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Abstract: We present a mode localized mass sensor prototype based on a hybrid system excited at a1

fixed frequency slightly below the resonances. Indeed, we show both theoretically and experimentally2

that this condition yields higher sensitivities and similar sensitivity ranges than that of resonance3

peak tracking while being less time consuming than a classical open-loop configuration due to the4

absence of frequency sweep. The system is made of a quartz resonator and a hardware that includes5

a resonator and the coupling. The digital aspect allows maximum sensitivity to be achieved with6

a fine tuning of the different parameters and the implementation of a coupling regardless of the7

physical resonator geometry. This allows the generation of mode localization on shear waves resonant8

structures such as the quartz cristal microbalance widely used in biosensing. This solution has been9

successfully implemented using resin micro balls depositions. The sensitivities reach almost their10

maximum theoretical values which means this fixed frequency method has the potential to reach11

lower limit of detection than the open loop frequency tracking method.12

Keywords: Mode localization, mass sensing, QCM, FPGA, Hybrid system, open loop, fixed frequency13

1. Introduction14

The last two decades saw the development of sensors based on arrays of weakly coupled15

resonators. Using two or more weakly coupled resonators allows to take advantage of the mode16

localization (ML) phenomenon which is a manifestation of the well-known Anderson localization [1]17

applied to structural dynamics, often described as follows: in a weakly coupled symmetrical system,18

the introduction of a slight perturbation breaking the symmetry of the structure will cause a drastic19

confinement of the vibrational energy.20

The output parameter of mode localized sensors is the vibration amplitude shift, whether for21

evaluating a change in eigenvectors or amplitude ratios at resonance. This is a major difference from22

mechanical resonant sensors which measure a change in resonant frequency (RtF). While the resolution23

of such sensors is rather good, the normalized sensitivity (NS), defined as the relative output over input24

shifts, is limited to the constant value of 1
2 [2]. On the other hand, the theoretical NS of mode-localized25

sensors can be two to three orders of magnitude higher than this value. The lower the coupling, the26

higher the NS. There is, however, a low limit for weak coupling imposed by the mode aliasing that27

appears when the frequency difference between two vibration modes is too small with respect to the28

bandwidth of the modes, so that the two modes merge [3]. It therefore seems appropriate to work with29

high quality factor resonators to achieve the highest possible NS.30

Most of the papers dealing with mode localized sensors concern MEMS sensors. These sensors31

have been developed for various applications, ranging from mass sensors [4–6] to force [7] or32

acceleration [8,9] sensors, electrometers [10–12] and magnetometers [13,14].33
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The main disadvantage of MEMS sensors using ML is manufacturing defects. These defects make34

it difficult to produce perfectly identical resonators, which is a necessary condition to obtain a balanced35

system before perturbation. One strategy to counteract this is to use electrostatic actuation in order to36

use electrostatic softening to rebalance the system after manufacturing [15]. Another disadvantage of37

MEMS sensors with ML is the lack of adjustment of the coupling, which does not necessarily allow to38

reach the optimal value leading to the highest possible normalized sensitivity. In the case of mechanical39

coupling, the coupling value is directly dictated by the geometry of the coupling structure. Therefore,40

some sensors use electrostatic coupling, which allows adjustment by varying the voltage [5,6,16,17]41

but prevents the sensor from being used in a liquid medium. However, such coupled structures cannot42

be designed using high Q-factor shear waves resonators such as the quartz cristal microbalance (QCM)43

because of their geometry and wave form.44

In order to overcome these limitations, we present here an alternative solution based on a hybrid45

system, where a QCM is connected to a field programmable gate array (FPGA) that emulates the46

presence of a second virtual and tunable coupled resonator. In such an architecture, maximum47

sensitivity can be achieved and geometry constraints due to the coupling are suppressed. Tunable ML48

has already been demonstrated on electrical resonators [18] and a device following the same principle49

has also been recently presented, where a cantilever is virtually coupled with an electrical resonator50

made of passive and active components to achieve sensitive mass sensing by the mean of ML [19].51

Finally, in previous publications were shown the principle of virtualization [20,21] where only digital52

perturbations were applied.53

This work first exposes theoretical results in section 2 (analytical developments and simulations)54

on NS in a two degrees of freedom (DoF) coupled resonators subjected to a mass perturbation. It55

also introduces a new open loop sensing method based on the amplitude shift at a fixed excitation56

frequency and discuss its advantages and drawback in regards with the classic method that consists in57

the vibrations amplitude measurements at the resonances. The measure of a variation in vibration58

amplitude due to a RtF shift is already exploited in atomic force microscopy for instance [22]. The59

concept of hybrid system along with its design are detailed in section 3. It includes a description of the60

digital filter, the analogical resonant filter based on a QCM and the complete hybrid system. Section61

4 gives experimental results that confirm the theoretical ones presented in section 2 by the mean of62

particle depositions on the QCM of our system. It also gives a tuning protocol and a description of63

the experiments. These results are finally discussed in section 5, where many perspectives are also64

exposed.65

2. Theoretical developments66

We first demonstrate that exciting a pair of coupled resonators at a fixed excitation frequency67

(lower frequency of the resonance bandwidth) yields higher amplitude sensitivities to mass68

perturbations than the classic method that consists in tracking the resonances. To do so, we give69

analytical developments and simulation results on the maximum reachable NS and the sensitive range70

according to the Q-factor of the resonators in a 2 DoF weakly coupled resonators system. The sensitive71

range is here defined as the normalized perturbation at which the NS drops by half. In order to provide72

general knowledge on ML, both resonators are modeled by the classic linear mass-spring (undamped73

resonator) or mass-spring-damper (damped resonator) in the analytical developments. The proof of74

properties 1 and 2 are given in Appendix A.75

Property 1. Expression of ns1, the maximum NS in amplitude following the resonance in a 2 DoF undamped76

resonators system taking mode aliasing into account.77

ns1 ' 0.25×Q (1)

Where Q is the Q-factor of the damped resonator.78
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Property 2. Expression of ns2, the NS in amplitude at fixed excitation frequency f1 = fr ·
(

1− 1
2Q

)
for a79

single damped resonator of resonant frequency fr.80

ns2 ' 0.35×Q (2)

Where Q is the Q-factor of the damped resonator.81

Properties 1 and 2 show that exciting a single resonator at the frequency f1 (the RtF minus half82

the bandwidth) enables to reach maximum sensitivity to mass perturbation, most likely in a limited83

sensitive range. Since ns2 > ns1, there is apparently no sensitivity gain when using a 2 DoF weakly84

coupled resonators system. However, it could be considered to exploit both phenomena at the same85

time : exciting a coupled structure at f1 should indeed enable to observe a signal variation due to both86

ML and the RtF downshift.87

We now demonstrate the two results from properties 1 and 2 by the mean of Matlab®2016.b, The88

MathWorks, Inc. simulations on coupled and uncoupled damped resonators which models are given89

in Fig. 1 and Eq. 3.90
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Figure 1. Two coupled resonators having linear stiffness ki and damping ηi, where κ = kc
k1

. (a) :
Mass-spring like coupled resonators (b) : Equivalent block diagram of (a).

H(s) =
1

(1 + ε) · s2 + 1
Q · s + 1

(3)

The perturbation ε = δm
m is only applied on resonator 2. These simulations enable to compare91

the sensitive range of both methods. The NS are computed for a range of coupling κ = kc
k1

and mass92

perturbation ε, for each mode i and resonator j. Each mode of each resonator is tracked to calculate93

this NS, following its definition94

ns(i, j, Q, κ, ε) =
1

xr,ε=0,κ=0(Q)
· ∂xr

∂ε
(i, j, Q, κ, ε) (4)

where xr,ε=0,κ=0 and xr are the resonance amplitudes before mass perturbation and without95

coupling, and after mass perturbation, respectively.96

Each of the graphs from Fig. 2 and Fig. 3 should be read line by line, from left to right, that is for97

a fixed coupling value κ and increasing mass perturbation ε. Hot and cold colors represent a signal98

increase and decrease, respectively. Figure 2 depicts the NS of a 2 DoF damped resonators system99

where both resonators are excited, with a phase of 90 degrees on the second resonator so that both100

modes appear in the frequency response. The first observation is that these sensitivities, perturbations101
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and couplings are linked by the Q-factor. Indeed, the same graphs are obtained for different scales,102

as long as Q � 1. The second observation is the presence of mode aliasing that indeed prevents103

the sensitivity from spiking. This phenomenon does not appear exactly at the same coupling value104

because an anti-resonance between both modes appears on resonator 2 due to the excitation phase of105

90 degrees. The observed maximum sensitivity is |nsmax| = Q
4 , which is consistent with property 1.106

Finally, it can be observed that the NS decreases rapidly when either κ or ε increase, a known property107

of ML.108
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Figure 2. NS graphics of a 2 DoF damped resonators system with a mass perturbation on resonator 2.
Output metrics : Resonance amplitude shift. The reference amplitude is the resonant amplitude of a
single resonator.
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Figure 3. NS graphics of a 2 DoF damped resonators system with a mass perturbation on resonator 2.

Output metrics : Amplitude shift at f1 = fr ·
(

1− 1
2Q

)
for both resonances. The reference amplitude is

the resonant amplitude of a single resonator.
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The NS of amplitude shift at the fixed frequency f1 (Fig. 3) has also been computed with109

Matlab®for the damped resonators system. These simulations show that the NS value for κ = 0110

and ε = 0 is −0.35×Q, as predicted by property 2. Moreover, one can observe the first mode of the111

second resonator without coupling (κ = 0, case of a single resonator subjected to a mass perturbation).112

The amplitude firstly increases until the resonance reaches f1 at ε = 1
Q . This perturbation value113

doubles when the system is not subjected to mode aliasing (around κ = 0.5
Q ), since the RtF decreases114

with a NS twice lower because of the coupling, 1
4 instead of 1

2 (these values can be calculated from115

property A1 in annex A). As a consequence, the amplitude gain due to the RtF downshift decreases by116

half as well when there is no mode aliasing, which is balanced by the effect of ML.117

In conclusion, it can be stated that the normalized sensitivity in amplitude variation, measured at118

a fixed frequency for a single resonator, is slightly higher than that of a weakly coupled system with 2119

DoF. This result calls into question the relevance of the use of mode localization from the point of view120

of sensitivity. The sensitive range of coupled systems is around 2
Q both if the resonances are tracked121

or at the fixed excitation frequency f1, which makes the fixed frequency method worth investigating122

experimentally. Therefore, both methods are here experimentally tested with our high Q-factor hybrid123

system.124

3. Materials and Methods125

3.1. Concept of the hybrid system126

The idea behind a hybrid weakly coupled resonators system lays on the replacement of mechanical127

and non tunable components by non mechanical but tunable elements in a classic MEMS array.128

Implementing ML on piezoelectric resonators provides an interesting approach since the electro129

mechanical transduction is naturally done with such materials in both ways.130

Considering a transfer function approach, both resonators and the coupling contribution can be131

separated. Therefore, if a piezoelectric resonator such as a QCM could be integrated in an electrical132

circuit with two terminals, an input and an output, the coupling contribution could be simply replaced133

by a signal processing in closed loop such as depicted in Fig. 1, where the yellow part represents the134

mechanical resonator on which the mass perturbation is introduced and the red part are functions135

implemented in a hardware. In this way, the coupling value could be indeed easily tuned and also136

implemented with any kind of piezoelectric resonator, independently from its geometry.137

3.2. Mathematical tools138

Digital filters do not have the limitations of electrical filters : any polynomial transfer function can139

be implemented and all of their coefficient can be chosen and finely tuned with no drift due to ambient140

conditions. In addition, a hardware can host a routine for signal recording, data processing, graphical141

user interface (GUI), and so on. The use of a hardware however requires an appropriate mathematical142

tool to describe the sampled dynamic behavior of the system : the Z-transform of complex variable z143

can be seen as the discrete equivalent of the Laplace transform of complex variable p, which is broadly144

used in the continuous system analysis. This equivalence is done through the formula :145

z = e
p
fs (5)

where fs is the sampling frequency. Equation 5 therefore introduces non polynomial transfer146

function from the Laplace transforms of a dynamic system. Knowing that in sinusoidal excitation147

of angular frequency ω, p = j · ω and ω � 2π · fs, there is
∣∣∣ p

fs

∣∣∣ � 1. Equation 5 can thus be148

approximated, which has the drawback to distort frequencies, a phenomenon called warping [23].149

Therefore, a pre-warp bilinear transform allows to compensate this shift at a given angular frequency150

ω0. The filter response then follows that predicted by the continuous model around this particular151
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frequency. The expression of the normalized Laplace variable s = j · ω
ω0

for the pre-warp bilinear152

transform is given by153

s =
1

tan
(

ω0
2 fs

) · z− 1
z + 1 (6)

The use of the system Laplace transform and Eq. 6 yield the Z-transform of the system transfer154

function Z(H) :155

Z(H) =
∑n

k=0 αk · z−k

∑n
k=0 βk · z−k

(7)

where β0 6= 0.156

Denoting Si the output and Ei the input of the filter for a given time sample i, the previous157

equation can also be written as a linear combination of the input, previous inputs and outputs as158

follow :159

Si =
n

∑
k=0

ak · Ei−k −
n

∑
k=1

bk · Si−k (8)

When bk = 0, ∀k ∈ {1..n}, the output only depends on the input. Such filters are called finite160

impulse response filters (FIR). In contrast, if ∃k ∈ {1..n}, bk 6= 0, the filter is called an infinite impulse161

response filter (IIR). Dynamic systems are usually IIRs, which demands careful design since the162

feedback can lead to instability. However, Eq. 8 is a simple linear combination of signals at different163

time and such a sequential logic equation can be implemented in hardware that performs calculations164

at a high sample rate.165

3.3. Requirements and hardware166

The system to design is made of a first filter based on a QCM coupled with a second filter167

implemented in a hardware. These constraints require mainly two conditions to fulfill. Firstly, the168

sampling frequency fs of the hardware must be high enough compared to the RtF fr. The Nyquist169

condition demands fs > 2 fr, and a minimum of 10 samples per period is fixed here to describe each170

sine wave in the digital system. The minimum sampling frequency then satisfies fs = 10 fr. Given171

that the lowest RtF of commercial QCMs is between 1 MHz and 2 MHz, we can then set the highest172

RtF for which our design can work at 2 MHz, which thus requires a minimum sampling frequency of173

fs = 20 MHz. Secondly, Eq. 8 requires each addition and multiplication to be done within only a few174

time samples because of the IIR feedback. The different operations thus have to be carried out in a few175

nanoseconds only : massive parallel computation is then necessary.176

A FPGA is a configurable integrated circuit allowing to carry out parallel calculations for177

combinational logic circuits and data storing (registers) for sequential logic circuits at a rate of several178

dozen of megahertz. The FPGA is then the hardware chosen here, and we specifically selected the179

Red Pitaya card to implement our design since this board integrates all the components needed180

for our application. Indeed, it includes two processor cores along with the FPGA (Zynq7000), two181

analog-to-digital converters (ADC) and two digital-to-analog converters (DAC) for communication182

with an analog system, a SD card slot and an Ethernet connector. The clock signal of the DACs and183

ADCs, also used to synchronize the registers in the FPGA, is equal to 125 MHz, which satisfies our184

requirements.185

3.4. Filter model186

In order to implement mode localization between two filters following Fig. 1, the filter output must187

represent the resonator displacement or its equivalent the electrical charge. From this consideration,188
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a filter including a QCM based on the Butterworth-Van-Dyke model can be designed, by simply189

connecting one of its terminals to a capacitor Ce in parallel of a resistor Re, as depicted in Fig. 4.190

•

Rm Lm
Cm

C0

•

CeRe

VoutputVinput

Piezoelectric resonator

(QCM)

Figure 4. Low pass QCM-based resonant filter model

The transfer function H(s) of this electrical circuit is given by191



H(s) =
(1 + ε) · s3 + 1

Q · s2 + (1 + g1) · s
(1 + ε) · (1 + g2) · s3 +

[
1+g2

Q + g2 · g3 · (1 + ε)
]
· s2 +

[
1 + g1 + g2 +

g2·g3
Q

]
· s + g2 · g3

Q =
1

Rm
·
√

Lm

Cm
, ω0 =

1√
Lm · Cm

, ε =
δLm

Lm
, g1 =

Cm

C0
, g2 =

Ce

C0
, g3 =

ωe

ω0
, ωe =

1
Re · Ce

s = j · ω

ω0
(9)

The parameter g1 only depends on the QCM, and g2, g3 must be chosen. In particular, g3192

must satisfy g3 � 1 in order to obtain an integrator behavior of the output impedance, then almost193

equivalent to a single capacitor. Indeed the output impedance, at the angular frequency ω0, equals :194

Ze(ω0) =
Re

1 + j
g3

(10)

3.5. Digital filter implementation195

Replacing Eq. 6 in Eq. 9 yields an expression in the form of Eq. 7 and Eq. 8. Its implementation in196

the FPGA is depicted in Fig. 6. The entire design was done under Vivado design suite 2019.1 and a197

Python 3 GUI has been programmed for the control of the filter parameters as well as data recording.198

Figure 5 illustrates this GUI.199

Table 1. Expressions of the transfer functions from Fig. 6

Source H1 H2 H3

Expression β = α1 · 2α2 β = α1
2α2 β = α1, for α2 = 1 β = 0 otherwise

Implementation Left bit-shifting Right bit-shifting Conditional loop
Number of required registers 0 0 0

Equation 8 requires strict timing constraints which may not be met by the hardware, especially200

in the IIR part. It can be seen that a multiplication and an addition must be done during the same201

time sample (blocks 28-31, 26-29 and 24-25), which the FPGA cannot do experimentally. Therefore,202

an additional Verilog source has been set up in order to proceed to a down-sampling based on the203

decimation factor d (natural number). The new sampling frequency fd then follows Eq. 11.204

fd =
fs

d
(11)
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Figure 5. GUI screenshot : Webserver on the left (buttons, sliders and spin boxes for parameters tuning)
and GNU radio on the right (numerical oscilloscope).

This new clock is applied to each block of the filter to the other blocks of the design. Experimentally,205

the lowest value of d for which the timing constraint is respected is d = 2, regardless of the number of206

digits on which the numbers are coded due to the parallel computation.207

More details on the digital filter design are given in Appendix B.208

3.6. Fabrication of the QCM based filter209

Now that the digital filter is set up, the model from Fig. 4 needs to be implemented with analog210

components, namely a QCM, a capacitor and a resistor. First of all, it is necessary to carry out an211

impedance matching. Indeed, the input signal of the filter corresponds to the output of the Red Pitaya212

DAC. Since this output is designed to supply circuits with an impedance equal to 50 Ω, it is necessary213

to add a 50 Ω Rload resistor in parallel before the QCM. In order to ensure that the impedance of the214

rest of the circuit is constant and sufficiently high compared with Rload, a first voltage follower OA1215

is set up between Rload and the QCM. Since the output amplitude may not exceed 1 V because of the216

ADC voltage range, it is necessary to add a voltage divider stage between the output of the QCM and217

the ADC, which is the role of R1 ∈ [0..2 kΩ] and R2 = 1 kΩ, a sufficiently low impedance compared218

to that of the ADC (1 MΩ). Once more, a voltage follower OA2 is added to ensure high impedance219

at the QCM output, so as not to disrupt the behavior of the filter. Finally, a resistor R0 of 50 Ω is220

connected before the QCM input to avoid experimental high-frequency parasitic oscillations between221

the two operational amplifiers which have a high slew rate. The operational amplifier chosen for our222

application is the OA LT1358 from Linear Technology, because of its slew rate and gain-bandwidth.223

Indeed, we are working with 2 MHz RtF resonators having a gain around 10 only at the resonance224

because of the feedthrough transmission (parallel capacitance of the QCM electrical model).225

The chosen QCM is a simple quartz resonator of RtF 1.8 MHz and its packaging is removed in226

order to access the surface of the quartz. Its electrical characteristics are measured by the mean of an227

impedance analyzer E4990A from Keysight so as to calculate the different parameters from Eq. 9. In228

particular, its Q-factor equals to 115 000. Concerning the output impedance, the condition g3 � 1 must229

be satisfied while avoiding additional unwanted behavior. For instance, high values of Ce will lead230

to very low output amplitudes, and low values of Ce will induce high output amplitudes and thus a231

saturation of the Red Pitaya’s ADC voltage. As a consequence, the chosen values are Re = 100 kΩ and232

Ce = 100 pF. The fabricated electrical circuit including the QCM is depicted in Fig. 7 and Fig. 8.233

The different components of the QCM based filter have been hand-soldered on a prototype board234

which is screwed onto a 3D printed base. SMA connectors are used to connect the device to the rest of235

the system.236
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Figure 6. Simplified diagram of the implemented digital filter in the FPGA and representing resonator
1 in Fig. 1. The black and bold numbers are the blocks identifiers. The numbers in red correspond to
the number of bits on which the numbers are encoded and d is the decimation factor. The hexagonal
blocks are registers, the circular ones with a cross inside are multipliers, the green blocks are tunable
values, and the orange ones are custom sources detailed in Table. 1.

3.7. Implementation of the coupled system237

A sketch of the entire system is depicted in Fig. 9.238
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horizontally in order to facilitate further mass deposition on its surface through a liquid drop deposition,
and a switch has been added to enable the QCM to be connected either to the rest of the filter or to an
impedance analyzer. The QCM can be easily changed since it is fixed with simple screws.
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Figure 9. Global sketch of the coupled system, including the delays corresponding to each operation.
The only non digital element is resonator 2 (QCM based filter), in blue. Tunable delays were added for
timing compensations, in red.

The numerically controlled oscillator (NCO) generates a sinus or a cosinus signal on 14 bits with239

a tunable frequency. A sinus from the NCO is chosen to be the reference for the phase and therefore240

for the delays. Each mathematical operation (addition or multiplication) requires one register that241

releases data every d samples. The corrector contains both an addition and a multiplication since its242

role is to multiply resonator 2 output by the inverse gain of the voltage divider R1 and R2 from Fig. 7,243

and it also compensates any potential offset with an addition. The DAC and ADC have a delay of a244

few dozen of nanoseconds and are denoted α1 and α2, respectively. Resonator 1 introduces a delay of245

5.d which corresponds to the delay between the input and output signals that can be counted in Fig. 6,246
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and resonator 2 is considered not to add any delay. Two additional tunable registers were added to247

balance these delays. Indeed, τ1 enables both resonators to be in phase, and τ2 ensures the coupling248

contribution is in phase with the resonators output on the next period. Without this last tuning, the249

second mode amplitude is greater than it should be, thus leading to a ADC and DAC saturation.250

A picture of the experimental setup from Fig. 9 is given in Fig. 10. It allows the experimental251

demonstration of ML, presented in the following section.252

DC GeneratorRed Pitaya

QCM and its electronics

Computer (tailor-made GUI)

Impedance analyzer

Figure 10. Experimental setup including the piezoelectric resonator, a DC generator, a computer and
its GUI, the Red Pitaya and an impedance analyzer E4990A from Keysight that enables to measure
the QCM RtF after each mass deposition for further comparison with ML based methods. The DC
generator supplies the operational amplifiers.

4. Results253

4.1. Description of the experiments254

Before the implementation of ML in the hybrid system, the digital resonator parameters must be255

adjusted so that both resonators responses are identical, using the following simplified protocol :256

1. No coupling is applied.257

2. The output resistance R1 must be tuned to set the resonance amplitude to less than 1 V (limit258

imposed by the ADC of the Red Pitaya).259

3. The values of the different parameters are entered in the FPGA.260

4. Both excitation signals are set in phase.261

5. f0 (digital filter) is tuned such as the resonances of the two filters experimentally match.262

6. The corrector gain is tuned : it makes possible to compensate the voltage divider but also to263

experimentally adjust the resonance amplitude of the QCM-based filter to that of the digital filter.264

7. Tuning the digital Q-factor enables the bandwidth of the two filters to be experimentally identical.265

8. τ1 is modified so that the two uncoupled resonators are experimentally in phase and τ2 must be266

adapted to this value according to the relation τ1 + τ2 + 8d = fs
fr

.267

9. The two excitation signals are set with a phase of π
2 rad in order to observe both modes.268

10. The coupling value is eventually tuned to fit the best configuration in terms of sensitivity.269

The experiment consists in the deposition of micro particles at the surface of the QCM. After270

each deposition, frequency responses are measured over a frequency range containing both modes.271

The change in the resonant frequency of the QCM alone is also measured, which will be used for272

the calculation of the added masses thanks to the normalized sensitivity of the RfF of one half.273
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Each NS value is then calculated as the relative amplitude shift over the relative mass shift for each274

deposition of particles. The particles used in these experiments are fluorescent melamine resin particles275

MF-NB-COOH-S1058 from microparticles GmbH. They have a diameter of 920 nm, a density of 1.510276

and are put in an ethanol solution for its high wetability and evaporation rate. The volume of the drop277

is fixed at 1µl because such a drop experimentally spreads all over the electrode without overflowing278

the edge of the QCM as visible in Fig. 11.279

(a) (b) (c)

Figure 11. Surface of the QCM electrode before and after a single deposition of around 3× 105

fluorescent particles. Images taken with the microscope Axio from Zeiss and a magnification of 2.5. (a) :
Before deposition and under red lightning (b) : After deposition and under red lightning (c) : After
deposition and without red lightning.

In order to demonstrate ML, we wish here that the sensor operates within the sensitivity range280

that is up to a normalized perturbation ε = δm
m = 2

Q as shown by the theoretical results previously281

presented. With our Q-factor of 115 000, this limit can roughly be set around ε = 20 ppm. In order to282

stay in the sensitive range, a maximum value of ε f = 15 ppm is chosen. The effective mass m of the283

QCM must now be estimated to calculate the mass perturbation δm f corresponding to ε f , knowing284

that ε f =
δm f
m . This effective mass m can be calculated using the Sauerbrey equation and the RtF285

sensitivity to mass perturbation, as written in Eq. 12.286 
δm = −A · √ρq · µq

2 f 2
r

· δ f

δ fr

fr
= −1

2
· δm

m

(12)

where A, ρq, µq and fr are the electrodes area, density, shear modulus of quartz and resonant287

frequency, respectively.288

The combination of these equations leads to Eq. 13, which is the effective mass expression.289

m =
A · √ρq · µq

4 fr
(13)

In our case, the electrode is a square of side 7.3 mm, fr = 1.843 MHz, ρq = 2648 kg m−3 and290

µq = 2.947× 1010 kg m−1 s−2, which leads to291

m = 64.0 mg (14)

As a consequence, δm f = 1µg. For a proper demonstration of ML, five consecutive mass292

depositions are carried out, requiring δm = 200 ng to be dropped each time, which corresponds293

approximately to 3× 105 particles. The available solution has therefore been diluted to reach this294

amount of particles per volume of 1µl.295
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The vibration amplitudes are calculated as the average of peak to peak amplitude values over296

several periods : each of this vibration amplitude is obtained from four uncorrelated data set from the297

FPGA of 2048 time samples, which roughly correspond to 118 periods at a frequency of 1.8 MHz.298

4.2. Experimental results299

In order to demonstrate ML in our hybrid system using the tracked resonance or fixed frequency300

methods, five mass depositions have been carried out at the QCM surface. The system is tuned301

to achieve a high sensitivity before the experiment, which was performed four times. The applied302

coupling stiffness equals κ = 0.15 in order to avoid mode aliasing on both resonators. This coupling303

value is much higher than those shown on the maps in Fig. 2 and Fig. 3. This is due to the fact that304

with the transfer function from Eq. 9, mode aliasing occurs for higher coupling values because the305

frequency of the second mode is located between series and parallel resonances. The above mentioned306

properties on sensitivities and sensitive ranges are however conserved with this system.307

Figure 12 depicts amplitude Bode diagrams of such an experiment. It is observed that the first308

mode localizes again on the resonator on which the mass perturbation is introduced and that mode309

aliasing almost occurs on resonator 1, which is not the case of resonator 2 because of the anti-resonance310

generated by the excitation phase. The proximity of both resonances and this anti-resonance is also311

the cause of the lower amplitude on resonator 2. These phenomena due to the phase of 90 degrees312

between both excitation are inverted when its sign is changed. The resonant frequency of the first313

mode for the second resonator, in the balanced configuration (red curve), fr, enables to calculate f1,314

also depicted in Fig. 12.315

2960 2980 3000 3020
0

2

4

6

8

G
ai
n

Resonator 1 (Digital)

2960 f1 fr 3020
0

2

4

6

8

Resonator 2 (QCM)

Frequency (184xxxx Hz)

ε0 = 0 ε1 > ε0 ε2 > ε1
ε3 > ε2 ε4 > ε3 ε5 > ε4

In-phase mode

Out-of-phase mode

Figure 12. Experimental amplitude Bode diagrams of the coupled system digital-QCM for a coupling
ratio κ = 0.15 and different mass perturbations εi applied on resonator 2, which is excited with a phase
of π

2 rad.

The relative amplitude shifts of the four experiments are plotted with respect to the relative316

perturbation ε = δm
m in Fig. 13, along with the calculated NS for both methods, based on mode 1 of317
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resonator 2. It is first observed that the maximum perturbation is around 20 ppm as chosen previously.318

Moreover, both experimental and theoretical data are close, showing the successful implementation of319

ML. The small drifts observed are most likely due to measurement noise and a slight mistuning of320

the system. We also observe that both methods are nonlinear, and that the fixed frequency one yields321

higher NS, up to a value above 3× 104. With our Q-factor, the maximum theoretically reachable NS322

with this method is around 4.4× 104. This value is however not reached here because the coupling323

value has been chosen in order to avoid mode aliasing : it must be slightly lower to enhance the324

NS. Indeed, as visible in Fig. 3 and Fig. 2, mode aliasing occurs on resonator 1 for the optimum325

configuration. The NS value drops by half, from around 3× 104 down to 1.5× 104 for both methods,326

as predicted. However, two NS values surrounded in black on both graphs are drastically lower for327

the fixed frequency method, which corresponds to the two highest perturbations : for ε = 2
Q , the328

resonance is reached and the NS drops down to zero at the fixed excitation frequency f1.329
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Figure 13. Amplitude variations and their corresponding normalized sensitivities of the first mode of
resonator 2 where the particles are deposited for both methods : tracked resonances and fixed excitation
frequency f1.

Finally, this new method yields sensitivities slightly higher than the classic amplitude shift at330

the resonance while avoiding the design of a closed loop or the need to proceed to time consuming331

frequency sweeps. Its dynamic range is limited to 2
Q which is not the case when the resonances are332

followed. However both of these methods have a similar sensitive range (still 2
Q ), which is not a333

limitation when it comes to lower the limit of detection (LoD).334

5. Discussion335

The configurations for which the mass NS is maximum for a given pair of weakly coupled336

resonators in terms of coupling value and Q-factor can be summarized as follow. The maximum NS is337

proportional to the Q-factor and inversely proportional to the coupling ratio κ, until mode aliasing338

occurs. Furthermore, the sensitive range (here fixed when the NS drops by half) is also inversely339

proportional to the mass mismatch ε. This sensitive range equals 2
Q when the resonance is tracked,340

but also when the system is excited at a fixed frequency f1 = fr ·
(

1− 1
2Q

)
. It is also demonstrated341

that this method yields sensitivities slightly higher than the classic amplitude shift at the resonance,342
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because the signal increase is due to both the RtF downshift and mode localization. This information343

shows that mode localized sensors can operate at a fixed excitation frequency in open loop, which344

avoid either a time consuming frequency sweep or the implementation of a positive feedback to follow345

the resonance.346

In order to confirm these theoretical results, we implemented both methods experimentally. To do347

so, we designed a new type of mode localized sensor based on a hybrid system enables to get rid of any348

geometric constraints for the implementation of the coupling and make it possible to finely tune the349

different resonator parameters. This way, mode localization can be efficiently implemented on shear350

waves resonators yielding high Q-factors and thus high sensitivities. The experimental amplitude351

shifts and corresponding sensitivities validate the theoretical results and our sensitivities are among352

the highest in the mode localized sensors found in the literature, as shown in Table 2.353

Table 2. Comparison of our hybrid sensor with a few devices using mode localization developed
in different teams. Both a previous published work on a QCM of 1 MHz RtF and those from this
manuscript are presented here.

Parameter Literature This work

f0 (Hz) 1.34× 104 [4], 1.49× 104 [3] 1.84× 106

3.11× 105 [24] 1.00× 106 [21]
Q 11.34× 102 [4],2 6.22× 103 [3] 1.15× 105

2 2.12× 104 [24] 2 1.70× 105 [21]
Maximum normalized sensitivity reached

2 DoF 4.00× 102 [4], 3 2.34× 102 [24] 3.00× 104, 3.50× 104 [21]
3 DoF 4 1.36× 104 [3] future work

1 calculated from the bandwidth, 2 in vacuum, 3 calculated, knowing the normalized sensitivity of
frequency shift is 1

2 , 4 amplitude ratios as sensor output

In summary, the main performances unique to our system can also be listed below. Indeed, our354

system enables to :355

• Generate a second mode of vibration and exploit mode localization on a shear wave resonator356

widely used in bio-sensing (QCM) with high Q-factor (up to at least 200 000) and high resonance357

frequency (up to at least 2 MHz).358

• Carry out a complete tuning of the digital filter parameters and the coupling value before each359

experiment. This allows to reach high NS values compared with the literature (up to 3× 104)360

and to get rid of any initial imbalance between the resonators before the measurements.361

• Replace the QCM easily and adapt to the geometry of the piezoelectric resonator if needed.362

• Exploit the mode localization phenomenon without tracking the resonances by exciting the363

system at a fixed frequency f1 = fr ·
(

1− 1
2Q

)
.364

If the performances of our system are satisfying in regard to the chosen figure of merit (normalized365

sensitivity), our system in its current state still has limits. For instance, one advantage of ML is common366

mode rejection, but the digital nature of one resonator prevents this phenomenon to happen. Indeed,367

any change in the ambient temperature or pressure affects only the QCM and not the digital filter,368

thus leading to an imbalance, the localization of energy and a misinterpretation of the measurements.369

Such an imbalance was however not observed in the time frame of the experiments. Even though our370

system does not benefit from mode rejection, it is reminded that the system can be balanced before371

each mass deposition, thus guaranteeing high and known sensitivity by the cancel of any long term372

drift. However, a study on the temperature sensitivity should be carried out in a future work in order373

to evaluate whether a temperature controlled environment is needed or not for this sensor.374

Many improvements are possible on the presented hybrid system. For instance, the literature375

shows that an array of resonators with less stiff external resonators yields higher NS for a given376

coupling value κ. The resolution of the eigenvalue problem in the case of a 3 DoF system shows indeed377
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that the two first modes get closer in frequency for a given value of κ (compared with a 2 DoF system),378

which increases the NS. Nonetheless, one should also keep in mind that mode aliasing might occur for379

higher values of κ, which could thus prevent from reaching such high NS. As a first perspective of this380

work, extended studies could be carried out to find out the actual gain in sensitivity and decrease in381

LoD of such systems. If the decrease in LoD can be proved with a 3 DoF system with stiffer middle382

resonator, a second digital filter could be implemented in the FPGA, allowing to reproduce and exploit383

this configuration with our fixed frequency method.384

Another possible development concerns the way to calculate the vibration amplitudes. Instead of385

averaging the peak to peak values over many periods, it could be considered to average the amplitudes386

of the Fourier transforms at the excitation frequency over several acquisitions, which should be more387

accurate since the noise from the other frequencies are not taken into account in this calculation. In388

addition, it could be considered to apply specific windows on the recorded signals such as the Hanning389

window, in order to limit the spectral leakage around the resonant frequency. More generally, the390

different noise sources that corrupt the signals should be identified and analyzed in order to find a391

way to decrease the LoD quite high so far (quantization noise, operational amplifiers noise, clock jitter392

and so on).393

Furthermore, the Matlab®simulations given in Fig. 13 could provide calibration data in order394

to calculate the mass mismatch using mode localization and not the frequency shift, which is the395

primary purpose of the sensor. This calibration could even include a correction related to the change396

in Q-factor caused by the particles depositions, since the NS is directly proportional to it, even though397

no significant Q-factor drift were observed during the experiments.398

Finally for time saving, the tuning protocol could be automatized. It is so far executed by an399

operator, but the digital aspect of the system could accommodate an additional routine that would400

automate this delicate part of the process either when the operator needs to apply it, or to guarantee401

high sensitivity on a larger range by an automatic downshift of the digital filter resonant frequency as402

the perturbation increases.403

6. Conclusion404

This paper presents a prototype of mass sensor based on mode localization in a hybrid system405

made of a quartz resonator and a FPGA that yield higher sensitivities than those found in the literature.406

The digital aspect enables to reach optimal conditions in term of sensitivity with a fine tuning of407

different parameters such as the RtF or the coupling stiffness, and to implement a coupled structure408

including shear wave resonators that have high Q-factors. Furthermore, we show both theoretically409

and experimentally that the sensitive ranges are similar between two distinct excitation methods410

in open loop : a frequency sweep over both resonances allowing to measure the amplitudes at the411

resonances on the one hand, and a fixed excitation frequency f1 = fr ·
(

1− 1
2Q

)
at which the vibration412

amplitudes are measured on the other hand. The second one however yields higher sensitivities than413

the first one, and their maximum sensitivities are 0.35×Q and 0.25×Q, respectively. These results414

pave the way for a new generation of low LoD resonant mass sensors without resonance tracking,415

which results in a gain of time in an open loop configuration.416

Author Contributions: Conceptualization, software, validation and original draft preparation, Claude Humbert;417

methodology, supervision and writing–review, Vincent Walter, Najib Kacem and Thérèse Leblois; project418

administration and funding acquisition, Vincent Walter and Thérèse Leblois. All authors have read and agreed to419

the published version of the manuscript.420

Funding: This research was funded by the EIPHI Graduate School (contract "ANR-17-EURE-0002").421

Acknowledgments: We are indebted to our colleagues from the Time-Frequency department and the mechanical422

and electrical common services for their valuable help.423

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the424

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to425

publish the results.426



Version August 26, 2020 submitted to Journal Not Specified 17 of 22

Abbreviations427

The following abbreviations are used in this manuscript:428

429

DoF Degree of Freedom
FPGA Field Programmable Gate Array
LoD Limit of Detection
ML Mode Localization
NS Normalized Sensitivity
QCM Quartz Cristal Microbalance
RtF Resonant Frequency

430

Appendix A Proofs of properties 1 and 2431

The proof of property A1 is given in [24].432

Property A1. Expressions of the eigenvectors shifts due to a small mass variation in a 2 DoF coupled array433

made of undamped and initially identical resonators.434 

δωn ' −
δµn,n

2
·ω0n

δun ' −
δµn,n

2
· u0n +

δµp,n(
ω0p
ω0n

)2
− 1
· u0p

δµi,n = uT
0i · δM · u0n

n, p ∈ {1, 2}, p 6= n

(A1)

Where u0n, δun and δωn are the nth eigenvector before the addition of mass, the small variation of this435

eigenvector and the corresponding eigenfrequency shift after the introduction of a mass perturbation in the436

system, respectively. δM is the diagonal two by two matrix containing the normalized small mass shifts δm
m437

where m is the mass of each resonator and ω0n is the nth eigenfrequency.438

Proof of property 1. Considering two identical and coupled undamped resonators of stiffness k, mass439

m, coupling stiffness kc and with the notations from property A1, we can write :440

u01 =
1√
2
·
(

1
1

)
, u02 =

1√
2
·
(

1
−1

)
, ω01 =

√
k
m

, ω02 =

√
k + 2kc

m
(A2)

Assuming a mass perturbation ε = δm
m occurs on resonator 1, we have :441

δµ1,1 = δµ2,1 =
ε

2
(A3)

Assuming weak coupling, the frequency gap between the two modes shrink and the influence442

of the first eigen vector on its own variation becomes negligible. Therefore, the variation of the first443

eigenvector is :444

δu1 '
1
2
· ε(

ω02
ω01

)2
− 1
· u02 (A4)

Equation A2 and Eq. A4 give the famous result on low coupling NS [2] :445

ns =
|δu1|

ε
=

1
4κ

(A5)

where κ = kc
k .446
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However this result does not take mode aliasing into consideration, where the two modes merge447

because of the resonance bandwidth coming for internal losses. Assuming that damped resonators448

have a frequency bandwidth ∆ω−3dB, we here set an anti-aliasing condition such as [3] :449

ω02 −ω01 > ∆ω−3dB (A6)

Considering the the Q-factor can be expressed as follow :450

Q =
ω01

∆ω−3dB
(A7)

The anti-aliasing condition becomes :451 (
ω02

ω01

)2
>

(
1 +

1
Q

)2
(A8)

Considering high Q-factors, we only keep the first order. The minimum anti-aliasing condition is452

then defined below :453 (
ω02

ω01

)2
− 1 ' 2

Q
(A9)

Replacing Eq. A9 in Eq. A4 yields :454

δu1 '
Q · ε

4
· u02 (A10)

Therefore :455

ns1 =
|δu1|

ε
' Q

4
(A11)

.456

457

Proof of property 2. Assuming that any signal amplitude variation at fixed excitation frequency458

corresponds almost only to the resonance shift towards lower frequencies, there is at least one excitation459

frequency at which the sensitivity to the mass perturbation is maximum. We aim at finding this460

frequency along with the value of the maximum NS.461

The transfer function displacement over excitation force of a damped resonator with a slight mass462

perturbation ε = δm
m � 1 is :463

H(s) =
1

(1 + ε) · s2 + 1
Q · s + 1

(A12)

where s = j · ω
ω0

, ω the excitation angular frequency and ω0 the resonant angular frequency. Let’s464

excite the system at its RtF and define X as :465

X = |H(s = j)|

X =
Q√

1 + ε2 ·Q2

(A13)

The NS is then written as :466

ns =
∂X

∂ε · Xε=0

ns =
−Q2 · ε

(1 + ε2 ·Q2)
3
2

(A14)
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We now aim at finding the maximum absolute value of this function.467

ns is a negative function of ε which equals 0 when ε equals 0, and that tends to 0 when ε tends468

to infinity. Therefore, ns has a maximum absolute value we wish to find. To this purpose, let’s now469

derive ns with respect to ε :470

∂ns
∂ε

=
−Q2 · (1 + ε2 ·Q2)

3
2 + Q2 · ε · (3Q2 · ε

√
1 + ε2 ·Q2)

(1 + ε2 ·Q2)3
(A15)

We now solve the equation471

∂ns
∂ε

= 0⇔ −Q2 · (1 + ε2 ·Q2)
3
2 + Q2 · ε · (3Q2 · ε

√
1 + ε2 ·Q2) = 0

∂ns0

∂ε
= 0⇔ ε =

1√
2Q

(A16)

We then obtain an estimation of the maximum absolute value of the NS, using Eq. A14 :472

nsmax ' 0.38×Q (A17)

The amplitude variation is here mainly due to the RtF downshift. Assuming the frequency473

response in amplitude is symmetric with the RtF, there are two frequencies at which the system can be474

excited to obtain this maximum NS, above and below the RtF. Therefore, we can calculate one of these475

two frequencies using the frequency NS of one half, as follow :476

f1 − fr

fr
· 1

ε
= −1

2
(A18)

Where fr and f1 are the RtF before and after mass deposition, respectively.477

In order to obtain a sensitive range slightly higher, we rather choose ε = 1/Q, for which the NS is478

still479

ns2 ' 0.35×Q (A19)

We then have :480

f1 = fr ·
(

1− 1
2Q

)
(A20)

.481

482

Appendix B Digital filter details483

This appendix provides additional details on the digital filter implemented in the FPGA. It mainly484

refers to Fig. 6.485

Appendix B.1 Feedback switch486

When the filter coefficients are modified throughout the GUI (filter tuning), values of no physical487

significance can appear and propagate in the closed loop of the IIR, thus generating unpredictable488

output. This phenomenon last only a fraction of second before the correct steady state is reached.489

However, the output value may reach high values, usually triggering overflow. Overflow, once490

introduced in the closed loop, has no chance to stabilize since the meaningless numbers do not only491

appear when the coefficients are modified, but propagates at each time sample and forever. For this492

reason, an automatically controlled switch (block 37) has been added on the output feedback : when493

the coefficient values are modified, the switch opens, sends a zero feedback and closes after one494

millisecond, a time large enough to allow a few thousand samples to pass through (it must be above495
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3× d, which corresponds to the blocks 27, 30 and 34), and small enough not to be a nuisance to the496

experiment. In this way, parametric instability can be suppressed when the coefficients are changed.497

Appendix B.2 Precision of the filter coefficients498

Another problem with the digital filter is the stability of the IIR. Indeed the roots of the following499

function must have a modulus less than one.500

H(z) = z3 + b1 · z2 + b2 · z + b3 (A21)

For a given set of parameters having a physical meaning such as Q > 0, the roots of Eq. A21501

always have their modulus smaller than one. However, the numbers implemented in the FPGA are502

only integers. Therefore, there is a need to multiply the coefficients b1, b2 and b3 by a large integer503

in order to minimize the approximations done over these coefficients when injected in the hardware.504

Thus, these coefficients are multiplied by a power of two (parameter n0) which will facilitate the505

inverse operation within the FPGA using right bit-shifting. This common method is called floating506

point method.507

The roots of the following function have then been computed using Matlab®
508

H(z) = 2n0 · z3 + f loor(2n0 · b1) · z2 + f loor(2n0 · b2) · z + f loor(2n0 · b3) (A22)

where f loor(x) is the function that gives the greatest integer less than or equal to x. It can be509

shown through this simulation that the stability condition is fulfilled when n0 > 22. This result is510

experimentally confirmed with the digital filter in the FPGA.511

The coefficients ai and bi introduced in the FPGA are then called ain0 and bin0 , with512

a0n0 = f loor(2n0 · a0), ain0 = f loor(2n0 · ai), bin0 = f loor(2n0 · bi), i ∈ {1..3} (A23)

The IIR part of the filter (Fig. 6) must include a division by 2n0 before the feedback loop in order513

to get back to the real value of the output, which is the role of the block 36.514

Even though the digital filter is stable when n0 > 22, its frequency response could not be the515

expected one because of the approximations made on the coefficients. The only way to reduce this516

approximation is to increase the value of n0. Since this paper does not aim at the characterization of517

the digital filter, we here only state that this phenomenon has been simulated on Matlab®, following518

the sketch from Fig. 6 with the same parameter values. Increasing n0 up to n0 = 40 leads to frequency519

responses much closer in amplitude than the theoretical ones, which has also been experimentally520

validated.521

Appendix B.3 Correlated noise522

Another phenomenon occurring within the digital filter is its unexpected variable output523

amplitude : it can be clearly seen on the GUI oscilloscope that the output amplitude is varying524

over a long period of time in comparison with the period of the signal. It was found that these525

variations are due to the approximation done by the right bit-shifting of block 36 : the number of digits526

on which is encoded the feedback signal in the IIR has an influence on the time response. In order to527

reduce the influence of this function on the response, the signal is multiplied by another factor 2n1 at528

the output of the FIR, and is divided by the same constant at the output of the IIR (blocks 20 and 32).529

This way, the feedback (between blocks 37, 24, 26 and 28) is coded on 45 bits and not on 20 since n1 can530

go up to 25. This additional floating point method enables to reduce the correlated noise in the IIR.531

This way, for n1 = 10 and n0 = 40, the relative error of the output amplitude of the digital filter is less532

than 0.5% compared to that of the analytical model.533
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