857Å , θ02 = 62.70o

Due to the substitution of Al3+ by Fe3+, we represent the crystal distortion by assuming, as proposed by Zhao [25],
that the two distances is affected by an identical relative variation. We therefore add an identical constraint to the
angle relative variations. We then introduce two independent parameters f and g which can be defined as:

f =
R1

R0
1

=
R2

R0
2

; g =
θ1
θ01

=
θ2
θ02
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Finally the six independent parameters a1, ξ1, ξ2, N , f and g have been modified to approach the experimental
observations.

2. Global Optimization Method (GOM)

At Arizona University (SCE-UA), they developed the shuffled complex evolution method [9, 10] which has many
advantages. It’s a very effective and efficient global optimization method and it can be used to solve problems in
non-linear physics with high-parameter dimensions. The aim of this algorithm, developed by Duan in 1992, is to
reduce the problem into a best single parameter set in the feasible space. In the current work, this (SCE-UA) method
is used to optimize the parameters of the molecular hamiltonian. In other words, it helps to obtain the energy levels
(eigenvalues and eigenstates) of the hamiltonian. We want to apply this method in spectroscopy field. We have
simplified the problem by using a correlation between different parameters in the previous section. Now, we use a
general method: the system has six independent parameters to be optimized.

The optical spectrum of Fe3+ in α−Al2O3 is conveniently represented by choosing:

a1 = 0.677 , ξ1 = 5.6 , ξ2 = 1.723

N = 0.863 , g = 0.9958 , f = 1.003 (4)

In Table I, we show the comparison between experimental observations and our calculations. We also compared
these results with Zhao’s values [11]. We deduce that the introduction of the three free ion parameters and the sixth
independent adjustable parameter (g) shows a better results in finding almost all the optical wavelengths in the Fe3+

ion spectrum.
To approve our physical description, we derived from our model the spin-Hamiltonian parameters that describe

the fundamental state 6A1(S) of the Fe3+ ion. Without applying a static magnetic field, there is three energy levels
labelled in the following |i〉 with i = 1, 2 or 3 represented in figure 2.

|2>

|1>
12.04 GHz

31.30 GHz

|3>

FIG. 2: Structure of Fe3+ ground state in the α-Al2O3 crystal without applied static magnetic field.

Using the spin hamiltonian expression given in [26], the energy difference between the three hyperfine levels of the
ground state are given by:

E3 − E1 =
1

3
[(18D + a− F )2 + 80a2]1/2

E2 − E1 =
3

2
(a− F )−D +

1

6
[(18D + a− F )2 + 80a2]1/2 .

The values of the spin hamiltonian calculated parameters: D, a, a − F , and the gaps of energy are presented in
Table II. They are compared to the Zhao’s previous evaluation and the experimental values.

III. PROBABILITY OF TRANSITION

The transition between 2 states i and j, coming from the interaction with an electromagnetic dipole, is proportional
to the square of the mean value of dipolar transition moment given as follow:

Mi→j =

∫
ψj∗µ̂ψidτ ≡< ψj |µ̂|ψj > . (5)
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TABLE I: Calculation and observation of the d-d transition for the crystal α-Al2O3 : Fe3+ (Values are in cm−1).

Oh Zhao [11] Mrad Observed [27]

4T1(G) 9790 9700 9450 - 9700

10048 9990

10229 10128

10392 10294

10473 10381

10493 10396

4T2(G) 14229 14183 14350

14262 14208

14315 14219

14373 14256

14399 14281

14401 14282

4A1(G) 17977 17875 17600 - 17800

17998 17897
4E(G) 18101 18015

18143 18056

18188 18105

18199 18113

4T2(D) 20181 20075

20191 20078

20341 20233

20533 20414

20562 20432

20823 20470

4E(D) 22299 22195 22120 - 22200

22313 22212

22319 22219

22328 22229

4T1(P ) 25652 25663 25680 - 26700

25805 25755

25945 25875

26141 26090

26330 26225

26457 26526

4A2(F ) 30167 29884 29000

30170 29887

The operator expression of the dipolar transition moment is given by:

µ̂ = er̂. ~E + β(L̂+ 2Ŝ). ~B . (6)

The terms in equation 6 correspond to the electric dipole operator and the magnetic dipole, respectively. In general,
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TABLE II: Calculated spin-Hamiltonian parameters for α-Al2O3 : Fe3+ at 300 K compared to experimental values (the unit
is 10−4 cm−1).

ZFS Zhao[11] Mrad Observed[28, 29]

parameters

D 1784 1723 1718 ± 2

a-F 322 330 329 ± 2

a 254 268 241 ± 4

E3 − E1 10838 10478 10451

E2 − E1 4118 4011 4015

the interaction between electric dipole with the light electric field dominates the transition by 4 orders of magnitude
the interaction of magnetic dipole with magnetic field.

The optical spectrum of the iron doped sapphire shows a quite intense absorption bands [27, 30]. Thus it indicates
the possibility of optical interaction with the Fe3+ ions. Our goal is to show the possibility to get a population
inversion in the ground state by applying an optical radiation to the crystal. Thus we need to calculate the effect
of an optical radiation on the population of each ground state level |i〉, with i = 1, 2 or 3. We have to take into
consideration that the allowed transitions with different excited levels |j〉 are listed in the table I. The transition rate
Wij between one ground state level |i〉 and one excited level |j〉 is given by (Siegman [1]):

Wij = W =
1

4
(γH)2g(ν)σ2 (7)

where γ is the gyromagnetic factor, H is the module of the RF or the optical magnetic field and g(ν) is the line shape
function describing the spectral broadening of the absorption line.

The dimensionless factor σ2 represents the strength of the probability of transition. It depends on the relative
orientation of the oscillating magnetic field with respect to the crystal axis z. σ2 is computed from the matrix element
of the interaction hamiltonian, which depends on the total magnetic momentum and the applied oscillating magnetic
field. In our case, two different orientations have to be considered since we don’t have a static magnetic field: H ⊥ z
or H//z. We found that, for each transition, only one configuration gives noticeable value for σ2. In Table III, we
give the relevant σ2

ij parameters for each transition. The relative orientation of H with respect to z is indicated by
the symbol (⊥) or (//).

IV. ABSORBANCE

In spectroscopy domain, the absorbance (also called optical density) of a material is a logarithmic ratio between
the falling and transmitted radiation through this material. Thus,

A = lg(P0/Ptrans) (8)

where P0 is the power of the incident radiation and Ptrans is the intensity of the transmitted radiation from the
material. So we can decompose P0 into two parts:

P0 = Pabs + Ptrans

where Pabs is the total power absorbed by the ions. The power per unit volume can be written as:

dPabs = hνW∆ndV

From equation 7, the transition rate is proportional to the square of the transverse magnetic field. According to
the Pointing vector, this rate is proportional to the power of the applied wave (This is done in the Appendix A of
Mrad’s thesis [38]).

After an integral calculation, the relation between absorbed and transmitted powers in a waveguide of length L can
be expressed as:

Pabs(L) = P0(1− e−αL) = P0 − Ptrans (9)
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TABLE III: Strength of transition probability σ2 for the Fe3+ d-d transitions in α−Al2O3. The integer (n) in brackets is for
×10−n).

Oh σ2
1j σ2

2j σ2
3j

6A1(S) 2.00 (0) [⊥] - -

3.27 (3) [⊥] 1.25 (0) [⊥] -

4T1(G) 1.84 (6) [//] 7.43 (5) [⊥] 1.70 (6) [⊥]

1.52 (5) [⊥] 2.85 (6) [//] 9.63 (5) [⊥]

8.53 (7) [⊥] 1.88 (5) [⊥] 1.33 (4) [//]

2.17 (5) [⊥] 9.90 (5) [//] 6.19 (6) [⊥]

4.08 (5) [//] 4.34 (6) [⊥] 4.63 (7) [⊥]

1.95 (5) [//] 8.90 (6) [⊥] 3.64 (7) [⊥]

4T2(G) 6.87 (4) [//] 2.08 (4) [⊥] 2.74 (4) [⊥]

5.92 (5) [//] 1.37 (7) [⊥] 4.70 (4) [⊥]

5.35 (6) [⊥] 2.21 (4) [//] 1.61 (4) [⊥]

2.97 (5) [⊥] 5.56 (4) [⊥] 1.43 (4) [//]

1.71 (4) [⊥] 5.12 (10) [⊥] 4.06 (4) [//]

1.73 (4) [⊥] 4.65 (4) [//] 1.36 (5) [⊥]

4A1(G) 3.43 (3) [//] 1.41 (4) [⊥] 4.29 (4) [⊥]

7.01 (4) [⊥] 3.24 (5) [//] 1.05 (3) [⊥]

4E(G) 1.40 (3) [⊥] 1.80 (4) [⊥] 8.32 (4) [//]

1.29 (4) [⊥] 1.16 (3) [⊥] 1.83 (3) [//]

8.88 (4) [//] 1.70 (3) [⊥] 6.70 (4) [⊥]

2.67 (5) [⊥] 4.62 (3) [//] 1.26 (3) [⊥]

4T2(D) 5.55 (5) [//] 2.23 (5) [⊥] 2.90 (5) [⊥]

6.96 (6) [⊥] 7.68 (6) [//] 5.84 (5) [⊥]

4.50 (5) [⊥] 4.93 (5) [⊥] 1.62 (4) [//]

1.39 (6) [//] 8.22 (6) [⊥] 1.01 (5) [⊥]

7.80 (5) [⊥] 2.42 (4) [//] 2.90 (5) [⊥]

4.73 (5) [//] 9.33 (7) [⊥] 8.77 (5) [⊥]

4E(D) 9.67 (8) [//] 2.80 (7) [⊥] 2.31 (8) [⊥]

9.12 (9) [⊥] 5.53 (7) [⊥] 7.05 (7) [//]

2.29 (7) [⊥] 1.11 (7) [//] 1.80 (7) [⊥]

2.23 (8) [⊥] 7.54 (8) [⊥] 4.09 (7) [//]

4T1(P ) 1.27 (5) [//] 1.71 (7) [⊥] 6.22 (7) [⊥]

4.15 (6) [//] 5.79 (7) [⊥] 2.58 (8) [⊥]

3.14 (5) [//] 1.31 (5) [⊥] 8.33 (7) [⊥]

4.22 (9) [⊥] 6.69 (6) [//] 4.27 (5) [⊥]

2.35 (6) [//] 2.19 (5) [⊥] 5.23 (8) [⊥]

9.36 (7) [//] 1.61 (7) [⊥] 1.59 (8) [⊥]

4A2(F ) 2.10 (8) [⊥] 6.58 (7) [//] 2.63 (7) [⊥]

1.20 (7) [//] 6.33 (11) [⊥] 2.90 (7) [⊥]
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where α is the absorption coefficient, its expression is given as:

α =
hγ2g(ν)∆n

2ZT
νσ2

where ZT represents the characteristic impedance of the guide. We put equation 9 in equation 8 in order to obtain
the absorbance A:

A = αL

At the end, we conclude that A is proportional to the product νσ2, so to ν̄σ2. In the figure 3, we plot the absorbance
and the product ν̄σ2 versus wavenumber ν̄ (unit cm−1).

FIG. 3: Comparison between experimental absorbance [27] and the product ν̄σ2 versus wavenumber ν̄

V. 31 GHZ MASER PROPOSAL

Laser sources emitting some 100 mW at 555 nm, with a linewidth less than 0.1 nm, are currently commercially
available (see for example [31]). We select from the table III, the transition to the 4E(G) excited level, at 18015cm−1

(≈ 555 nm). The transition probabilities for the 6A1(S) −→ 4E(G) transition with H ⊥ z are: σ2
1= 1.40×10−3, σ2

2=
1.80×10−4 and σ2

3 ≈ 0. So if we submit the crystal to a narrow band 555 nm laser source, the |1〉 level will be more
effectively pumped. Therefore we can obtain large population differences between |1〉 and the two other ground state
levels.

A. Rate equations

If we consider a Fe3+ doped Al2O3 crystal submitted to a 555 nm narrow band source resonant with the transition
6A1(S) −→ 4E(G). The proposed system is schematized in figure 4. A cylindrical cryogenic sapphire resonator
presenting a high-Q resonance mode at 31 GHz is submitted to an optical radiation at 555 nm. The crystal axis z
is collinear to the cylinder axis. The 31 GHz resonant mode is assumed to be quasi-transverse magnetic, i.e. the
magnetic field lines, in the equatorial plane of the cylinder, are perpendicular to the z axis. A small magnetic loop
placed near the dielectric cylinder is used to derive the 31 GHz maser signal output.

The excited levels decay quickly to the ground state with a lifetime τ0 � 1 ms. All relaxation in the ground state
are governed by the spin-lattice effect with a characteristic time τ1 ≈ 10 ms at 4 K. It is also determined that the
spin-to-spin relaxation is very fast with a characteristic time τ2 ≤ 20 ns. If we neglect coherence and we deal only
with level populations, so a model with a simple rate equations is sufficient to describe the interaction [32]. There
is a possibility that the excited ions may fall on intermediate levels, but since τ0 � τ1 they relax rapidly to ground
state. This fact leads to consider only a four levels system: the three ground state levels and the 4E(G) excited one,
which is labelled |4〉. The absorption rate WP due to excitation of the ground state ions from the optical radiation is
evaluated using equation 7. The optical pumping gives the possibility to get a population inversion between |3〉 and
|1〉. Therefore one can obtain a maser effect at 31 GHz provided that the resonator has been designed to exhibit a
high Q resonance at this frequency.
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FIG. 4: Energy levels and schematic of the cryogenic optically pumped 31 GHz WhiGMO.

The first 31 GHz emitted photons will stimulate others emissions with a rate WS . If the optical pumping is efficient
enough to compensate for the loss of the resonator,a self-sustaining 31 GHz oscillation will occur. We have followed the
method described in [33] (validated in case of 12 GHz WhiGMO), in order to determine theoretically the conditions
to get a 31 GHz maser signal. The stationary solutions of the rate equations are:

∆n13 =
27∆N13 + 6(2∆N13 − 3∆N14)τ1WP

9(3 + 4τ1WS) + 4(3 + τ1WS)τ1WP
(10a)

∆n14 =
9(3∆N14 + 2(2∆N14 −∆N13)τ1WS)

9(3 + 4τ1WS) + 4(3 + τ1WS)τ1WP
, (10b)

where ∆Nij and ∆nij are the difference in population between two levels |i〉 and |j〉 at the thermal equilibrium
and in the presence of the pump and maser signal, respectively. ν14 and ν13 represent the frequencies of the pump
and the maser signal respectively.

B. Threshold pump power

When the population inversion takes place, the threshold pump power is achieved in the absence of the maser
signal. By taking ∆n13= 0 in equation (10a), we can find the absorption rate WP0

corresponding to this situation:

WP0 =
9

2τ1

∆N13

3∆N14 − 2∆N13
(11)

The total absorbed power can be written as:

P0 = hν14WP0
∆n140NVeff (12)

=
3

2τ1
hν14∆N13NVeff

where N is the concentration of Fe3+ ions, and Veff is the volume occupied by the active ions which participate
to the maser signal. Veff is the volume of the 31 GHz mode in the sapphire resonator (see section V D). Here, we
assume that the optical radiation only illuminates the resonator part where the 31 GHz mode is concentrated. P0 is
thus the minimal optical power required to get maser action in optimized conditions.

C. Maximum maser signal power

∆n13, and thus the 31 GHz maser signal power, increase with the pump signal power system until the saturation of
the optical transition occurs, i.e n4 ' n1. Assuming we already overcome this situation, i.e. WP →∞, equations (10a-
10b) will simplify and the maximum maser power is calculated to obtain:

P31max = hν13 Max[WS∆n13]NVeff (13)

=
3

2τ1
hν13(3∆N14 − 2∆N13)NVeff
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P31max is the total power generated by the active ions inside the resonator. The coupling loop derive only a fraction
of this power depending on the coupling coefficient β, which is related to the loop area and to its position with respect
to the sapphire resonator. For a critical coupling , i.e. β = 1, the maser output power is one half of P31max . The
resonator Q-factor is also impacted by the loading to the external circuit. For β = 1, the loaded Q-factor is one half
of the unloaded one.

D. Resonator design

Our objective is to use the Fe3+ ions present as contaminant in a high purity sapphire monocrystal. Typical
effective ions concentration in such a type of crystal is well below 1 ppm. Thus the 31 GHz resonator has to present
a very high quality factor, otherwise the 31 GHz stimulated emissions will not be sufficient to compensate for the
resonator loss. This can be accomplished by using a whispering gallery mode, which Q-factor is only limited by the
sapphire losses. Quasi–TM Whispering gallery modes are characterized by three integers m,n, l which represent
the electromagnetic field component variations along the azimuthal, radial and axial directions respectively [34]. In
the following we consider only the resonant modes with low radial and axial variations, i.e. those corresponding to
n = l = 0. At low temperature, i.e. near the liquid helium temperature, the whispering gallery mode Q-factor can be
as high as 1 billion providing the mode order is sufficiently high, i.e. m > 15 [35]. The WhiGMO principle has been
demonstrated at 12 GHz, i.e. the frequency of the |1〉 → |2〉 transition. In this case, the population inversion results
from a pumping at 31 GHz. The resonator has a diameter 2R = 50 mm and a thickness h = 30 mm. The quasi-TM
Whispering Gallery mode WGH17,0,0 is used to support the maser signal [36].

For the whispering gallery mode the electromagnetic fields are concentrated near curved air-dielectric interface,
between the resonator radius R and a caustic of radius RC . The effective volume Veff = πh

(
R2 −R2

C

)
occupied by

the mode is a little mode dependant as RC is given by:

RC =
m√

εr

(ν13
c

)2
−
( π

2h

)2 (14)

where εr ≈ 9.4 is the sapphire permittivity is the transverse direction with respect z. c the velocity of light in
vacuum.

To design a 31 GHz resonator we keep the same ratio diameter/thickness, which is near the optimal value [37].
Thus to design the cryogenic resonator only means choosing the azimuthal number for the mode supporting the 31
GHz signal. m has to be higher than 15 to prevent radiation losses which limit the Q-factor and should not be to
high otherwise the coupling with the output probe will be difficult to adjust. The table IV gives for different values
of m, the resonator diameter 2R, the threshold optical power P0 and the maximum maser power emitted by the ions.
Here, the Fe3+ concentration is assumed to be 0.02 ppm, i.e. the same value than the 12 GHz WhiGMO.

TABLE IV: Different resonator designs to support the 31 GHz signal. The pump threshold power P0 and the maximum maser
power P31max are given for few azimuthal numbers as well as the resonator diameter assuming a constant ratio 2R

h
= 5

3
.

m 2R P0 P31max

(mm) (mW) (µW)

17 19.22 1.17 1.02

19 21.13 1.42 1.24

21 23.05 1.71 1.49

25 26.88 2.35 2.05

35 36.46 4.40 3.85

49 50.00 8.41 7.36
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VI. CONCLUSION

In this work we refined the description of the Fe3+ ion embedded into a (α-Al2O3) matrix to derive its 252 energy
levels with two optimization methods ”local and global”, whose the global method is based on Shuffled Complex
Evolution Model. Moreover we calculated the Fe3+ ion strength transition probability including those for optical
transitions. It appears than a few allowed optical transitions are favorable to obtain a maser operation at 31 GHz
applying optical pumping at wavelength achievable with available low cost laser sources. Eventually, a first preliminary
evaluation of the 31 GHz maser concept is presented. We have also shown that the 31 GHz maser signal power
achievable is larger than the classical 12 GHz version, i.e. a power gain of 100 is expected in the optimized conditions.
As fundamental limit of frequency stability is fixed by the thermal noise, any increase in the maser signal output will
benefit to the performance.
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