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Abstract—Nowadays, most Internet of Things (IoT) devices
collect multiple features and produce multivariate time series.
In an IoT application, the mining and classification of the
collected data have become crucial tasks. Hybrid LSTM-fully
convolutional networks (MLSTM-FCN) provide state-of-the-art
classification results on multivariate time series benchmarks.
This paper examines the use of the DenseNet architecture,
originally proposed for computer vision applications, for the
classification of multivariate time series. More precisely, this
paper proposes a hybrid LSTM-DenseNet model that is able
to achieve the performance of the state-of-the-art models and
surpass them in many situations, based on the results obtained
from various experiments on 15 benchmark datasets. Thus,
this paper suggests the 1D DenseNet as a potential tool to be
considered by machine learning engineers and data scientists for
IoT time series classification task.

Index Terms—IoT, time series classification, multivariate time
series, deep learning, DenseNet, long short-term memory

I. INTRODUCTION

An Internet of Things (IoT) is a self-configuring, complex,
and adaptive network connecting recognizable “things” to
the internet. The “things” have capabilities for sensing and
potential programmability. They are defined by information
such as the identity, status, or location and offer services,
with or without human intervention, through data collection,
communication, and ability to take actions [1]. IoT applica-
tions are boundless, and the emergence of edge computing has
enabled more optimized data processing, real-time analytics,
and the use of artificial intelligence in many applications such
as the energy and smart grid industries, connected vehicles
and transportation, manufacturing, wearables, implantations,
and medical devices [2].

Efficient real-time edge analytics covers numerous function-
alities in data mining, such as classification, clustering, outlier
detection, time series analysis and association analysis, and has
recently been attracting many researchers [3] [4]. Many of the
data collected from IoT and Industrial IoT (IIOT) applications
have been gathered over the course of time, constituting a
time series. Time Series Classification (TSC) has been used
to solve recognition tasks in different areas, from healthcare
to science and industry. These tasks include signature ver-
ification, driver guidance, activity recognition, cardiovascular
disease detection, and neurological disorders [5]-[7]. With the

development of the IoT and 5G, the learning representations
and the TSC become more and more relevant.

A time series is a set of ordered real values. Nowadays,
many of the IoT devices can collect multiple features, resulting
in Multivariate Time Series (MTS). A MTS T' = [t}, 2, ..., t"]
consists of n univariate time series, where t* € IRL and L is
the length of each time series ¢'. Various time series classifi-
cation methods were proposed in the literature [8]. The most
famous classifiers are the distance-based classifiers such as k-
nearest neighbor with Dynamic Time Warping (DTW) distance
and dictionary-based classifiers in which a time series is
converted into representative words. An example of dictionary-
based techniques is the bag-of-SFA-symbols (BOSS). Certain
classifiers are shapelet-based, such as the Fast Shapelets (FS)
and the Shapelet Transform (ST), and ensemble-based, such as
the Collective of Transformation Ensembles (COTE), which
is a combination of classifiers in different domains. The
aforementioned categories and methods of classification are
described in detail in [8] [9].

Another approach to time series classification which has
proved to be effective in recent years is end-to-end deep
learning [10]. This approach consists in learning the hidden
features from raw time series using non-linear transformations
without the need for extensive feature engineering. Different
architectures have been proposed in the literature that are based
on Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), Multi Layer Perceptron (MLP), and Echo
State Network [10] [11].

This paper proposes a Deep Neural Network (DNN) model
that is based on the densely connected convolutional network,
namely DenseNet, and the Long Short-Term Memory (LSTM)
RNN. Note that the objective of this paper is not to compare
the proposed deep learning model with classifiers in different
categories (distance-based, feature-based, ensemble, etc.), but
rather to show that DenseNets are candidates which should be
taken into account when choosing a deep learning architecture
for TSC. Note that when processing time series, DenseNets
can be used in a stand-alone way, or combined with LSTMs
and this paper will consider both strategies.

The paper’s structure is as follows. Section II offers an
insight into convolutional and recurrent neural networks. Sec-
tion III presents the most effective deep learning-based time



series classifiers proposed in the literature. Section IV explains
the proposed DenseNet-based deep learning model. Section V
outlines the results obtained and compares them with those
obtained from the models discussed in section III. Section VI
concludes this paper.

II. BACKGROUND

This section provides a background on CNNs and RNNs,
as most of the proposed TSC models are based on convolution
blocks and LSTM units.

A. Convolutional neural networks

Normally, CNNs are used to analyze image data. With
multidimensional data, such as images and MTS in our case,
this kind of network scales well. A CNN is a feed forward
network consisting of many layers including convolutional
filters with batch normalization [12] and layers for rectification
and pooling. A CNN typically adopts one or more fully-
connected layers after the last pooling layer in order to
convert 2-D feature maps into a 1-D vector to allow for final
classification.

CNNs have proven to be effective in solving computer vi-
sion issues, including achieving state-of-the-art results on tasks
such as image classification and captioning, object localization
and more. This is done by working directly on raw data such
as raw pixel values instead of on manually derived features
extracted from the raw data. In order to solve the addressed
problem, the model learns how to automatically extract the
useful features from the raw data. This type of learning is
referred to as representation learning, and the CNN does this
in a way that extracts the features regardless of how they
appear in the data. CNNs’ ability to learn and derive features
automatically from raw input data can be extended to TSC
problems. A series of observations can be viewed as an image
that can be read and transformed into the most salient elements
by a CNN model. In this case, a convolution can be seen as
applying and sliding a one-dimensional filter over the time
series to perform a non-linear transformation.

B. Recurrent neural networks

Recurrent neural networks such as the Long Short-Term
Memory Network (LSTM) provide the explicit handling of
order between the input samples while learning a mapping
function from inputs to outputs that CNNs do not provide.
Typically, RNNs are used with training samples that have
clear interdependencies and relevant representation to hold
information about what happened in previous time steps. In
other words, these models are providing output by leveraging
two input sources, the current and the recent past.

RNNs suffer from the so-called long-term dependencies
problem. This means that when attempting to link previous
information to a present task they can not reach far previous
memory. LSTM networks can be effective for TSC problems
because they can overcome the long-term dependencies issue
by incorporating weights and gates [13], and they have the
ability to learn long-term associations in a sequence. LSTM

networks do not require a pre-specified time window and
are able to model complex multivariate sequences accurately.
However, even if an LSTM is expected to capture the long-
term dependencies better than the RNN, it appears to become
forgetful. This issue is tackled by Bahdanau et al in [14].
Bahdanau et al proposed the attention mechanism to address
the long-term dependencies problem in neural-based machine
translation of texts. The goal was to assign some of the input
words more significance compared to others while the sentence
was being translated. The authors have done this simply by
building a context vector and taking a weighted sum of the
hidden states. The core idea is an attempt to mimic the humain
brain by selectively concentrating on a few relevant things,
while ignoring others. The authors in [15] detail the use of
the attention mechanism for TSC.

III. RELATED WORK
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Fig. 1: The network structure of FCN, ResNet, MLSTM-FCN, and
DenseNet

Different neural network architectures for multivariate TSC
were proposed in the literature. In the following we will
present the most effective architectures based on the results
obtained on the TSC benchmarks, namely the UCR/UEA



archive [8] [16] and the MTS archive [17], in addition to the
conclusions derived from detailed surveys [10] [11].

The Fully Convolutional Networks (FCNs) were originally
proposed for segmentation tasks [18] [19] and are very effec-
tive in extracting features from input data. The FCN used for
TSC is formed by stacking three blocks, each consisting of a
convolutional layer with filters, preceded by a batch normaliza-
tion layer and a ReLU activation layer as shown in Figure 1-a.
Then a global average pooling layer is applied to the features
after the first three convolutional blocks, effectively reducing
the number of weights. Finally, the softmax layer produces the
final output.

The Residual Network (ResNet) is a deep architecture used
for TSC. There are many variants. The version presented in
Figure 1-b consists of 9 convolutional layers followed by
global average pooling and softmax layers. This architecture
uses shortcut connections between successive convolutional
layers for training and adds linear shortcuts to connect a
residual block’s output to its input thus resulting in an easier
training.

The authors in [15] proposed the Multivariate LSTM Fully
Convolutional Network (MLSTM-FCN). This proposed archi-
tecture has yielded so far the best results on the multivariate
UEA archive. The MLSTM-FCN model, as shown in Fig-
ure 1-c, consists of a fully convolutional block and a LSTM
block. The input multivariate time series is transferred into
a shuffle layer and subsequently passing it into a LSTM
block with attention mechanism followed by dropout. The
attention LSTM layer output is concatenated with the global
pooling layer output, and the final results are obtained from
the softmax layer. An interesting approach used by the authors
is the addition of the squeeze and excite block proposed and
detailed in [20] after each convolutional block, thus enhancing
the performance of the model.

The Densely Connected Convolutional Networks
(DenseNet) was proposed in [21]. The proposed architecture
attempts to solve the problem of vanishing gradient by
introducing connection from one layer to all its consequent
layers in a feed forward manner. The authors in [22] adapted
the DenseNet architecture for univariate TSC. The motivation
behind using DenseNet for time series is that this architecture
facilitates the propagation of features and enables feature
reuse, which greatly reduces the number of parameters.
However, the main objective of the work in [22] is to study
the normalization techniques used with DenseNet and not
to compare its performance with the state of the art DNN
techniques used for TSC.

The rest of this paper introduces an adapted version of
DenseNet for the processing of multivariate time series (Fig-
ure 1-d), and a new architecture inspired by the work described
in [15] in which the DenseNet is used with LSTM. Notice that
the authors in [15] referred to their architecture as MALSTM-
FCN, where they use the attention mechanism with LSTM. We
will refer to this architecture in this work as MLSTM-FCN.

IV. PROPOSED MODELS

This section presents the two DNN models considered in
this paper. Similarly to [22], the first model is an adapted
version of the DenseNet for multivariate time series, and is
illustrated in Figure 2. It takes a signal input of size (m,n)
where m is the number of timesteps and n the number of
features. The input goes first through a 1D convolution layer
with a kernel size of 3 then through two dense blocks and
a global pooling step. Each dense block consists of four
convolution steps. Each step applies four operations, namely
batch normalization, ReLU activation, squeeze and excite
operation inspired from [15] as well as a 1D convolution with
kernel size of 3. The number of filters is initialized to 32 and
incremented by 16 after each step. It may be noticed that,
after each step, the number of parameters in each dense block
increases by more than 16. This is due to the concatenation
operation, where features of the k' layer are concatenated
with features of previous layers and are provided as input to
the next layer. Between both dense blocks, a down-sampling
layer that reduces the size of feature maps is used. This
layer is referred to as the transition layer and it applies batch
normalization, ReLU activation, 1D convolution with kernel
size 1 and 1D average pooling with pooling size 2 to the
input. The last dense block’s output is passed through batch
normalization, ReLU activation, 1D global average pooling,
and softmax.

The second model uses the same DenseNet architecture of
the first, and adds more complexity to it. It is inspired from
the work proposed in [15] and illustrated in Figure 1-c. As
shown in Figure 3, a signal input of size (m,n) is fed to
the previously described dense architecture, in addition to a
LSTM layer with 8 units and an attention mechanism followed
by a dropout operation. The number of units has been chosen
based on the results achieved in [15]. Note that the temporal
dimension of the input is shuffled before being fed to the
LSTM layer when the number of timesteps is greater than the
number of features. Given that the number of timesteps m is
usually greater than the number of features n in a time series,
the LSTM will involve n timesteps to handle m features,
which is more efficient, when shuffling the dimension and
providing the LSTM an input of dimension (n, m). The output
of the attention LSTM layer is then concatenated with the
output of the global pooling layer of the DenseNet block and
passed through a softmax layer. Both models use the variant
of stochastic gradient descent ‘Adam’ [23] with a learning rate
of 0.001 as optimizer'.

V. EXPERIMENTS

This paper uses the Keras library [24] with the Tensorflow
backend [25] to train the aforementioned models. In the
experiments of this paper, 15 datasets coming from [17], [26],
[27] are used. Note that the authors in previous works have
made their experiments on more datasets, such as in [10],

IThe codes and weights of some models are available at

https://github.com/josephazar/MLSTM-DenseNet
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denote the number of parameters at each step.

[15]. The previously proposed models were able to achieve
very high accuracy on multiple datasets, ranging from 95%
to 100%. Such datasets are omitted in our experiments where
very high accuracy is reached by most of the DNN models,
since the features in these datasets can be easily learned
by a simple classifier and there is nothing to improve. The
computations were performed on an NVIDIA Tesla Titan X
GPU to train the models on these datasets.

A DNN model’s input is a tensor with shape (s,m,n),
where s is the number of samples, m is the length of each
sample’s time series (or number of timesteps), and n is the
number of features. The samples of each dataset are already
divided into train and test sets. Hyperparameters such as the
number of epochs and batch size are specified for each dataset,
and the option of standardizing the numerical features to have
a mean 0 and unit variance using standard scalar is based on

the numerical ranges of the features and the various empirical
tests performed. Table I shows the properties and parameters
used for each dataset.

The accuracy metric was used to evaluate the performance
of the five DNN models discussed in this paper, namely
FCN, ResNet, MLSTM-FCN and the two models described
in section IV: DenseNet and MLSTM-DenseNet. Important to
note that the accuracy value achieved in the experiments by
the state-of-the-art models may vary from the one achieved
in the original papers, and this is due to the change in the
hyperparameters, and the standardization of some datasets in
addition to the stochastic nature of deep learning algorithms.
Though, we assured that all models are trained and evaluated
on each dataset with the same settings and conditions.

Table II shows the classification accuracy value obtained
by implementing the 1D-DenseNet and MLSTM-DenseNet,



Dataset # classes | # features | Timesteps | # samples Task Train-test | Batch size | Epochs | Standardize | Source
Uwave 8 3 315 4478 Gesture recognition 20-80 16 2000 yes [17]
Gesture Phase 5 18 214 396 Gesture recognition 50-50 16 2000 yes [26]
LP3 4 6 15 47 Robot failure recognition 36-64 8 2000 no [26]
LP5 5 6 15 164 Robot failure recognition 39-61 16 2000 no [26]
Ozone 2 72 291 344 Weather classification 50-50 16 2000 no [26]
ECG 2 2 152 200 ECG classification 50-50 16 2000 yes [17]
EEG 2 13 117 128 EEG classification 50-50 16 2000 no [26]
KickvsPunch 2 62 841 26 Action recognition 62-38 4 2000 yes [17]
Netflow 2 4 997 1337 Action recognition 60-40 128 2000 yes [17]
Action 3D 20 570 100 567 Action recognition 47-53 16 2000 yes [27]
LP2 5 6 15 47 Robot failure recognition 36-64 8 2000 no [26]
HT Sensor 3 11 5396 100 Food classification 50-50 8 2000 no [26]
Movement AAL 2 4 119 314 Movement classification 50-50 64 2000 yes [26]
Occupancy 2 5 3758 117 Occupancy classification 35-65 16 2000 yes [26]
AREM 7 7 480 82 Activity recognition 51-49 16 2000 no [26]

TABLE I: Properties of all the datasets used in this paper and originated from [17], [26], [27]. The batch size and number of epochs used

to train the DNN models are shown for each dataset

Dataset FCN | ResNet | DenseNet | MLSTM-DenseNet | MLSTM-FCN
Uwave 93.4 92.6 93.6 89.7 89.3
Gesture Phase 459 479 48.9 57.0 55.5
LP3 46.6 43.3 70.0 83.3 80.0
LP5 68.0 65.0 68.0 69.0 67.0
Ozone 81.5 83.2 81.9 86.0 82.0
ECG 90.0 91.0 92.0 93.0 93.0
EEG 64.0 62.5 62.5 67.0 65.6
KickvsPunch 60.0 80.0 100 100 100
Netflow 95.5 95.8 96.6 95.1 87.2
Action 3D 55.5 57.5 52.1 77.1 75.4
LP2 46.3 30.0 76.6 83.3 83.3
HT Sensor 84.0 88.0 82.0 86.0 82.0
Movement AAL | 61.1 59.2 58.6 77.0 79.0
Occupancy 71.0 72.3 72.3 79.0 77.0
AREM 84.6 89.7 87.18 94.8 92.3

TABLE II: Achieved accuracy by the five DNN models on the 15 multivariate time series datasets. The best performance is shown in bold

and regenerating the FCN, ResNet, and MLSTM-FCN models
based on their actual implementation on github. The proposed
MLSTM-DenseNet model was able to outperform the other
models on 8 datasets and provide the highest accuracy on
3 datasets, namely ECG, LP2, and KickvsPunch, alongside
the MLSTM-FCN. The 1D-DenseNet model yielded the best
accuracy on the Uwave and Netflow datasets, the ResNet
model on the HT Sensor dataset, and the MLSTM-FCN
model on the Movement AAL dataset. This means that the
performance of the proposed MLSTM-DenseNet model over
various datasets is generally higher than that of other state-of-
the-art models.

VI. CONCLUSION

The proposed MLSTM-DenseNet classification model
shows that replacing the Fully Convolutional Network (FCN)
with a DenseNet is a potential solution that needs to be
considered for the classification of multivariate time series.
The benefit of DenseNet is that every layer has direct access
to the gradients from the loss function and the original input
signal, resulting in an enhanced flow of information and gra-
dients across the network, as well as a regularizing effect that
decreases overfitting on tasks with limited training set sizes.
Experiments have been conducted on 15 multivariate time
series datasets, and the results show that the proposed approach
is capable of achieving the performance of the state-of-the-

art models and bypassing them in several cases. For some
datasets, such as the ones in which the number of timesteps is
high, the standalone 1D DenseNet showed outperformed the
hybrid models. Considering the 1D DenseNet as a standalone
model or as a replacement for FCN in the MLSTM-FCN for
the classification of multivariate time series can thus help to
improve classification performance.

For future work, we intend to perform further experiments
and compare the models with regard to other metrics than the
accuracy such as using the mean per-class error, training and
prediction time and the complexity of the models. Moreover,
we intend to better understand why the proposed model does
not match the FCN and ResNet performance on the Uwave
dataset.
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