
A UNIQUE IDENTIFIER ASSIGNMENT METHOD FOR
DISTRIBUTED MODULAR ROBOTS

Joseph Assaker1, Abdallah Makhoul1, Julien Bourgeois1 and Jacques Demerjian2

Abstract— Modular robots are autonomous systems with
variable morphology, composed of independent connected com-
putational elements, called particles or modules. Due to critical
resource constraints and limited capabilities, globally unique
identifier (ID) assignment to each particle is a very challenging
task in modular robots. However, having a unique ID in each
one remains essential for various operations and applications
in this domain. For instance, it is required to establish commu-
nications between nodes and implement routing protocols. It
helps in saving energy consumption and enhancing the security
mechanisms. In this paper, we propose a distributed unique
ID assignment method for modular robots. It is a three phases
based algorithm. The first phase consists in discovering the
system while building a logical tree. The second phase finds the
total size of particles in the system needed for several operations
in modular robots, and the third one is dedicated to the unique
ID assignment. After fully optimizing the distributed algorithm,
the effects of various system shapes and leader positions on the
energy and time complexity are studied, while proposing fitting
solutions for different requirements.

I. INTRODUCTION

Modular robots, or modular self-reconfiguring robotic
systems, are autonomous systems with variable morphology.
These systems are composed of independent connected ele-
ments called modules or particles, whose connections to one
another form the overall shape of the system. Beyond sens-
ing, processing and communication capabilities, a modular
robot includes actuation and motion capabilities that allow it
to reconfigure its shape by rearranging connections between
modules [20, 9]. A wide range of applications for modular
robots reside unexplored [2], from surgical applications, to
transportation applications and space exploration. The main
tasks of a modular robots system are to reconfigure its shape
in order to accommodate for variable conditions that need to
be met in order to complete a given final goal, and the ability
to read sensing values from anywhere on the system [19].
Both of these tasks rely on message transmission between
modules directly connected or connected through other mod-
ules. As modular robots are essentially systems with ever-
changing shapes, and thus ever-changing modules locations,
it is therefore important to have some kind of identification
for each module that remains constant throughout all of the
modifications the system may go through.

*This work has been supported by the EIPHI Graduate School (contract
”ANR-17-EURE-0002”)

1Authors are with FEMTO-ST institute, Univ. Bourgogne Franche-
Comté, CNRS,, 1 cours Leprince-Ringuet, 25200, Montbéliard, France.
{first}.{last}@femto-st.fr

2Jacques Demerjian with LaRRIS, Faculty of Sciences, Lebanese Uni-
versity, Fanar, Lebanon, jacques.demerjian@ul.edu.lb

A global unique ID is naturally proposed as a solution
for such a requirement. It is required for various opera-
tions and applications [5, 12, 16]. Unique IDs are used to
establish communications between nodes and to implement
routing protocols. It helps in saving energy consumption and
enhancing the security mechanisms. Furthermore, globally
unique IDs in modular robots are used to find the mapping
between two configurations [14] or for self-assembly algo-
rithms [19, 18]. To accomplish this goal one might suggest
at the manufacturing level and whenever a module is man-
ufactured to directly assign a global unique ID to it (similar
to a MAC on most electronics). However, such an approach
is highly inefficient and limiting, as it would impose very
long IDs in order for them to be globally unique and would
require many extra steps in the manufacturing process (e.g.,
the ID assignment process and the maintenance of unique
IDs between various manufacturers). In addition, modular
robots suffer from scarcity of energy, and message passing
tasks play an important role in its energy consumption. As
information passed between modules is relatively small in
size and often aggregated, the message’s header containing
the origin and destination IDs presents a more weighted
role in the message’s size, and thus in energy consumption.
Therefore, due to the large number of particles it is almost
impossible to manually assign a unique ID to each particle.
It is up to the particles to assign themselves each a unique
ID in a distributed and memory/energy efficient manner. The
first and simple technique that comes to mind is a random
ID assignment [17]. However, we need very long IDs to
ensure a low probability of two particles choosing the same
ID which is not suitable for modular robots with low memory
and energy resources. An approach is proposed in [7] which
considers the k-local identifier problem. In this approach the
IDs are presented as variables assigned to each particle of
the network, that are different for every two modules at a
distance of at most k (k hops). In this case, we do not have
long ID at each particle. However, different nodes can have
the same ID, and in particular in the same neighborhood.
Thus, it is important to uniquely identify the next hop node
during message routing. Furthermore, in this situation the
matching between two configurations based on particles IDs
as described in [14] becomes more complicated or even
impossible to be achieved.

A more closely related problem is ID Assignment in
Wireless Sensor Networks (WSN) [13, 22, 11, 10, 21, 15, 8].
We can observe that many of the issues and constraints are
shared between WSN and modular robots: a large number
of nodes, limited memory, processing power and energy,

etc. Nevertheless, there are significant differences as well,
notably that the topology of modular robots will evolve
continuously as the robot changes its morphology. The com-
munications in modular robots are generally done only with
the adjacent neighbour modules (i.e., communication through
modules borders, as wireless communication is much more
costly and prone to errors) [3] which reduces the impact
on messages loss. Numerous works have been conducted
in the sensor networks field concerning the task of ID
assignment; from attribute-based ID assignments, to unique
ID assignment and a variable-length ID scheme [11]. For
instance, the Self-organized ID Assignment (SIDA) approach
has been proposed in [11] that essentially implements a
variable-length ID scheme that assigns longer IDs to the
nodes the closest to the sink, with the shortest IDs being
assigned to the furthest nodes in the system. While the
SIDA approach can be very useful in sensor networks, once
again due to the variable morphology of the modular robots
systems, such an approach would not be beneficial in our
use case, and in fact, could have a negative effect on the
performance of the system (as modules with long IDs could
end up in a very far position from the leader particle). In [13]
the authors propose a work to assign unique and static-length
IDs to all sensor nodes. A tree structure was built starting
from the sink while temporary IDs are assigned in order to
find the total number of sensor nodes. Then ID assignment
responsibilities were distributed from the sink to the sensor
nodes to complete the final ID assignment.

In this paper, we explore the potential for synergy between
WSNs and modular robots while focusing on the unique ID
assignment task. We aim to develop a distributed algorithm
inspired from those proposed in the domain of sensor net-
works [13, 11] and adapted to modular robots. The goal
is to achieve the smallest possible ID length in order to
cover all modules and to reduce the number of messages
exchanged between particles. Then, it aims to discover the
whole system of modules while along the way building a
logical tree structure rooted at the leader module and without
the need of temporary IDs assignment. This reduces the time
complexity of the algorithm. Furthermore, we studied the
effects of the different modular robots configurations and
the leader’s position on the performance of the algorithm
in terms of the number of messages exchanged between
modules and the time complexity.

The remainder of this paper is organized as follows.
In Section II, we develop the distributed algorithm that
can be split into three phases: exploration phase, system
size reporting phase and unique ID assignment phase. In
Section III, discussions on the effect of modular robots
properties (system shapes and leader position) on the time
and energy complexity are presented, as well as several
simulation results. Finally, Section IV concludes with a brief
description of future work.

II. UNIQUE ID ASSIGNMENT ALGORITHM

Our distributed ID assignment algorithm could be split into
three main phases: exploration phase, system size reporting

phase and unique ID assignment phase. In the first phase,
and after electing the leader [6, 4], the goal is to discover
the whole system of modules while along the way building
a tree structure rooted at the leader module. In parallel, the
second phase is launched, in which the algorithm will be
collecting the system size (i.e., number of modules in the
system) with the final goal of reporting the total size from the
whole system to the leader module. Having the system size in
hand, the leader module can calculate the least amount of bits
needed in order to code global unique IDs for every module
in the system. In the third phase, and after building the tree
structure that logically connects modules and calculating the
least amount of bits needed, the final step of unique ID
assignment is launched from the leader to the whole system.

A. System assumptions

Several assumptions shall be presented before starting the
development of the algorithm:

• The size of the system (i.e., the number of modules) as
well as the initial shape of the system are unknown.

• The leader is elected and can be any module in the
system and in any position (center, border, etc.). It is
elected to “lead” the process of ID assignment.

• All communications are only possible between adjacent
neighbour modules; The sender module sends a message
through its border n, and the receiving module receives
the message from its border m. If a reply message is
needed, the receiving module would reply via its border
m, which would then be received by the initial sender
module via its border n.

• Each module is aware of the connections it has at any
given moment (i.e., it is aware which of its borders
are connected to other modules, and which borders are
free). In this case, we consider that the loss of any
message transmitted between the borders of modules is
considered to be highly improbable, and thus, not taken
into consideration.

• All modules in the system are considered to be alive
until the completion of the algorithm and no new
modules are introduced during the execution. However
we plan on relaxing the latter assumption in our future
work.

B. Phase 1: Exploration

This phase’s goal is to discover the whole system of
modules, while building a logical tree structure rooted at
the leader module along the way. The algorithm starts with
the initiation from the leader module and by using 3 types
of messages. Type 1, 2 and 3 messages are all that is needed
to discover and create a tree structure for the system (cf.
Table I). Type 1 messages represent potentially discovering
new modules; type 2 messages are confirmations that a new
module has been discovered and it is one of the children of
the sender module; and type 3 messages reply by neglecting
the fact that a module is to be discovered, and notify
the sender module that the destination module is already

TABLE I
MESSAGES’ ROLE DESCRIPTION

Type Role Description

1 Explore neighbours for potential children
2 Confirm that the explored node is a child
3 Decline that the explored node is a child
4 Report the node’s sub-tree size to its parent
5 Distribute the global unique IDs to children

discovered. Also, to notice that type 2 messages are the only
way to expand the tree structure of the system.

The leader module starts by specifying that it is now
discovered, and that it has no parent (as it is the root node
in the tree), and would finally transmit type 1 messages to
each of its neighbours. Whenever a module receives a type 1
message, two cases are possible. The first case, if it is the first
time it receives a type 1 message it initializes its parent to be
the sender module. It then replies back by a type 2 message
which notifies the parent that this node is now one of its
children. Finally, it proceeds by sending type 1 messages to
its own neighbours (excluding the already known to be parent
neighbour). The second case, if it is not the first time that it
receives a type 1 message (the module is already discovered
by another module) it sends back a reply message of type
3, which notifies the sender module that this module is not
its child. The Algorithm’s part concerning the first phase is
presented in algorithm - phase 1.

Global Unique ID Assignment Algorithm - Phase 1
is discovered← f alse
leader← f alse
parent←−1
unique id←−1
neighbours← /0
children← /0

if leader = true AND is discovered = f alse then
is discovered← true;
for each neighbour in neighbours do
send type 1 message to neighbour

end for
end if

if received message then
switch message.type do

case 1
if is discovered = true then
send type 3 message to message.origin

else
is discovered← true
parent← message.origin
neighbours← neighbours−{message.origin}
send type 2 message to message.origin
for each neighbour in neighbours do
send type 1 message to neighbour

end for
end if

case 2
neighbours← neighbours−{message.origin}
children← children∪{< message.origin,−1 >}

case 3
neighbours← neighbours−{message.origin}

end if

An illustration example is presented in Figure 1. In this
example, and in further illustrations and results, we will
utilize the use case of a square module, having 4 borders.
In Figure 1, the light grey box represents the leader module,
medium grey boxes represent discovered modules, and black
boxes represent the absence of a module. At stage 1, all
modules are yet to be discovered and the leader module is
selected. In stage 2, the leader module initiates phase 1 of
the algorithm by sending type 1 messages to its neighbours.
In stage 3, as all modules are not yet discovered and it is
the first time that they receive a type 1 message, all four
neighbours reply by a type 2 message to the leader module.
This informs the leader module that all four of its neighbours
are its children. In stage 4, the newly discovered modules
now try to discover in their turn their neighbours, via type
1 messages. In stage 5, we can observe that the module
to the left of the leader won the race in discovering the
new module, and receives a type 2 message confirming this
fact. Whereas the module under the leader receives a type
3 message, meaning that the module is already discovered.
This process keeps on repeating until all modules in the
system are discovered. Modules that already received all
replies from their neighbours or don’t have neighbours left to
discover (i.e., their only neighbour is their parent) are ready
to start phase 2.

Fig. 1. Illustration of an example of the 5 first stages in Phase 1 and 2,
as well as the final stage n reached at the end of those phases.

C. Phase 2: System Size Reporting

In this phase, that is run in parallel with the previous phase,
the main idea is that whenever a module is discovered and all
of its subsequent children finish discovering their respective
sub-trees (or if this module doesn’t have any children), this
module should report its own sub-tree size to its parent.
The sub-tree size of a given module is the size of the tree
structure that is rooted at this module. Thus, this process of
sub-tree sizes reporting will emerge from the leafs to the
leader module.

Type 4 messages are now introduced (cf Table I). These
messages are only passed from child to parent and they carry
out an integer value named “sub-tree size” that represents the
sub-tree size of the child node.

After a module has been discovered, and it has sent out
type 1 messages to all of its neighbours (potential children)
and it received back all reply messages (either type 2 or type
3), it would: If all neighbours replied with type 3 messages
or if it has no neighbours other than its parent (both cases
represent the case of a leaf) → send a type 4 message to its
parent, with value 1. If one or more neighbours replied with
a type 2 message (i.e., the node has at least one child) →
wait for all children to send their sub-tree sizes, and only
when they do, proceed by sending a type 4 message to its
own parent, which now carries its own sub-tree size that is
the sum of all sub-tree sizes received from its children + 1
(plus itself). This process keeps on repeating until eventually
all sub-tree sizes would be transmitted from child to parent
and the leader module would receive the final total system
size (the sum of its direct children sub-tree sizes + 1). The
Algorithm’s part concerning the second phase is presented
in algorithm - phase 2.

Continuing and expanding on the illustration example
in Figure 1, medium grey boxes represent more precisely
discovered modules that did not send their sub-tree size,
while dark grey boxes represent modules that have been
discovered and have sent their sub-tree size to their respective
parent. In stage 4, and as the module above the leader has no
neighbours to discover, this module directly proceed to phase
2 by reporting its sub-tree size (that is 1) to its parent (the
leader module). In stage 5 the leader module receives the
sub-tree size of the module above it, rendering the module
above it in the dark grey state, meaning it has finished its
tasks for phases 1 and 2. This process keeps on repeating,
until all modules are in the dark grey state, and the total
system size is reported to the leader (stage n). Having such
information available, the leader calculates the least amount
of bits needed to code globally unique IDs for the whole
system and is thus ready for the ID assignment phase. This
state of the algorithm represents the end of phases 1 and 2.

D. Phase 3: Unique ID Assignment

This phase’s goal is to distribute the globally unique IDs
(all coded with the same number of bits) to all modules of
the system. After the calculation of the least amount of bits
needed, the leader module proceed by assigning the ID 0 to
itself, and sending IDs to its children via type 5 messages

Global Unique ID Assignment Algorithm - Phase 2
subtree size← 1
subtree size sent← f alse

if received message then
switch message.type do

case 1
if is discovered = true then
...

else
...
if neighbours.size = 0 AND !subtree size sent then

CHECK()
else

for each neighbour in neighbours do
send type 1 message to neighbour

end for
end if

end if
case 2
...

case 3
...
if neighbours.size = 0 AND !subtree size sent then

CHECK()
end if

case 4
child← find message.origin in children
child.subtree size← message.subtree size
subtree size += message.subtree size
if neighbours.size = 0 AND !subtree size sent then

CHECK()
end if

end if

procedure CHECK()
if children.size = 0 OR received all children subtree size then

if leader = f alse then
send type 4 message to parent
subtree size sent← true

else
calculate least necessary bits
...

end if
end if

end procedure

(cf Table I). When a module receives a type 5 message, it
assigns the ID number in this message as its unique ID and
proceed by sending type 5 messages to its children (if it
has any). The sending of type 5 messages to children should
respect the following: (i) send the module’s ID + 1 to the
first child, (ii) send the module’s ID + 1 + ∑

i−1
n=1 Sn to the

ith child, where Sn is the sub-tree size of the nth child. This
assures that whenever a module receives an ID via a type 5
message, the range of IDs going from its own ID to its ID
+ its sub-tree size, is reserved for it and for its sub-tree.

An illustration example of the execution of this phase is
presented in Figure 2, where white boxes now represent
modules that finished their execution. Supposing that the
module to the left of the leader has a sub-tree size of 9,
the leader would send the ID 0 + 1 (i.e., its own ID + 1) to
it, while sending the ID 0 + 1 + 9 = 10 to the module too
its right. This reserves all IDs from 1 till 9 to the sub-tree
of the module to the left of the leader. The same principle
applies supposing that the right module has a sub-tree size
of 87, the ID 0 + 1 + 9 + 87 = 97 will be sent to the third

Fig. 2. Illustration of the first three stages of phase 3, plus the final stage
m of the system after the completion of the algorithm.

and last child of the leader. This process keeps on repeating
from parent to child until all modules in the system receive
their globally unique IDs. The Algorithm’s part concerning
the third phase is presented in algorithm - phase 3.

Global Unique ID Assignment Algorithm - Phase 3
if received message then

switch message.type do
case 1
...

case 2
...

case 3
...

case 4
...

case 5
f inal id← message.id
next id← message.id +1
for each child in children do
send type 5 message to child
next id += child.subtree size

end for
end if

procedure CHECK()
if children.size = 0 OR received all children subtree size then

if leader = f alse then
...

else
calculate least necessary bits
unique id← 0
next id← 1
for each child in children do
send type 5 message to child
next id += child.subtree size

end for
end if

end if
end procedure

E. Complexity Study

As the time and energy complexity (i.e., execution time
of the algorithm and energy consumed throughout the al-
gorithm) are directly linked to the number of messages
transmitted in the system, the latter will be developed in
this section. Let us group the messages into three groups:
messages of type 1-2-3, messages of type 4 and messages
of type 5. Let B be the number of borders for each module
(i.e., the maximum number of neighbours for each node). As
one of the those neighbours must be the module’s parent,
B−1 is thus the maximum number of possible children for
any module (except for the leader having a maximum of B
possible children). Let N be the total number of modules
in the system, and P is the maximum number of possible
children for any module in the system except the leader (i.e.,
P = B−1).

For the first group of messages (of type 1-2-3), each
discovered module would try to discover a maximum of
B− 1, or P, neighbours. This process would require the
discovered module to send a maximum of P type 1 messages
and accordingly receive back a maximum of P type 2 and/or
type 3 messages (either confirming or declining the type 1
messages). Let M1 be the number of messages transmitted
from the first group, M1 would be strictly less than: 2×P×N
(as there will be edge modules in the system with neighbours
strictly less than P).

For the second group of messages (of type 4), each dis-
covered module with no children, or with all of its children
reporting their respective sub-tree sizes, would report its own
sub-tree size to its parent (unless the module in question is
the leader). Thus M2 would be equal to: N−1, where M2 is
the number of messages transmitted from the second group.

For the third group of messages (of type 5), and after
the initiation of the third phase by the leader node, each
module in the system would eventually receive its unique ID
via a message from its parent (except for the leader). Thus
M3 would be equal to N − 1, where M3 is the number of
messages transmitted from the third group.

The total number of messages transmitted throughout the
execution of the distributed algorithm would then be M =
M1+M2+M3, thus M < 2×P×N+(N−1)+(N−1). As the
maximum number of borders (i.e., neighbours) for a module
in any given modular robots system would never exceed 8 to
10, the complexity of message transmission of our algorithm
is linear to N, considering P as a constant.

III. ANALYSIS STUDY AND NUMERICAL RESULTS

In this section we will study the impact of the modular
robots’ initial properties on the performance of the proposed
algorithm, mainly the initial system shape and the position
of the leader. In order to assert our studies and discus-
sions, our distributed algorithm has been implemented in
VisibleSim [1], simulator dedicated communicating modular
robots.

Fig. 3. Filled shape system example: square Fig. 4. Chain shaped system example: snake Fig. 5. Randomly shaped system example

A. Impact of system shapes

In the previous section we showed that the complexity of
our algorithm is affected by the number of neighbours which
is largely related to the shape of the system. Next we develop
three cases of initial system shapes: filled shape, chain shape,
random shape. Throughout our development, we compared
the simulated energy and time complexity for each system
shape, for system sizes ranging from 100 modules to 40,000
modules.

1) Filled Shape: This kind of shapes aims at maximising
the number of neighbours at each module, meaning it aims
at having the minimum number of holes in the system. An
example of such shapes is presented in Figure 3. While such
shapes maximises the energy complexity of the algorithm
(i.e., total number of messages exchanged), it minimised its
time complexity (i.e., time to finish execution). This is due to
the distance (in terms of number of hops) between the leader
and the furthest module in the system being minimised. As
this algorithm is distributed, multiple tasks (i.e., messages)
can be executed simultaneously at different modules. We
will define a ”tick” as the unit of time needed to transmit
a message (through a pair of connected borders) between
any two neighbour modules. Let us consider a case in which
we have 40,000 modules. One way to create a filled shape
would be to structure them in a 200*200 square. After 4
ticks, the leader (positioned at the center of the system)
would have sent out four type 1 messages to its neighbours.
After 4 additional ticks, each of the discovered modules
would have replied to the leader with a type 2 message
(1 tick) and proceeded by transmitting type 1 messages to
their neighbours (3 ticks), and so on. Let us consider the
module in the top-right corner of the system as the furthest
module from the leader. In order to discover this module (via
messages from the first group), messages initiating from the
leader module should traverse a staircase pattern in order
to reach this furthest module. As the leader is at the center
of the network, the number of messages needed to reach
the furthest module is 2 * (100 - 1) + 1 = 199 messages
(of type 1). In other words, considering that in average the
module approaching the furthest module in the system is
discovered second (between all three neighbours), 199 * (1

+ 2) = 597 ticks are needed to reach any module in the
system via type 1 messages (while simultaneously replying
to other modules with type 2/3 messages). After that, 199
other ticks are needed to report the whole network size to
the leader (with the longest reporting route being from the
furthest module to the leader). Finally, 199 additional ticks
are needed for the global unique IDs assignment (with the
longest assignment route being from the leader to the furthest
module). All in all, 995 ticks are required for the algorithm
to terminate successfully. This is in fact, as we will observe
in further discussions, the minimum time complexity among
all proposed shapes. Thus, reaching the furthest module in

Fig. 6. Complexity progression for filled shapes systems

the system via the shortest messages route possible would
maximise the energy consumption while minimizing the
time complexity. In actuality, the furthest module in the
logical tree cannot be assured to be the corner module,
as this algorithm is distributed, and message handling and
concurrent events could result in unbalanced logical tree
structures (i.e., even in a 200*200 square, the furthest module
could be above 400 hops away, instead of 199). Figure 6 plots
the simulation results obtained with VisibleSim of the energy
and time complexity of filled shapes systems for various
system sizes.

2) Chain Shape: This kind of shapes aims at minimising
the number of neighbours at each module, meaning it aims
at building a chain-like structure, where each node has a

maximum of two neighbours (i.e., one parent neighbour
and one child neighbour). An example of such shapes is
presented in Figure 4. While such shapes minimises the
energy complexity of the algorithm, it maximises its time
complexity. This is due to the distance between the leader
and the furthest module being maximised. Setting the leader
as the middle module in the system, reaching the furthest
module in the system requires 40,000 / 2 = 20,000 sequential
type 1 messages. Following the same reasoning from the
previous subsection, 20,000 * 4 = 80,000 ticks are required
for the algorithm to terminate successfully. This would in fact
result in the maximum time complexity among all proposed
shapes. Figure 7 plots the simulation results obtained with
VisibleSim of the energy and time complexity of filled shapes
systems for various system sizes.

Fig. 7. Complexity progression for chain shaped systems

3) Random Shape: This kind of shapes is random, thus
resulting in a variable number of neighbours at each module
(ranging from the minimum of 2, to the maximum of B−1).
An example of such shapes is presented in Figure 5.

Such shapes would result in a random energy and time
complexity, both bounded by the time and energy complexity
of the previous two subsections. Defining T as the time
complexity and E as the energy complexity, we have:

Tf illed ≤ Trandom ≤ Tchain

Echain ≤ Erandom ≤ E f illed

This is due to the distance between the leader and the
furthest module in the system being randomized between
the minimum and maximum distance values, coming re-
spectively from the filled shaped and chain shaped systems
for a particular system size. In fact, a randomly shaped
system is a combination of multiple filled and chain shaped
subsystems. The more filled shapes subsystems composing
the randomly shaped system, the more the energy and time
performances approach those of a random shape system.
The more chain shaped subsystems composing the randomly
shaped system, the more the energy and time performances
approach those of a chain shaped system. Figure 8 plots the
simulation results of the energy and time complexity of filled
shapes systems for various system sizes. As each simulation
generates a completely random and new system shape, the

resulting curves don’t follow a certain pattern. Nevertheless,
both complexities are bounded by the complexities of the
filled and chain shaped systems, as expressed previously. An
example of a randomly generated system shape in VisibleSim
can be seen in Figure 9.

Fig. 8. Complexity progression for randomly shaped systems

In actuality, users could shape their modular robots system
to their liking, prior to the execution of our algorithm, in
order to accommodate to their particular needs and require-
ments. For a system size of 40,000 modules, a network
shape of a 200*200 matrix could be chosen for the best
time performance, or a 1*40,000 chain shaped system could
be chosen for the best energy performance, or any system in
between (e.g., 2*20,000 or 4*10,000 or any randomly shaped
system) in order to balance both metrics.

Fig. 9. An example of a randomly generated system shape in VisibleSim
with a system size of 2500 modules

B. Impact of the position of the leader

Finally, it is worth noting that in all our cases, the leader
is elected as the center module in the system. This is fairly
intuitive as you would like your leader to be the closest
possible to the whole system, or in other words, you would
like your leader to have the shortest distance with respect to
the furthest module in the system (as this was proven in the
previous subsections to be a key factor in the performance
of the algorithm). For example, if in a 200*200 matrix,
we were to place the leader at the bottom-left corner, the
distance between it and the ideal furthest module would’ve
been 2 * (200 - 1) + 1 = 399 messages, thus the algorithm’s
termination would’ve required 1,995 ticks (compared to the

995 ticks required if the leader was at the center of the
system). On the other hand, electing the leader anywhere
on the system would not affect the energy consumption (i.e.,
number or messages transmitted), it would only affect the
degree at which multiple messages are simultaneously being
handled at different modules.

IV. CONCLUSION AND FUTURE WORK

In this paper, we studied the unique node ID assignment
related issues in modular robots. It is inspired from the algo-
rithms proposed in the sensor networks domain and adapted
in order to suit the use case of modular robots. Our proposed
algorithm has been greatly optimised, bringing down the
number of exchanged messages between modules while also
greatly decreasing the messages’ length. The three phases of
the distributed algorithm are explained. We showed that our
algorithm has O(N) complexity. Following that, a detailed
discussion and numerical results were presented to show the
performance of our algorithm while comparing the effects of
various system shapes on the energy and time complexity of
the algorithm. The discussion also equipped the users with
enough knowledge in order to be able to decide how to shape
their modular robots systems prior to the execution of our
distributed algorithm, in the aim of balancing both energy
and time requirements. Also, simulation results in VisibleSim
are showcased that further support our theoretical analysis.

As discussed in the previous section, electing the center
module of the system as the leader for our algorithm results
in the best time complexity for the algorithm (whereas the
energy complexity remains constant regardless of the leader’s
position). In future work, we plan on studying the effects
of having multiple leaders distributed evenly throughout the
system on the time complexity of the algorithm. We also
aim at developing an analogous algorithm that supports the
removal and addition of modules throughout the execution
of the algorithm as well as after its completion. This is
specifically tricky in the modular robots use case, as the
detection of a removal or addition of a module is extremely
hard. This is due to having modules constantly moving
from one position to another, that is, disconnecting from
one module’s border in order to connect to another. Such
behaviour for example should not be treated as a removal
plus an addition of a module. Finally, we would want to
further assert our results and simulations by executing our
distributed algorithm on real-life modular robots systems.

ACKNOWLEDGEMENT

This work has been supported by the EIPHI Graduate
School (contract ANR-17-EURE-0002).

REFERENCES

[1] Visiblesim. https://projects.femto-st.fr/
projet-visiblesim/en. Accessed: 2020-03-01.

[2] Reem J Alattas, Sarosh Patel, and Tarek M Sobh. Evolutionary
modular robotics: Survey and analysis. Journal of Intelligent &
Robotic Systems, 95(3-4):815–828, 2019.

[3] Alberto Brunete, Avinash Ranganath, Sergio Segovia, Javier Perez
de Frutos, Miguel Hernando, and Ernesto Gambao. Current trends
in reconfigurable modular robots design. International Journal of
Advanced Robotic Systems, 14(3):1729881417710457, 2017.

[4] Joshua J Daymude, Robert Gmyr, Andréa W Richa, Christian Schei-
deler, and Thim Strothmann. Improved leader election for self-
organizing programmable matter. In International Symposium on
Algorithms and Experiments for Sensor Systems, Wireless Networks
and Distributed Robotics, pages 127–140. Springer, 2017.

[5] Bo Dong, Tianjiao An, Fan Zhou, Keping Liu, Weibo Yu, and
Yuanchun Li. Actor-critic-identifier structure-based decentralized
neuro-optimal control of modular robot manipulators with environ-
mental collisions. IEEE Access, 7:96148–96165, 2019.

[6] Yuval Emek, Shay Kutten, Ron Lavi, and William K Moses Jr.
Deterministic leader election in programmable matter. arXiv preprint
arXiv:1905.00580, 2019.

[7] Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier
Togni. Distributed leader election and computation of local identifiers
for programmable matter. In International Symposium on Algorithms
and Experiments for Sensor Systems, Wireless Networks and Dis-
tributed Robotics, pages 159–179. Springer, 2018.

[8] Md. Rakibul Haque, Mahmuda Naznin, and Rifat Shahriyar. Dis-
tributed low overhead id in a wireless sensor network. In Proceedings
of the 17th International Conference on Distributed Computing and
Networking, ICDCN ’16, pages 12:1–12:4, 2016.

[9] Andrew B Jones, Thomas Cameron, Benjamin Eichholz, David
Loegering, Taylor Kray, and Jeremy Straub. Self-reconfiguring mod-
ular robot learning for lower-cost space applications. In 2019 IEEE
Aerospace Conference, pages 1–6. IEEE, 2019.

[10] Jung Hun Kang and M Park. Structure-based id assignment for sensor
networks. International Journal of Computer Science and Network
Security, 6(7):158–163, 2006.

[11] Jialiu Lin, Yunhuai Liu, and Lionel M Ni. Sida: self-organized id
assignment in wireless sensor networks. In 2007 IEEE International
Conference on Mobile Adhoc and Sensor Systems, pages 1–8. IEEE,
2007.

[12] André Naz, Benoı̂t Piranda, Seth Copen Goldstein, and Julien Bour-
geois. A time synchronization protocol for modular robots. In 2016
24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP), pages 109–118. IEEE, 2016.

[13] ElMoustapha Ould-Ahmed-Vall, Douglas M Blough, Bonnie Heck
Ferri, and George F Riley. Distributed global id assignment for
wireless sensor networks. Ad Hoc Networks, 7(6):1194–1216, 2009.

[14] Michael Park, Sachin Chitta, Alex Teichman, and Mark Yim. Au-
tomatic configuration recognition methods in modular robots. The
International Journal of Robotics Research, 27(3-4):403–421, 2008.

[15] Roberto Petroccia. A distributed id assignment and topology discovery
protocol for underwater acoustic networks. In 2016 IEEE Third
Underwater Communications and Networking Conference (UComms),
pages 1–5. IEEE, 2016.

[16] Federico Pratissoli, Andreagiovanni Reina, Y Kaszubowski Lopes,
Lorenzo Sabattini, and Roderich Groß. A soft-bodied modular re-
configurable robotic system composed of interconnected kilobots. In
Proceedings of the 2019 IEEE international symposium on multi-robot
and multi-agent systems (MRS 2019), 2019.

[17] Joshua R Smith. Distributing identity [symmetry breaking distributed
access protocols]. IEEE Robotics & Automation Magazine, 6(1):49–
56, 1999.

[18] Pierre Thalamy, Benoı̂t Piranda, and Julien Bourgeois. Distributed
self-reconfiguration using a deterministic autonomous scaffolding
structure. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal,
QC, Canada, May 13-17, 2019, pages 140–148, 2019.

[19] Thadeu Tucci, Benoı̂t Piranda, and Julien Bourgeois. A distributed
self-assembly planning algorithm for modular robots. In Proceedings
of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2018, pages 550–558, 2018.

[20] Meibao Yao, Christoph H Belke, Hutao Cui, and Jamie Paik. A
reconfiguration strategy for modular robots using origami folding. The
International Journal of Robotics Research, 38(1):73–89, 2019.

[21] Qingchao Zheng, Zhixin Liu, Liang Xue, Yusong Tan, Dan Chen,
and Xinping Guan. An energy efficient clustering scheme with self-
organized id assignment for wireless sensor networks. In 2010 IEEE
16th International Conference on Parallel and Distributed Systems,
pages 635–639. IEEE, 2010.

[22] Hongbo Zhou, Matt W Mutka, and Lionel M Ni. Reactive id
assignment for sensor networks. In IEEE International Conference
on Mobile Adhoc and Sensor Systems Conference, 2005., pages 6–pp.
IEEE, 2005.

