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Abstract— Modular robots are defined as autonomous kine-
matic machines with variable morphology. They are composed
of several thousands or even millions of modules which are
able to coordinate in order to behave intelligently. Clustering
the modules in modular robots has many benefits, including
scalability, energy-efficiency, reducing communication delay
and improving the self-configuration processes that focuses on
finding a sequence of reconfiguration actions to convert robots
from an initial configuration to a goal one. The main idea is
to divide the nodes in an initial shape into some clusters based
on the final goal shape in order to reduce the time complexity
and enhance the self-reconfiguration tasks. In this paper, we
propose a robust clustering approach based on a distributed
density-cut graph algorithm to divide the networks into a pre-
defined number of clusters based on the final goal shape. The
result is an algorithm with linear complexity that scales to
large modular robot systems. We implement and demonstrate
our algorithm on a real Blinky Blocks system and evaluate it
in simulation on networks of up to 30,000 modules.

I. INTRODUCTION

The vision for programmable matter or modular robotic
systems, is to create a material which can be reprogrammed
to have different shapes and to change its physical properties
on demand [7]. Programmable matter could be deployed
in different domains while promising to have a variety of
applications in construction, surgery, environmental science,
space exploration, etc. [1, 15]. Examples of exciting future
applications are robotic ensembles monitoring hostile envi-
ronments (e.g., nuclear), delivering drugs in the human body,
educational robots and a new set of robotic toys [11, 3, 1].

There are various ways to implement programmable mat-
ter. One is to build it as a huge modular self-reconfigurable
robot composed of a large set of micro-robots (particles).
These particles can have different forms (spherical, cubic,
etc.). They must be able to stick to each other and move
around their neighbours. The main task of a modular robots
system is to reconfigure its shape in order to accommodate
for variable conditions that need to be met in order to
complete a given final goal. For example, one can program
the robots so that, starting from an initial configuration
without any holes, they can self-reconfigure into a line con-
taining all the robots, without ever breaking the connectivity
of the system [17, 6]. However, it has been shown and
proven [7, 5] that the number of all possible configurations
of modular robots increases drastically as the number of
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Institute, CNRS, 1 cours Leprince-Ringuet, 25200, Montbéliard, France.
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modules increases, so it is challenging to provide an efficient
algorithm for self-reconfiguration. One of the solutions that
may simplify the self-reconfiguration problem is to cluster
the modular robots system. Assembling the particles into
clusters and accomplishing tasks in cluster-based approaches
can increase the efficiency in term of execution time and
energy consumption. Therefore, clustering the particles in
modular robots has many benefits, including scalability,
energy-efficiency, and enhancing routing and communica-
tions. In fact, a group of nodes form the cluster and the local
interactions between cluster members are handled by a leader
cluster head (CH). The role of a CH is to schedule activities
in the cluster. Modules would care only for selecting its
CH and would not be affected by changes at inter-cluster
level, so cluster members communicate with CH and data is
collected and aggregated by CH, thus reducing the scope of
inter-cluster interactions to CHs only and avoid passing of
redundant messages among the modules.

Our objective in this paper is to propose a linear distributed
clustering algorithm in order to simplify the transformation
of the modular robots system from an initial shape to a goal
shape as shown in Figure 1. The number of clusters is defined
based on the goal shape then a clustering approach based
on the density-cut graph algorithm is proposed in order to
divide the particles into clusters. For example, in Figure 1
the initial filled shape is divided into 5 clusters, then each
cluster, given its goal shape, is self-reconfigured to form its
part of the overall goal shape.

Fig. 1: Clustering and self-reconfiguration.

It is important to have an efficient encoding of the goal
shape description, and which will ultimately be useful in
order to determine the number of clusters. Tucci et al. (2017),



proposed in [14] an efficient scene encoding method based
on Constructive Solid Geometry (CSG) [12] that defines a
tree of objects that can be combined to form the final scene
as shown in Figure 2. The tree can be represented in a
compact form and can be efficiently stored in each module.
The number of clusters can be determined by the number of
objects on a given level of the CSG tree. In the example of
the mug shown in Figure 2, the number of clusters can be
two which is the number of objects at level 1 of the tree.

Fig. 2: A Mug represented in CSG tree [14]

To the best of our knowledge, we are the first that propose
a clustering approach for modular robots. Similar strategies
have been studied and many clustering protocols have been
proposed in the wireless sensor networks domain [16, 8, 2,
9]. However, these approaches are not suitable for modular
robots due to their specific constraints. In this paper, we
propose a clustering algorithm based on the graph clustering
algorithm density cut (DCut) [13]. The DCut algorithm
allows partitioning a graph into multiple densely tight-knit
clusters directly. We adapt this algoritm and propose a dis-
tributed version in order to fit the case of distributed modular
robots and by modifying the conditions of the similarity
function and the edge weight. To show the effectiveness
of our approach, we implement and demonstrate it on a
real Blinky Blocks system and evaluate it in simulation on
networks of up to 30,000 modules.

The remainder of this paper is organized as follows.
The description of the DCut algorithm and the problem
formulation are presented in Section II. Section III describes
the clustering algorithm for modular robots. The simulation
results are presented in Section IV. Section V concludes the
paper and gives some directions for future work.

II. DENSITY CUT BASED CLUSTERING

A. Background and DCut Algorithm

Shao et al. (2016), proposed the DCut algorithm in [13],
an approach for graph clustering based on density, the idea
is to consider the graph clustering as a density-cut problem
such that the nodes in same cluster are densely connected
and those between clusters are sparsely connected. In fact,
their proposal was a centralized graph clustering algorithm
applied on graph data, while in this work we seek to adopt
it in a fully distributed fashion on the modular robots based
programmable matter.

A good partitioning should consider the similarity of nodes
in groups, so their proposal is to compute similarities of
nodes inside and between graph clusters by building the
density-connected tree (DCT), where any two close nodes
with high similarity are densely linked together. The built
tree captures the density connectivity of nodes so nodes with
same topological attributes are strongly linked together while
the weight of an edge that links two nodes of two lightly
connected component is low. So, the idea is to cut such
edge to form two distinct components hence two clusters.
An example is shown in Figure 3 where the cut is made on
the weak edge that connects node 6 with node 13 forming
two dense clusters.

Fig. 3: Two clusters formed by the DCut algorithm

B. Problem formulation

Similarly to the algorithm proposed in [13], we consider
that the system is modeled as an undirected weighted graph
G = (V,E,W ) where V is the set of nodes representing the
modules and E is the set of edges representing connections
between modules. e = {u,v} ∈ E indicates a connection
between module u and module v. W is the set of weights
associated to edges. Before defining the similarity measure,
some relevant definitions are needed:

Definition 1. (Neighborhood of a node) Given an undirected
unweighted graph G = (V,E,W ) the neighborhood of a node
u is the set:

Γ(u) = {v ∈V |{u,v} ∈ E}∪{u}

Definition 2. (Jaccard coefficient) Given a graph G =
(V,E,W ), the Jaccard coefficient of two adjacent nodes u
and v is defined as:

ρ(u,v) = |Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)|

The Jaccard coefficient is used to quantify two nodes’ local
topology similarity, the more common neighbors two nodes
have, the more similar they are, as the Jaccard coefficient
normalizes the number of common neighbors by the sum
of the size of the two neighborhoods, it captures the local
connectivity density of any two adjacent nodes in a graph.

Definition 3. (Anchors) Given a geometrical shape I, the
minimum bounding box B is the box surrounding I with



minimum volume. The set of anchors A is defined as the set
of coordinates of the minimum bounding box’s corners CB:

A = {(xc,yc,zc) | (xc,yc,zc) ∈ Z and c ∈CB}

A can be calculated by selecting the different minimum
and maximum combinations while varying on the three
axes x, y and z so a total of 8 points at the corners
of B are defined, i.e. (minx,miny,minz), (minx,miny,maxz),
...,(maxx,maxy,maxz).

Definition 4. (Edge weight) Given two neighboring modules
u and v, the similarity of the two modules u and v in the graph
G, is defined as:

w(u,v) = ρ(u,v)
min(dist(u,A),dist(v,A))

s.t:

dist(u,A) = min{dist(u,a) | a ∈ A},

where dist represents the euclidean distance.

C. DCT Partitioning

In order to find a good graph partitioning, as already
mentioned, we consider graph clustering as a density-
cut problem. With DCT capturing node density connectiv-
ity in a graph where nodes with similar topological at-
tributes and intense connections are densely linked together,
whereas component-to-component connections are sparsely
connected (the similarity of the two nodes connecting the
two components is relatively small), a solution is to directly
cut the edges of the tree to obtain dense-based clusters.
Formally, a modern density-based model is proposed, rather
than computing the value of total (or normalized) weights of
the edges linking the two components, the following measure
computes its density connection between the two partitions
according to the DCT tree. This measure is called DCut:

DCut(C1,C2) = d(C1,C2)
min(|C1|,|C2|)

Where C1, C2 are the two partitions, d(C1,C2) means
the corresponding weight of the edge connecting the two
partitions. The term of min(|C1|, |C2|) is used to avoid the
bias towards splitting small sets of nodes. Since connection
between nodes in the DCT is acyclic, each edge links two
components of a graph. Hence, the bi-partitioning of the
graph in terms of density can be effectively accomplished
by cutting the weakest edge within the DCT. To obtain k
clusters, the DCut recursively performs k− 1 cuts on the
DCT. The number of clusters k can be arbitrary. However,
to obtain balanced clusters, k should be a power of 2 number.

III. APPLICATION TO MODULAR ROBOTS

The proposed algorithm is convenient to dense modular
robots programmable matter since it characterizes the density
of any two adjacent nodes in local fashion so no global view
of the system is required. It creates a spanning-tree which can
be used in tasks such as inter-cluster communication, intra-
cluster communication, data aggregation, moving modules
from one cluster to another, etc. Furthermore, it is easy to

implement and it can be suitable for distributed systems such
as programmable matter’s modular robots.

A. System Assumptions

Several assumptions shall be presented before starting the
development of the algorithm:
• The goal shape is known and can be efficiently encoded

and stored in each module as explained in [14].
• All nodes possess unique identifiers.
• Modules are placed in cells of a regular lattice.
• Only neighbor-to-neighbor communications are possi-

ble. A module sends a message to its adjacent neighbors
via one of its connectors. The receiver can reply by
sending a message via the connector that received the
message.

• A module is aware of its direct connections (i.e which
borders are connected to other modules and which ones
are not).

• We consider that the configuration is fixed and always
connected during the process, i.e. no new modules are
connected or disconnected during the execution of the
algorithm.

B. Clustering Algorithm

In this section, we present the distributed clustering algo-
rithm. Basically the algorithm 1 follows three main steps:

1) Compute the edges data.
2) Build the DCT tree [4] using a distributed algorithm.
3) Find the minimum edge where the cut will take place.
4) Repartition the segmented DCT recursively until k

clusters are obtained.
Consider G = (V,E,W ) as the initial graph. The first step
consists of each node computing the edges weights (see
Algorithm 1 , lines 1-3). In order to compute it two messages
are required: REQUEST DENSITY and SEND DENSITY,
noting that whenever there is a connection between two
nodes the computation is done on one node having the lower
id than the one requesting, then sent back within the reply
message, thus reducing the computation complexity on the
nodes. GHS [4] algorithm (see Algorithm 1 , line 4) will
end up by creating a tree structure rooted at one node in a
fully distributed fashion, then the algorithm will operate by
finding the minimum edge where the cut will take place in
order to partition the graph into two clusters, and recursively
repartition the segmented tree until k components of the
graph are obtained. Firstly, the root will compute the number
of nodes in the system. Once computed, it assigns itself as
a cluster head and decrements the number of clusters by
one considering that the complete tree represents a single
cluster and triggers the final step (see Algorithm 1 , lines
6-8) by calling the Cut() function. Algorithm 2 presents
the message handler, where the messages are represented as:
MESSAGE NAME (DATA) considering that each message
is received by module Mi from M j.

In this approach, the GHS distributed algorithm for mini-
mum weight spanning trees is used to build the DCT, where
each module represents a node of the graph and the edge



Algorithm 1: Clustering algorithm pseudo-code
CHid
subTreeSize
neighbours← neighbours ∪{node′s id}
anchors // nodes at the extremities
pMi // position
sim // similarity measure
nbWaitedAnswers
isCH // cluster head or not
edges // set of edges
children // set of children
k // number of clusters
DCut // temporary variable to store

the received cut value
cutAt // node where the cut will occur
T // DCT Tree

1 foreach Nid in neighbours do
2 if Nid < id then
3 send REQUEST DENSITY(neighbours) to Nid
4 T ← GHS(G)
5 Cut()

6 Function Cut():
7 foreach child in children do
8 DCut Data← (CHid,subTreeSize)
9 send REQUEST DCUT(DCut Data) to child

between nodes of the graph represent a communication link
between two modules. When GHS terminates, the resulted
tree is rooted at two core nodes. One can choose the node
with minimum id to be the root of the DCT. The root will
then launch the search for the minimum weight edge where
the cut will happen. To do so, each module calculate its DCut
value and maintain the minimum which will be returned
back to the root, then the root will initiate the clustering by
cutting the graph at the cutAt module to form the first two
clusters with the root and the cutAt modules as CHs. Then
the number of the remaining cuts is calculated by dividing
the number of clusters by two and the ceil is given to the
CH having the more modules in its cluster and the floor
to the other (see Algorithm 2, lines 32-37). If the number
of remaining cuts is bigger than 0 the CH will recursively
relaunch the search for a new cut until k clusters are obtained
(see Algorithm 2, lines 42-45).

C. Complexity Analysis

We note m = |E| as the number of edges connections in
the graph and n the number of modules. The number of
messages exchanged depends on the topology. However we
assume that all modules have m connections. During the first
step and in order to compute all the weights of the edges, the
number of messages exchanged is O(2m). The second step of
building the tree using the GHS algorithm requires O(n logn)
in terms of time complexity and a message complexity of
O(m logn). The final step consisting of finding the minimum
edge, cutting the graph and distributing the different clusters

requires O(k logn) messages since after a cut, the next
cuts are searched in the resulted partitions. Therefore, the
total number of messages exchanged during the execution is
O(2m+m logn+ k logn).

IV. SIMULATION AND RESULTS

In order to validate our algorithm, we make two kinds
of experiments on different modular robots, one on real
robots named Blinky Blocks and one using VisibleSim [10].
VisibleSim is a discrete-event 3D simulator for modular
robots. This simulator supports large-scale ensembles and
different robotic systems including 3D Catoms used in our
simulations (cf. Figure 4).

3D Catoms are quasi-spherical modules placed in a FCC
lattice which provides to connect a module up to 12 neigh-
bors. In the simulator it is possible to light a 3D Catom in
colors to show a status, for example the color of the cluster
of which it is a part.

Blinky Blocks are 4 cm large robots placed in a regular
cubic lattice. They communicate with up to 6 neighbors using
a serial connector. They lights in color in order to show a
status.

To provide an objective evaluation of the proposed clus-
tering algorithm, we carried out several clustering scenes on
different shapes consisting of thousands of modules as shown
in Figure 4. The first example (Figure 4a) shows 4 clusters
of a large set of 20000 3D Catoms randomly assembled to
create an irregular dense cloud. We note that in this case
clusters define 4 main quarters with some irregularities on
their borders. In the other hand, in the next experiments
on Figures 4b, 4c and 4d presenting very regular volumes
with symmetries, the clusters follow the coordinate axes to
regularly divide the space.

A short video1 shows our program running on Blinky
Blocks. These experiments propose 5 different 3D shapes
made of 20 to 28 connected robots. For each experiment
Blinky Blocks change their color depending on the steps of
the code during a couple of seconds and then light with
the color of their associated cluster. Moreover during this
final stage the cluster leader is blinking in order to be easily
localized in the cluster.

In Figure 5, we studied the number of messages exchanged
while varying the number of modules on two and ten clusters.
The messages in the system are used to compute the weights,
build the tree and assign nodes to the clusters. Exchanging
messages is the more time consuming activity in distributed
algorithm on modular robots. As a consequence the number
of messages will directly affect the calculation time of the
algorithm.

The number of messages increases linearly by increasing
the number of modules and that is valid on different shapes.
We note that the random shape in Figure 4a requires the
highest number of messages exchanged due to the high
number of connections between modules. It is obvious that
number of messages are increasing with the increase of

1Youtube video: https://youtu.be/Q7R4c0MsyIM

https://youtu.be/Q7R4c0MsyIM


Algorithm 2: Message Handler for any module Mi

1 Msg Handler REQUEST DENSITY(m):
2 minDist←Minimum(pMi ,anchors)
3 sim← ρ(Mi,M j)÷ minDist
4 e← Edge(Mi.id,M j.id,sim)
5 edges← edges ∪ {e}
6 send SEND DENSITY(sim) to sender

7 Msg Handler SEND DENSITY(d(sim)):
8 sim← d.sim
9 e← Edge(Mi.id,M j.id,sim)

10 edges← edges ∪ {e}
11 if (edges.size = neighbours.size ) then
12 wakeup() // start of GHS

13 Msg Handler REQUEST DCUT(d):
14 if isCH then
15 return
16 if children.size = 0 then
17 DCut Data← compute my current DCut value
18 send RESPONSE DCUT(DCut Data) to parent
19 else
20 foreach child in children do
21 send REQUEST DCUT(d) to child
22 nbWaitedAnswers← nbWaitedAnswers + 1

23 Msg Handler RESPONSE DCUT(d):
24 nbWaitedAnswers← nbWaitedAnswers − 1
25 if d.DCut < DCut then
26 DCut← d.DCut
27 if nbWaitedAnswers = 0 then
28 if !isCH then
29 myDCut← compute my current DCut value
30 d←Minimum(d,myDCut)
31 else

// Cluster Head
32 x← nbr of nodes in the cluster on cutAt
33 y← nbr of nodes in the resulting partition
34 if x > y then
35 cutAt.k←

⌈
k/2

⌉
36 k←

⌊
k/2

⌋
37 else
38 cutAt.k←

⌊
k/2

⌋
39 k←

⌈
k/2

⌉
40 send CUT(cutAt,k) to cutAt

41 Msg Handler CUT(cutAt, k):
42 if id = cutAt then
43 isCH = true
44 if k > 0 then
45 cut()
46 else
47 send CUT(cutAt,k) to cutAt

number of clusters, since it will require more messages to
execute the third step of the algorithm to cut the graph
in several partitions and then distribute the nodes on the

(a) Random: 20000 3D Catoms (b) Hole: 8240 3D Catoms

(c) Cube: 10200 3D Catoms

ee

(d) Arc: 10000 3D Catoms

Fig. 4: Screenshots of VisibleSim - 4 clusters on different
shapes

different clusters. Finally, after conducting different test cases
and scenarios, and based on the results shown in Figures
4 and 5, we can say that the efficiency of the proposed
algorithm is highly affected by the number of modules and
the shape of the ensemble.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a linear distributed clustering
algorithm based on graph cut for large modular robots
ensembles with neighbor-to-neighbor communication that
can be applied to programmable matter. To the best of our
knowledge it is the first one in the literature. We evaluated
the algorithm while considering different shapes, varying
the number of clusters and the number of modules in the
ensemble. We showed with the obtained results that the
performance of the algorithm is affected by the number of
modules, the shape of the ensembles and the number of
clusters.

In future works, we intend to alter the algorithm so we
can control the number of modules in each cluster which
is crucial for cluster based self-reconfiguration. In addition,
we aim to study the effect of the positions of anchors on
the resulting clusters shapes. Then, since modules are able
to move and change their connections which can cause an
unwanted disconnection in the built tree, we aim to extend



the algorithm to support dynamic clusters while maintain-
ing balance between clusters and intra-clusters connectivity.
Next, we seek to show the improvement that clustering can
yield to the execution of tasks related to modular robots’
programmable matter such as self-reconfiguration where
modules forming specific parts of the current shape (e.g.
a hand in a humanoid shape) can form one cluster hence
requires less reconfiguration actions to attain a more or
less similar parts of the goal shape (e.g a hand in another
humanoid shape).
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