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Featured Application: Engineered phononic resonances in the ultrasonic range.

Abstract: Phononic coupled-resonator waveguide cavities are formed by a finite chain of defects
in a complete bandgap phononic crystal slab. The sample is machined in a fused silica plate by
femtosecond printing to form an array of cross-shape holes. The collective resonance of the phononic
cavities, in the Megahertz frequency range, are excited by a piezoelectric vibrator and imaged by
laser Doppler vibrometry. It is found that well-defined resonant cavity modes can be efficiently
excited, even though the phononic cavities are distant by a few lattice spacings and are only weakly
coupled through evanescent elastic waves. The results suggest the possibility of engineering the
dynamical response of a set of coupled phononic cavities by an adequate layout of defects in a
phononic crystal slab.
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1. Introduction

The engineering of phononic resonances enables the excitation of localized vibrations of
microscopic objects at ultrasonic frequencies, forming meta-atoms or meta-molecules with precise
eigenfrequencies and elastic waveforms. They have potential applications as sensor elements [1],
MEMS resonators [2], elastic waveguides [3], or optomechanical systems [4–7], for instance.

Phononic resonances are naturally induced at the microscale with three-dimensional mechanical
structures attached to a surface, for instance, in the form of erected pillars [8] or chains of
resonators [3,9]. One requirement is that clamping to the surface or support does not reduce
too significantly the quality factor of resonances through radiation of outgoing elastic waves.
Another approach that is prone to engineering relies on phononic crystals [10–12]. One of their
important features is indeed the formation of complete band gaps, inside which wave propagation is
forbidden and only evanescent waves can exist.

By introducing defects in a phononic crystal, spatially-localized states are introduced with precise
resonant frequencies. Further forming an infinite chain of such defects leads to the concept of the
coupled-resonator elastic waveguide (CREW) [13], originally inspired by coupled-resonator optical
waveguides in photonic crystals (CROW) [14]. It is known that the dispersion of waves guided along
a CREW is very smooth and is determined by the coupling coefficients existing between phononic
resonators. When the chain is made finite, a discrete set of resonance frequencies established along the
dispersion relation for guided waves; we hence term the chain a coupled-resonator waveguide cavity.
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The resonant states are collective vibrations of the chain, as we have shown recently in the case of a
chain of seventeen resonators implemented in a two-dimensional fused silica phononic crystal slab,
and are rather independent of the path followed over the surface of the slab [15].

In this paper, we experimentally explore how a set of a few phononic coupled-resonator
waveguide cavities, coupled weakly through evanescent elastic waves, can form collective vibrations
where the resonance modes of the individual phononic cavities are essentially preserved but can be
excited at once. Experimentally, we rely on the phononic crystal slab technology developed for our
previous work based on femtosecond laser writing followed by KOH etching of a fused silica plate [15],
but extend our considerations to the set of three short phononic cavities shown in Figure 1. In the
following, we first present the experimental results and the numerical simulations that sustain them,
before discussing the observed collective vibrations in the light of a dynamical matrix model with one
degree of freedom per defect and the nearest-neighbor approximation.

(a)
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9 10 11
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Figure 1. (a) Optical microscope image of the sample considered in this work. The 500 µm-thick
fused silica plate is processed by femtosecond laser-assisted wet etching (FLAE). Cross-holes are
removed from the plate to define a phononic crystal slab structure with 18 rows and 20 columns.
Defects, numbered from 1 to 11, define a set of three coupled-resonator waveguide cavities. The source
region, placed inside the crystal structure, is in contact from the bottom with a piezoelectric vibrator.
Out-of-plane displacements of the top surface are measured by a scanning laser vibrometer. The lattice
spacing is a = 714 µm. (b) Scanning electron microscope view of a cross-hole and zoomed view at a
corner showing the side-wall rugosity.

2. Results

The phononic crystal slab sample we consider is shown in Figure 1. The crystal itself is a
square lattice of cross-holes [16] with lattice constant a = 714 µm. Between each group of four
nearest holes, a square-shape membrane resonator is defined and is connected to its four neighbors.
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The phononic crystal slab has a large complete bandgap that is detailed later on. As a note, cross-holes
provide a much wider bandgap width than circular holes, for instance [16]. There are even other
unit-cell designs that still allow gaining on the bandgap width [17], but we selected cross-holes in this
work because of the simpler footprint for technology. For frequencies within the complete bandgap,
there are only evanescent Bloch waves and the coupling between defects decreases exponentially
with their separation. A total of eleven identical defects are introduced and are grouped in three
coupled-resonator waveguide cavities: defects 1–4 form CREW cavity C1, defects 5–8 form CREW
cavity C2, and defects 9–11 form CREW cavity C3). Defect resonators in the cavities are separated by
a distance 2a. Comparatively, the shortest distance between two cavities is 4a. Hence, it is expected
that CREW cavities are only weakly coupled. Experimental details regarding sample preparation and
characterization are identical with Ref. [15] and are not repeated here.

The phononic crystal dispersion properties are summarized in Figure 2. All computations are
performed using the finite element method. Phononic band structures are obtained using the unit-cell of
Figure 2a for the phononic crystal and using the unit-cell of Figure 2b for the CREW. Periodic boundary
conditions are applied on all lateral sides, whereas the bottom and top surfaces are left free; the Bloch
wavevector is fixed and frequencies are obtained by solving an eigenvalue problem [13]. The band
structures are shown only for out-of-plane polarized Bloch waves, as only that displacement component
is accessible in our experiments. Geometrical parameters are chosen to ensure the existence of a wide
complete bandgap, extending between 1.7 and 4 MHz except from a flat bulk band appearing around
3.2 MHz. The smallest length in the structure is a − b = a/10 = 71 µm, much larger than the estimated
resolution of ≈ 1 µm of the technological process for the holes. The CREW considered in this paper
are formed from defects separated by two lattice constants. Defects are simply created by omitting to
etch chosen cross holes. As a result, it is expected that elastic waves can become spatially localized
around the defects, for frequencies inside the complete bandgap, decaying exponentially away from
the defect center [18–20]. If defects are placed not too far away from one another, they are in their
mutual near-fields and are thus evanescently coupled. Guided elastic waves can then transit from one
defect to the next. The dispersion of guided waves in a CREW is very smooth and is dictated by the
coupling coefficients between resonant defects [13]. In Figure 2, many guided bands appear within the
complete bandgap, each of them originating from a given resonant mode. In relation to experiments,
we have selected three frequency ranges around 2.25 MHz (range A), 3 MHz (range B), and 3.55 MHz
(range C). A total of five guided waves are apparent, each with their specific modal shape. The two
pairs of guided waves in ranges A and C have orthogonal polarizations and hence their dispersion
curves can cross without interference. Their respective actual excitations in the experiment depend on
the symmetry of the excitation source.

Ultrasonic waves in the experimental sample of Figure 1 are excited thanks to a piezoelectric
vibrator in contact with the bottom surface in the source region. Coupling from the source region to
the resonators occurs mainly with defect 1. Out-of-plane vibrations at the top surface are measured
using a scanning laser vibrometer (Polytec Microsystem Analyzer MSA-500, equipped with analog
displacement decoder model DD-300; 0.03-24 MHz frequency response with 50 nm/V sensitivity).
The source waveform sent to the piezoelectric vibrator is a periodic chirp covering the frequency
range of interest. The amplitude of out-of-plane displacement measured at three different locations
is plotted in Figure 3a. Measurements averaged over defect 4 are considered typical of CREW cavity
C1, whereas measurements for CREW cavities C2 and C3 are averaged over the unit cells just right of
defect 8 and defect 11, respectively. Displacements larger than 0.3 pm can be recorded with this setting.
The measurements reveal a sequence of very sharp resonance peaks, in agreement with previous
results on a sample with a single chain of seventeen coupled resonators [15]. Compared with that
sample, however, the resonance peaks are distributed over a larger span of frequencies, especially in
the range from 2.1 to 2.3 MHz.
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Figure 2. Dispersion of the phononic crystal slab of cross holes. (a) The primitive unit cell is defined by
four parameters: the lattice constant a, the slab thickness h, the cross length b, and the cross width c.
(b) A coupled-resonator elastic waveguide (CREW) is formed from defects separated by two lattice
constants and created by omitting one hole. The depicted supercell has seven rows and two columns.
(c) The band structure of the crystal is shown for out-of-plane modes only and for b/a = 0.9, c/a = 0.25,
and h/a = 0.7. The complete bandgap appears between the gray regions. The color scale of the bands
is proportional to the out-of-plane component of displacement. (d) The band structure of the CREW
contains a series of flat (small dispersion) bands, each holding a guided Bloch wave. (e) Close-up views
of three selected frequency ranges are shown. Eigenmodes at the Γ point of the first Brillouin zone are
shown for each of the five bands.

Measurements can be compared directly with a finite element model based on a stochastic force
distribution applied in the source region [21]. To this end, a three-dimensional mesh is created to
represent the full sample shown in Figure 1, with a perfectly matched layer (PML) surrounding
the finite size crystal. Free boundary conditions are still applied on the bottom and top surfaces.
Material losses in fused silica are added to the model. A fair correspondence is observed between
experiment and numerical simulation in Figure 3. In particular, the distribution of resonance peaks and
their central frequencies are rather well-reproduced numerically, but the response levels are less reliable.
Compared to the experiment, indeed, a fully spatially random body force distribution is considered
numerically, whereas the actual piezoelectric excitation has a more symmetrical and homogeneous
distribution. Furthermore, the resonance peaks are very narrow and are resolved experimentally with
only a few sampling points.

In addition to the frequency response functions shown in Figure 3a, the scanning laser vibrometer
can form images of the spatial distribution of the out-of-plane displacement at the surface of the
sample at a fixed frequency. We show in Figure 4 the measured displacement fields at three selected
frequencies for which maxima of vibration are observed experimentally in CREW cavity C1. Each of
these measurements is compared with the finite element numerical simulation obtained at the
same frequency.
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Figure 3. (a) Experimental and (b) numerical absolute vertical displacement at the position of the
received resonators.

At the frequency of 2.26 MHz, vibrations in CREW cavity C1 are clearly excited and the
modal shape of the symmetrical mode in range A of Figure 2e is recognized. Comparatively,
the antisymmetrical mode in range A is not observed experimentally. The numerical simulation
in contrast involves both symmetrical and antisymmetrical modes. As mentioned before, this fact
can be explained by the symmetry of the actual source compared to the absence of symmetry of the
numerical (random) source.

At the frequency of 3 MHz, the observations are similar for CREW cavity C1 and the modal shape
of the non-degenerated mode in range B of Figure 2e is recognized. Faint vibrations in both CREW
cavities C2 and C3 are observed as well, with exactly the same modal shape.

At the frequency of 3.56 MHz, the observations are similar again and the modal shape of the
symmetrical mode in range C of Figure 2e is recognized in the experimental image. As for 2.26 MHz,
the numerical simulation involves both symmetrical and antisymmetrical modes. Clear vibrations
in both CREW cavities C2 and C3 are observed at 3.56 MHz, with exactly the same modal shape.
There is hence energy transfer from the vibrations of CREW cavity C1 to both CREW cavities C2 and
C3, without a significant change in modal shapes, as can be expected in the case of weak coupling of
resonant cavities.
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Figure 4. Experimental (a) and numerical (b) out-of-plane displacement maps at frequencies 2.26 MHz,
3 MHz, and 3.56 MHz.

3. Discussion

In Ref. [15], we introduced a dynamical matrix model to predict the resonant frequencies of a
phononic polymer, or a generalized chain of coupled resonators that is not necessarily organized along
the principal axes of the supporting phononic crystal. Here we extend the model to the more general
case of unequal coupling coefficients. In short, the model assumes that the state of the phononic defect
structure is described by one macroscopic degree of freedom per resonator, Un. All resonators are
identical except for a spatial shift in the crystal and have the same isolated resonance frequency ω0.
Then, the dynamical equation for coupled resonators is written

−Üm =
N

∑
n=1

D(m, n)Un, (1)
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with a symmetric dynamical matrix D(m, n) such that D(m, m) = ω2
0 . The eigenvalues of the dynamical

matrix give the observable resonant frequencies of the finite structure. Their number equals the number
of resonators for a non-degenerate band.

Within each of the three CREW cavities in this paper, the dominant coupling coefficient is between
nearest neighbors, with a lattice separation 2a. For every waveguide band, the coupling coefficient can
be estimated from the frequency extent of the dispersion relation. Hence a coupling coefficient γ can
be estimated for each band, or each single defect mode. Furthermore, the CREW cavities are separated
by a distance of at least 4a (vertically, the separation between defects numbers 2 and 5 is 4a; similarly
the vertical separation between defects numbers 3 and 9 is also 4a). This leads us to define a coupling
coefficient δ that is much smaller than γ to describe the evanescent coupling between CREW cavities 1
and 2, and 1 and 3 as well. Neglecting all other coupling coefficients, we thus can write the dynamical
matrix as

D =



ω2
0 γ 0 0

γ ω2
0 γ 0

0 γ ω2
0 γ

0 0 γ ω2
0

0 0 0 0
δ 0 0 0
0 δ 0 0
0 0 δ 0

0 0 0
0 0 0
δ 0 0
0 δ 0

sym.

ω2
0 γ 0 0

γ ω2
0 γ 0

0 γ ω2
0 γ

0 0 γ ω2
0

0

sym. sym.
ω2

0 γ 0
γ ω2

0 γ

0 γ ω2
0



. (2)

The three diagonal blocks account for the eigenfrequencies of CREW cavities C1, C2, and C3,
in that sequence. The off-diagonal blocks of the first line provide the weak couplings between
CREW cavities.

The discrete dynamical model explains most of the features of the experimental observations of
the previous section. Resonances are discrete, appear as sharp peaks centered on the eigenfrequencies
of the finite structure, and the modal shapes of the original resonances of the isolated defect resonators
remain clearly present in the coupled vibration fields. It also implies that a resonator placed far away
from the source of vibrations can be rather efficiently excited, by a mechanism of collective vibrations
of the whole phononic crystal structure. Here, cavities placed four phononic crystal rows apart are
observed to sustain such collective vibrations.

Before closing this paper, we mention an intriguing observation at frequency 2.09 MHz, reported
in Figure 5. At that frequency, the phononic band structure of Figure 2 does not indicate the
existence of out-of-plane polarized guided Bloch waves for the 2a-separated CREW. In contrast,
both experiment and numerical simulation indicate the existence of vibration peaks around that
frequency. Including also in-plane waves, we show in Figure 5a a close-up view of the phononic
band structure. Two additional mostly in-plane polarized bands exist around 2.1 MHz, but the
modal shape in Figure 5b is not in agreement with the one observed experimentally in Figure 5c and
numerically in Figure 5d, which rules out its contribution to the dynamical response. The numerical
simulation in Figure 5d suggests that the out-of-plane vibration excited in CREW cavity C1 may be
evanescent (its amplitude decays smoothly from left to right). More investigations are necessary to
fully understand the origin of the response at frequency 2.09 MHz, but it seems out of the scope of the
dynamical model above.
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Figure 5. (a) Phononic band structure around 2.1 MHz. (b) the modal shape at the point marked with
a red cross in (a) is depicted. Experimental (c) and numerical (d) out-of-plane displacement maps are
shown at frequency 2.09 MHz.

4. Conclusions

As a summary, we have experimentally investigated how a set of three phononic
coupled-resonator elastic waveguide cavities form collective vibrations. The CREW cavities are
fabricated in a fused silica plate and resonante at a few Megahertz. They are weakly and evanescently
coupled for frequencies within the wide complete bandgap, as they are separated by four lattice
spacings. Overall, the resonance modes of the individual phononic cavities are essentially preserved
and can be excited at once. The observed collective vibrations can generally be explained in the light
of a dynamical matrix model with one degree of freedom per defect and within the nearest-neighbor
approximation. Beyond this simplified model, the details of the vibrations at resonance are observed
by a scanning laser vibrometer. In particular, the vibration modal shapes are found to be consistant
with a full finite element model of the experiment.
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