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Abstract—This paper addresses the self-reconfiguration
problem in large-scale modular robots for the purpose of shape
formation for object representation. It aims to show that this
process can be accelerated without compromising on the visual
aspect of the final object, by creating an internal skeleton
of the shape using the previously introduced sandboxing and
scaffolding techniques, and then coating this skeleton with a
layer of modules for higher visual fidelity.

We discuss the challenges of the coating problem, introduce
a basic method for constructing the coating of a scaffold
layer by layer, and show that even with a straightforward
algorithm, our scaffolding and coating combo uses much fewer
modules than dense shapes and offers attractive reconfiguration
times. Finally, we show that it could be a strong alternative
to the construction of dense shapes using traditional self-
reconfiguration algorithms.

I. INTRODUCTION

Modular self-reconfigurable robots (MSR) [12] are robots
consisting of an arrangement of interconnected modules
with computational capabilities and that can generally move
around the robot and communicate with other modules,
allowing for unprecedented versatility thanks to their meta-
morphic properties. For this reason, MSR are a remarkably
promising form of programmable matter (PM), usually de-
fined as matter that is able to autonomously change its state
based on sensed events. We will use the term configuration to
refer to a given arrangement of modules in an MSR, and self-
reconfiguration for the autonomous displacement of modules
leading from one configuration to another.

In our work, we are interested in modular robotic sys-
tems consisting of thousands of micro-scale modules, whose
purpose is to represent a particular object through self-
reconfiguration, after its description is supplied to the system.

However, the self-reconfiguration problem, that finds a
sequence of individual motions of the modules to transform
an MSR from an initial configuration into a goal one is a
notoriously hard problem due to the combinatorial explosion
caused by the all the different ways the modules can be
connected to each other. Furthermore, self-reconfiguration
is usually painfully slow, as the constraints imposed on the
motion of the modules makes it extremely tedious to reach a
high number of modules moving around the robot in parallel
without dramatically increasing the risk of collisions between
modules or deadlocks.

Accordingly, we have shown in [13] and [15] that un-
precedented self-reconfiguration speeds could be achieved
thanks to two propositions we made. First, engineering the
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reconfiguration environment such that the reconfiguration
takes place over a reserve of modules, or sandbox, through
which modules can be supplied from the ground of the
reconfiguration scene or discarded from it. Second, by engi-
neering the goal shape itself and building a porous skeleton,
or scaffold, of the shape instead of the compact target object,
and with a regular and predictable internal structure, the
construction requires fewer modules and it is much easier
to coordinate the flow of modules for maximum parallelism
and efficiency.

Nonetheless, the scaffolding technique has a major draw-
back, which is that the external aspect of the built object is
not preserved (as its surface is porous too), so the fidelity of
the constructed object to the supplied model is lessened. For
that reason, we propose in this article to cover the surface of
these porous objects using a single layer of modules, through
a process called coating, so as to recreate the correct external
aspect of objects, and complement scaffolding. This scaffold
and coating method can be seen as a special case of shape
self-reconfiguration from a reserve of modules.

The objective of this paper is to introduce the coating
problem and the challenges it poses in a face-centered
cubic (FCC) lattice. It also addresses how a coating can
be designed in this context for a large class of shapes,
and provides a straightforward algorithmic solution to its
construction. It aims to show that even with a relatively
inefficient coating method, using a coated scaffold may be
preferable to building a dense shape.

The next section will start by introducing related works.
Then, Section III introduces our model and formulates the
scaffold coating problem, while Section IV presents our
assembly strategy. Finally, Section V presents results and
simulations of our method performed on the VisibleSim [9]
simulator for modular robots, before concluding the paper in
Sections VI.

II. RELATED WORK

This work relates most closely to the literature on robotic
self-assembly, whose aim is to produce a correct and
deadlock-free assembly plan for constructing a shape, either
made from passive materials brought by swarm robotic
units [18, 3], or from modular robotic units themselves as
in our case [16, 8, 19]. In the second case, self-assembly
approaches usually rely on a set of construction rules
that provide a feasible and deadlock-free assembly plan to
construct a shape. This assembly plan is sometimes pre-
computed prior to the construction itself, in a centralized
manner. It can then be followed by the robotic units taking
part in the construction of the target shape. This is usually



done through a virtual disassembly of the target shape,
as is the case with the compiler for the TERMES swarm
systems [18, 3], which has been recently applied generically
to modular robotic self-assembly in [8]. In other instances,
such as in [19], the exact order of the construction of the
shape is pre-defined by a human operator.

Lastly, assembly decisions can be made by the distributed
robotic units on the fly by relying on a set of local neigh-
borhood rules that describe the order and constraints under
which a module of the shape must attract neighbors and by
resolving global constraints through communication [16, 15,
13]. Our present work belongs to the latter category.

While self-assembly is usually unconcerned with the
actual dispatch of the modular robotic modules to their
respective destination inside the shape, self-reconfiguration
consider this extra step, and aims to transform an ini-
tial configuration of such interconnected modules into a
goal configuration, through the motion of its components.
This has been extensively studied in lattice-based modular
robots [14] using both stochastic [21, 5] and deterministic
approaches [11, 7], and was shown to be an NP-complete
problem in [20].

This work is a follow-up of our previous work on the
coordinated construction of the scaffold of objects by 3D
Catom modules mentioned in the introduction, which was
demonstrated in [13] for the asynchronous construction of
square pyramids of various sizes and later generalized to a
large class of convex objects in [15].

Finally, the problem of coating a 2D shape has been
studied theoretically in the context of self-organizing particle
systems (SOPS), more specifically under the Amoebot model.
In this theoretical approach, it is shown in [4, 2] that
the coating of a 2D object can be done using only local
information in linear time with high probability. To the best
of our knowledge, our work is the first work on the coating
of a modular robotic structure by other modular robotic units
in 3D.

III. PROBLEM FORMULATION AND MODEL
A. 3D Catom model

The 3D Catom [10] is a micro-scale lattice-based modular
robot that is currently under development in the context of
the Programmable Matter Project!. It embeds the Michigan
Micro-Mote (M3)[6], a power driver and electrostatic soft
actuators in a 3.6mm-diameter quasi-sphere.

It resides in a Face-Centered-Cubic (FCC) lattice with
staggered horizontal layers, and its individual modules can
assemble with up to 12 neighbor modules, connected through
electrostatic connectors on their surface (in red in Figure 1).
The connectors are not only used for latching onto neighbors
and actuation between modules, but also for communicating
with them in a peer-to-peer fashion.

3D Catom motions are rotations exclusively, and require
the presence of a neighbor module acting as a pivot on
which to perform the motion. Furthermore, as the modules

mttp://projects.femto-st.fr/programmable-matter/

Fig. 1.

3D Catoms and motion capabilities.

undergo no deformation during motions, there is another
major constraint on the rotation of 3D Catoms, which is
that a module cannot leave or enter a lattice position that
is surrounded by two opposing neighbor modules, as the
module would either be blocked or the motion would result
in a collision with one of the neighbors (see Figure 1). As a
consequence, structures made of 3D Catoms must assemble
in such a way that no deadlock of this sort can occur.

Lastly, all modules are embedded with a microprocessor
and all computation is performed locally on each module, as
dictated by the principles of distributed computing.

B. The Coating Problem

Given a prebuilt scaffold structure made of 3D Catom
modules in a 3D lattice environment and a description of
it, coating consists in covering the surface of the shape with
3D Catom modules such that the object appears solid while
taking advantage of the mechanical stability provided by the
scaffold itself.

There are a few things to unpack from this problem
definition. First, the scaffold structure corresponds to an ar-
rangement of interconnected 3D Catom modules built using
a generalization of the method introduced in [13], where
a shape is discretized into multi-module units named tiles,
which consist of a root module and a number of branches
both on the XY-plane and upward, with a length of 1 to b
modules, with b a parameter of the scaffold (see Figure 2.a).
These tiles would assemble by connecting the tips of the
branches of a tile to the tile root of other tiles, filling the
boundaries of the shape to be represented (see Figure 2.b and
Figure 3.a). Note that in this context, a 3D Catom cube has
equal dimensions in number of modules composing it, but
as the horizontal layers of modules are staggered in a FCC
lattice, the resulting cube appears shorter than it is wide or
deep.

Fig. 2.
root module at the center that is hidden). Colors: Horizontal branches along

(a) Anatomy of a tile with b =6 (5 modules per branch + a

the ¥ and y axes in red and green, respectively; the four vertical tile
branches in blue; helper modules enabling vertical tile traversal in yellow.
(b) Arrangement of tiles constituting an arbitrary scaffold.

Then, given the geometry of the 3D Catoms, covering the
surface of this scaffold using a single layer of modules would
suffice to make the object appear solid. In that context, solid
means that it would appear to be filled with matter instead
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of being hollow, hence providing high fidelity to the object
that is being represented.

Finally, there are several ways that a coating can be
devised for a given scaffold, which relates to the amount of
contact between the modules of the surface of the scaffold
and those of the coating layer. This relates to the mechanical
stability of the object, as the scaffold provides an internal
structure to the object that grants its mechanical stability.
This can be represented on a spectrum, with a loose coating
on one end, and a tight coating on the other one. In that case,
a tight coating means that the coating is made such that it
fits to the scaffold as closely as possible, and thus provides
the highest number of contact points between the surface of
the scaffold and the coating layer, which yields to a maximal
structural strength. A tight coating is, however, dramatically
more difficult to achieve than the alternatives (intractable
even), as it is essentially a case of reconfiguration among
obstacles, which greatly constrains the possible assembly
order of the coating, as numerous deadlocks could be created
by unreachable cells between the growing coating and the
scaffold structure itself. On the other hand, a completely
loose coating is always at a distance from the scaffolding
surface and thus provides no contact points and structural
benefits (indeed, the scaffold itself adds no value at all in
such case), but greatly relaxes the constraints imposed upon
the construction of the coating, as it can be done in isolation
from the scaffold. In this paper, we propose a middle ground
between these two options, based on a loose coating, but with
added contact points between the scaffold and the coating
layer.

C. Assumptions
This work relies on a number of assumptions, listed below:

o All modules hold a description of the target shape,
and an additional simple lookup function for evaluating
whether a position is in the target shape. This descrip-
tion is lightweight and vectorized based on Constructive
Solid Geometry (CSG), as first introduced in the context
of lattice-based modular robotics in [17]. Consequently,
all modules can evaluate if a position is a coating
position or a support position.

« Computation is fully distributed across 3D Catom mod-
ules and communication is also distributed and based
on a message-passing scheme to physically connected
neighbors.

o The reconfiguration occurs in a sandbox environment,
as introduced in [13, 15], which means that there is a
reserve of modules below the ground of the reconfigu-
ration scene and that can supply modules at any time
to various ground locations of the scene (cf. the gray
modules and tile branches in Figure 3.a/b).

+ Message sending and message propagation time are
negligible against the rotation time of 3D Catoms.

o All modules agree on a common coordinate system
defined by the sandbox (with the origin at its front-
bottom-left corner), where the FCC lattice is represented
as a 3D grid.

D. Coating Definition

As mentioned in Subsection III-B, our coating is a thin
(one module thick) layer of modules that covers every
bit of the surface of the scaffold (besides the ground, as
the sandbox prevents us from adding that coating without
complex additional steps), with a small distance between the
two so as to avoid the risk of deadlocks during construction
as much as possible, but with added contact points that
provide mechanical stability to the overall shape.

The definition of the scaffold and coating are both derived
from a single CSG description of the target shape stored in
the memory of modules. A position is considered to be inside
the scaffold if its position verifies a set of geometrical rules
determining if this position can be a scaffold component, and
if that position is within the object described by the CSG,
at least at a distance of two lattice cells from its border.
Then, a module is in the coating if it is on the border of the
CSG object, that is to say if it is inside the object but has a
neighbor that is outside of it. This will result in a skeleton
formed by the scaffold at the core of the object, surrounded
by an empty envelope, and then the coating, thus leaving
space between the two (see Figure 3.a).

a) b)
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Fig. 3. a) Scaffold of a cube with length 20 module, with empty space
around; (b) scaffold with its horizontal branches extended into structural
supports; (c) scaffold being coated; (d) fully assembled coating of a cube.

The contact points (or structural supports) are closely
linked to the scaffold itself and its b parameter, as the
supports are modules resulting from lengthening the external
horizontal branches of surface tiles by one module (see
Figure 3.b, thus closing the gap between the coating and
the scaffold at various points of horizontal layers every b
modules in height.

IV. COATING SELF-ASSEMBLY

This section describes how the coating is assembled in
such a way that no deadlocks occur, without regard to the
actual flow of the modules from the sandbox to their
target location, which is out of the scope of this paper.
Our method can assemble the coating of all shapes where
all portions of its coating layers are directly adjacent (or
connected) to the layer below. This means that shapes with
overhangs or that require inner coating (such as bowl-like
shapes) are unsupported and will be dealt with in future



work. Our assembly method can be decomposed into three
different components.

The first one is a high-level view of how the coating
is assembled, by building the horizontal layers constituting
it one at a time, from bottom to top. Then, the other
components are two different strategies that determine the
assembly order of the coating within a given layer, which is
therefore a 2D assembly problem. The strategy to be used for
a given layer depends on whether or not structural supports,
potentially causing obstacles, have been introduced for that
layer. We will use the term attract, to refer to the action of a
module that advertises that a position next to itself is ready
to be filled, causing another module to come and claim it,
thus filling that position.

A. High-Level Assembly Strategy (Bottom-Up Layering)

The manner in which the coating is assembled at the scale
of the object can be summed up as Bottom-Up Layering,
which means that the coating is assembled one layer at a
time, from the base of the object to its top. This may be
suboptimal, but thanks to the space between the scaffold
and the coating itself, this relaxes the constraints imposed
on the construction of a given layer, turning it into a simpler
2D problem. Coating layer n thus has to wait for coating
layer n — 1 to have finished building before starting its
construction, with n > 0.

The assembly of a given layer always starts with the
attraction of a module to a single position of that layer,
and proceeds through the recursive attraction of neighbors
by attracted modules, according to the rules detailed in the
next subsections. The need for a single source and direction
of growth of the shape is a consequence of the motion
constraints of 3D Catoms introduced in Subsection III-A. Let
seed,, be the first module that must be attracted for horizontal
layer n of the coating. Please note, however, that for a layer
made of multiple disjoint parts as it might happen in some
shapes, these parts are built independently, from different
seeds. This module will be attracted by a module from the
previous layer, attractor,, determined according to a method
inspired by the Tucci Algorithm [16]:

Any module can test if it is an attractor module for the
next plane by checking if it has a top neighbor position that
is part of the border of the coating, and if that is the position
with minimum y position and maximum x position across
the border that has a bottom neighbor that is in layer n— 1.
This can all be done through a virtual border following and
an exploration of the next coating layer, as modules all hold
the CSG description of the shape in memory. seedy is simply
determined by the coordinate criterion as it has no matching
attractor. A simple messaging is used to reach a consensus
on when the construction of the current layer is over, and
for notifying the next attractor (or attractors in the case of a
splitting of the shape) that the construction of the next layer
start.

From there on, two different methods are used to assemble
a given layer, depending on whether this layer needs to
attract support modules or not. Now, these methods need

to lead to a correct solution systematically, no matter what
the morphology of the coating layer is like. Indeed, while the
simplest coating layers are simply a one-module thick border
around a section of the object, when the surface of the object
has a steep slope, and which can be solved trivially by simply
adding modules one at a time following the border, more
complex cases exist. These cases includes cases with thicker
borders when the surface of the object has a gentler slope (as
the lattice forces an approximation of the shape, much like
the approximation of lines using Bresenham’s algorithm in
computer graphics [1]), when the layer is a fully horizontal
plateau, or any combination of those cases. Systematically
finding an assembly plan is hence not trivial in all cases.

B. Standard Layer Assembly Strategy (The Tucci Algorithm)

In the case where the layer does not need to attract
support modules (when z mod b # 0, with b the branch
length parameter of the scaffold), the assembly problem is a
standard 2D assembly problem, without obstacles. Luckily,
the assembly problem without obstacles has been previously
solved in the exact context of FCC lattice modular robots
using the Tucci Algorithm [16], hence we can rely on this
method for this type of layers. The 2D version of this
algorithm is briefly explained in the rest of this section.

As stated in the previous subsection, every layer starts with
the attraction of a first module to the seed position. Then,
each module M; attracts neighbor modules to the cells among
its 4 horizontal neighbor locations that are inside the target
shape G (or coating in our case), according to local rules that
enforce a diagonal growth direction of the plane and without
deadlocks. The rules are built in such a way that:

e Modules having a local neighborhood in which the
addition of a neighbor in a direction does not risk to
cause another position to become unreachable, attract a
module to that neighbor position right away.

o Otherwise, if an attraction might block a nearby posi-
tion, they communicate with their neighbors to synchro-
nize and ensure that the attraction is only performed
when potential blocked positions are filled.

« If a target position might be a merge point between two
parts of a plane growing concurrently around an internal
hole, the neighbor seeking to attract a module to that
position will send a probe message that will follow the
border of the hole and will return when all the other
positions of the border have been filled.

Please refer to [16] for more information on assembly
rules and experiments showing that this method achieves a
very high convergence rate into the goal shape, with only a
number of messages linear in the number of modules.

C. Support Layer Assembly Strategy (Border Completion)

For all layers that need to attract support modules
(zmod b =0), first, all the structural supports are attracted by
their neighbor modules from the previous layer, and then a
different assembly algorithm is applied, taking into account
the supports as obstacles.



1) Supports and Segments Attraction: Therefore, when
the consensus on the completion of the n — 1 layer has
been reached, all the modules check whether they have a
support position as a top neighbor on the next plane, and
attract another module to that position if that’s the case.
However, as mentioned, the support modules now create
obstacles to the assembly process, which can cause neighbor
coating positions to become unreachable for any growth
direction other than one originating from the support itself
(see Figure 4.b) because of the opposing module constraint
of 3D Catoms. This is not always the case, and modules can
cause no potentially blocked cells (see Figure 4.a), as this
depends on the location of the support module itself.
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Fig. 4. (a) Structural support producing no blocked positions; (b) sup-
port producing blocked positions and corresponding support segments; (c)
support position that cannot be filled in the current implementation.

In some cases, the support that is attracted might cause
some coating positions to become blocked (Please refer
to Figure 4.b throughout this paragraph). In that case, the
support module (in Orange) would cause its East and West
neighbor positions to become unreachable, blocked by the
yellow modules, if the direction of growth of the border has
any source other than the support. This is not the case of
its South neighbor (blue, bottom), as the position opposite
from the support is not part of the coating. In that case,
the only way to avoid a deadlock is by actually growing this
part of the coating from the support module. Fortunately, this
does not require the whole coating layer to be grown from
the support, which would cause intractable synchronization
issues, but simply a number of segments, originating from
the support, followed by the blocked position, and consisting
of all modules in that direction until the next corner module
(in purple, not part of segments). While it is possible that
two support modules are adjacent to modules of the same
segment, this segment will only be created by one of the two
supports, as it is impossible that a coating border contains
two supports that create blocked positions without a corner
between the two, except on wide borders.

Indeed, in extreme cases, in which a support is adjacent

to a coating section that is larger than one module thick, the
insertion of the support would force the construction of the
whole plane from the support. This can be problematic if
one or more other supports are adjacent to the same coating
section, causing multiple starting points of this coating layer
that are very hard to synchronize. In such case, where a
support is adjacent to a border thicker than one module, its
insertion is omitted (see Figure 4.c).

Segments are grown by recursively attracting a module to
the next position of the segment and sending it a message
when it arrives instructing it to continue the growth of the
segment, until the next position is a corner. When that
happens, an acknowledgment is returned to the support
growing that segment, so that it can be known when it has
finished growing its segments.

2) Segment Detection: Once all segments from all sup-
ports have been grown, the coating layer will be partially
filled by all segments positions. As Tucci’s algorithm does
not support obstacles (otherwise simply defining support
positions as part of the coating would have sufficed as a
general solution to our coating problem), another method of
assembling the remaining modules is required.

This algorithm can only start once all the segments are
in place, so the first step is to detect when that is the case.
For that purpose, the attractor module of the previous layer
will send a NextPlaneSupportReadyRequest message across
the external border of the coating, in a single direction.
This message contains a single bit of data, which indicates
whether a segment has been detected along the border above.
For all modules that do not have a support neighbor in the
layer above, the message will be directly forwarded to the
next module along the border. For all the others, one of three
things can happen:

1) Their support neighbor has not yet arrived: In that case,
the module will wait for the support to arrive, and then
forward the request to it.

2) The support is present and has not finished growing its
segments: The module forwards the request to it and
the support holds its response until its segments are
complete.

3) The support is present and has finished growing its
segments or does not have any: The module forwards
the request to it and the support responds with True if
it has grown a segment, False otherwise.

Once a module receives a response from a support, it
sets the segment detection bit to sd = sd or sd,.,q so that
once set to True it cannot be unset later along the path. The
message is then forwarded with the newly set data bit to the
next module along the path. This ends when the message
reaches the attractor module again, from the other side of
the border. Since its propagation cannot proceed as long as all
the segments of the supports along the path are not complete,
the purpose of this message propagation is twofold: detecting
the presence of segments in the layer above; (2) detecting
when all supports have been attracted and have finished
constructing their segments.



3) Border Completion Algorithm: At that point, either
no segment has been detected and the attractor initiates
the Tucci algorithm as before, since there are no obstacles,
or, segments have been detected and it performs a border
completion algorithm. It is quite straightforward: if the seed
module of the next layer is not part of a segment, it first
attracts it. Then, or if the seed is part of a segment, it sends
it a BorderCompletion message. The border completion
message is then propagated along the coating border in a
single direction (or two, but this requires a synchronization
corner somewhere along). When a module receives it, either
the next coating position along the border is already filled,
and it forwards the BorderCompletion message there, or first
attracts a module to that position and then forwards it. The
layer is over when the message returns to the seed.

When all layers of the coating have finished building, the
coating algorithm terminates.

V. RESULTS

A. Preservation of message complexity

In this section, we show that the number of messages used
by our coating assembly method is linear in the number of
modules in the coating. It was shown in [16] that the number
of messages to assemble a shape using the Tucci algorithm
was linear in the number of modules in the shape. We thus
aim to demonstrate that this result is preserved and that our
method is asymptotically as efficient.

First, as explained in Section IV, all coating layers that
are not at the level of scaffold tile roots (every b layers,
with b the scaffold branch length parameter) and thus do not
have supports, are simply executing the Tucci algorithm to
assemble the coating, and thus do not require any additional
message exchange. It is therefore sufficient to show that the
assembly of a coating layer that has structural supports is
also in O(N;), where N; is the number of modules at layer i
of the coating, and such that mod(i,b) == 0.

To that purpose, the list of all types of messages (and not
part of Tucci’s algorithm) we use is reviewed below:

o Support segment attraction and completion mes-
sages: A support can have a maximum of two segments
growing from it according to our support selection
criteria, and each segment will have a length that is
a fraction of N;. The growth of a segment of length /
takes [/ messages for its construction and / messages to
notify the parent support of completion. Thus it is in
O(N).

« Support ready detection messages: NextPlaneSupport-
ReadyRequest messages are propagated along the border
of the coating, reaching at most once every module of
the coating that is not a neighbor to a structural support
on the same plane. For all modules that have a support
neighbor, it takes an additional message to request the
state of the support, and another one for its response.
This process thus also takes O(N;) messages.

« Border completion messages: This is propagated once
from the attractor of the previous plane to the seed of the

current one, and then once per module of the coating,
it is therefore also linear in the number of modules in
the coating layer.

Since all of these messages are used in a number linear
to the N;, we can therefore deduce that the total additional
number of messages used by our method compared to Tucci’s
algorithm is also linear in the number of modules in the
shape, and thus the message complexity of the overall coating
algorithm is in O(n), with n the number of coating modules.

B. Simulations

The following simulations have been performed on Vis-
ibleSim [9], a lattice modular robot simulator. We have
constructed the coating of objects of varying complexity
to show that our method works on very diverse styles
of shapes. A video of these simulations is provided’ to
better illustrate the method and results, which also contains
additional explanations of the coating algorithm. The Cube
100 is excluded from the video, as it is just like the Cube 20,
but bigger. The results are presented on Table I and additional
details regarding the specificities of each shape are provided
below:

o Cube (I = 20 modules): Uses Tucci’s algorithm only as
all supports are non-blocking.

e Cylinder (h = 20, d = 20): Simple border completions.

e Chair: Concavities. Merge of disjoint components.

o Sandcastle: Large complex shape. Splitting compo-
nents.

e Cube (I = 100 modules): Uses Tucci’s algorithm only.
Very high volume.

The number of modules in the coating and the coating
formation time are represented by the coating count and
coating time values on Table I, respectively. The coating time
is expressed as a number of time steps, with a single time
step corresponding to the insertion time for one module. We
can thus deduce from the coating time and coating count the
coating rate, the average number of modules attracted per
time step. As we will see, the coating rate depends on the
number of disjoint subparts of an object, and the portion of
the coating that is on horizontal planes, which can be easily
built in parallel.

Then, the density ratio expresses the ratio of modules in
the coated scaffold object over the number of modules in the
dense version of that object. It appears that the higher the
volume of an object, the lower its density ratio, as the gain
in modules is essentially the result of the scaffold.

Finally, the coating ratio expresses the ratio of coating
modules over all modules in the final shape. For shapes
big enough, the number of coating modules will become
lower than the number of scaffold modules. Though not only
the size matters as ultimately the coating ratio just reflects
the size of the surface of an object relative to its volume.
In our case, the actual volume of the shape in number of
modules grows slower than for dense shapes because of the
porous nature of the scaffold. The Chair for example, despite

2https://youtu.be/5nQVQgAu35Q
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Cube (1=20 modules) Cylinder (h=20, d=20)

Chair Sandcastle Cube (1=100)

\§ \

Coating Count 1769 1820
Coating Time 773 1476
Coating Rate 2.29 1.23
Density Ratio 31.53% 37.35%
Coating Ratio 69% 76%

49404

8430 39225

4155 23652 20336

2.03 1.66 2.43
38.89% 29.12% 19.87%

84% 60% 24.73%

TABLE I
SIMULATION RESULTS OF OUR COATING ALGORITHM ON SHAPES OF VARIOUS SIZES.

its relatively big size, has a very low volume compared
to its surface, and this is reflected in its coating ratio. As
our coating algorithm is inherently slower and less parallel
than the scaffold construction algorithm, our scaffold coating
method will therefore become even more efficient compared
to the construction of dense objects for shapes with a large
volume (e.g., Cube of side 100), where most of the modules
belong to the scaffold.
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Fig. 5. Convergence of the coating algorithm into the coating of the Chair
shape over time.

While it is always linear, the convergence rate of our
method is very uneven depending on the portion of the
coating being built, as can be seen in Figure 5 with the
example of the chair. Whenever the current coating layer
is a border, the convergence rate is rather low (1 or 2
modules per time step and disjoint subpart), whereas planar
layers cause great accelerations in the convergence rate, as
all modules along the diagonal of the plane can be attracted
at the same time. We can therefore conclude that the speed
of the construction of the coating of a shape depends on the
percentage of the coating that is part of a horizontal plane,
as well as the number of disjoint subparts of that shape.

C. Complexity

We have seen in the previous section that the time to
assemble the coating of an object — regardless of the motion
of the modules from the sandbox to their attraction position
— was linear in the number of modules composing the
coating. We now want to show that even when considering
the motion of the modules, the construction time is still linear
in the number of modules, as long as trains of modules

moving in parallel are formed, moving from a sandbox
source location to the available positions of the coating.
Indeed, let us consider a single source of sandbox modules at
the base of the scaffold, or rather a single source per disjoint
component of the object, and where modules are introduced
at regular intervals leaving only one free position between
them, forming a train of modules. Let #; the time at which
the coating position number i in the assembly order is filled,
and assuming that it would take a constant number of time
steps ¢ (realistically 2 to 4) for the next module along the
train to take its position, then:

to=0,tH=t0+c,b=t1+c=1+2x%c, ...

Therefore, tn—1) =t9+ (n—1) x ¢, where n represents
the number of modules in the coating and #(n— 1) the time
of arrival of the last coating module. The construction time
is thus in O(n).

Our self-reconfiguration algorithm for building the scaf-
fold of a shape has been shown to have an O(+/N) recon-
figuration time for all semi-convex shapes, i.e., having no
vertical concavities, and with no hole between the sandbox
and the shape [15]. This makes the total reconfiguration
time 0(ncoating) +0(\3/W)a or 0(”coating+scaffold) for that
class of shape. But more importantly, our method reduces
the number of modules to reconfigure to a fraction of the
number of modules in the dense version of the object for the
same visual result, massively cutting down on reconfiguration
time. Furthermore, the bigger the object, the bigger the gain
in saved modules. Nonetheless, for the scaffold and coating
method to reach its true potential, the current performance
of the coating algorithm will need to be greatly improved.

D. Possible Improvements

While our current method of coating is quite straightfor-
ward and by itself leads to the construction of a coating in
linear time, it is obviously unsatisfactory that only wide or
planar borders can achieve high parallelism.

We are therefore investigating two advanced strategies to
improve the parallelism of the method.

1) Parallel Single Layer: For all non-planar layers, we
can segment the coating border into sections of the
coating separated by corners, which can be formed in
parallel. Once two adjacent segments are complete, the
corner modules in between can be added.



2) Parallel Multilayer: Allow the attraction of a module
to a coating position as soon as all its neighbor
positions that are in the previous layer are filled. In that
way, the construction of the coating can also proceed in
a vertical diagonal manner, building multiple planes at
once. However, special rules would have to be designed
regarding the introduction of support modules so that
they do not hamper the construction. This would be
equivalent to extending the multilayer version of the
Tucci algorithm to support the presence of obstacles.

With both strategies, numerous sources of modules are
needed to dispatch them optimally, and the concurrent plan-
ning of the motion of the modules from their source to their
destination becomes non-trivial.

VI. CONCLUSION

In this paper, we have introduced the coating problem of
modular robotics, where a modular robot forming a scaffold
of an object has to be covered with a thin layer of modules
so that it appears dense to the eye. We have explained how
the coating could be designed so that it can be built easily
without having to sacrifice the mechanical structure of the
object, thanks to the addition of special modules named a
structural support. We have then introduced a method that
provides an assembly order for constructing this coating
from a reserve of modules in the form of a sandbox, using
the Tucci algorithm and our Border Completion algorithm.
Finally, we have provided simulation results with our coating
method applied to various kinds of shapes, outlining its
performance and current limitations, while showing that even
in its current state it could be used to achieve the construction
of a coating in time linear to the number of modules in
the envelope for all shapes with no overhangs or bowl-
like concavities. Finally, we have shown that together, the
sandbox, scaffold construction, and the coating could be
used to greatly speed up the construction of modular robotic
objects compared to the regular construction of dense shapes,
and without altering their resulting external aspect. Though
this algorithm has been designed for creating a coating that
envelops a scaffold, this method could in principle work for
any shape inside an FCC lattice, though the location and
definition of the structural supports might need to be adapted
to the problem at hand.

As future work, different strategies for achieving a higher
level of parallelism and generalizing our approach to all
shapes will be studied. We will also investigate different
methods for dispatching the modules from the sandbox to
the coating with maximum efficiency.
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