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ABSTRACT

We show that micro-machined non-evaporable getter pumps (NEGs) can extend the time over which laser cooled atoms can
be produced in a magneto-optical trap (MOT), in the absence of other vacuum pumping mechanisms. In a first study, we
incorporate a silicon-glass microfabricated ultra-high vacuum (UHV) cell with silicon etched NEG cavities and alumino-silicate
glass (ASG) windows and demonstrate the observation of a repeatedly-loading MOT over a 10 minute period with a single laser-
activated NEG. In a second study, the capacity of passive pumping with laser activated NEG materials is further investigated in
a borosilicate glass-blown cuvette cell containing five NEG tablets. In this cell, the MOT remained visible for over 4 days without
any external active pumping system. This MOT observation time exceeds the one obtained in the no-NEG scenario by almost
five orders of magnitude. The cell scalability and potential vacuum longevity made possible with NEG materials may enable in
the future the development of miniaturized cold-atom instruments.

Introduction

Laser cooling1–4 has permitted groundbreaking advances in fundamental and applied physics by greatly reducing the velocity
of atoms, giving access to the detection of narrow atomic resonances5, 6 and making possible the preparation of pure quantum
states7. The low momentum ensembles available through laser cooling have led to the development of atomic devices and
instruments with unrivaled precision and accuracy, including microwave8 and optical9–13 atomic clocks, quantum sensors14,
magnetometers15 and inertial sensors based on matter-wave interferometry16.
The workhorse of cold-atom experiments is the magneto-optical trap (MOT)17, in which a balanced optical radiation force cools
atoms and a spatial localization is created by a magnetic field gradient. The MOT is typically created in an actively-pumped
glass-blown cell in which a modest alkali density and ultra-high vacuum (UHV)-level are sustained.
In recent years, significant efforts have been made to address the scalability of cold-atom instruments18, 19, even resulting in
the commercialization of compact cold-atom clocks and sensors. Designs for chip-scale cold-atom systems have also been
proposed20 and demonstrated, including novel ways of redirecting laser beams to trap atoms such as the pyramid MOT21, 22 and
grating-MOT (GMOT)23–25, as well as density regulators26, 27 and low-power coils28. Progress has also been recently reported
on the development of chip-scale ion pumps29. However, the high voltages and large magnetic field in the presence of the
atomic sample remain unfavourable for compact atomic clocks and precision instruments.
Further miniaturisation of the vacuum cell is possible through the combination of passive pumping techniques and a suitable
choice of vacuum materials. For example, micro-electro-mechanical-systems (MEMS) vapor cells, comprised of etched
silicon frames and anodically bonded glass windows, provide a means to mass production and micro-fabrication of the vacuum
apparatus. Such vapor cells30–35 are now a mature technology, reliable and widely used in chip-scale atomic devices36, including
commercial products37, 38. Recently, such micro-fabricated cells have demonstrated compatibility with laser cooling through
the formation of an actively-pumped MOT in a MEMS platform39.
However, in the absence of active pumping, the residual background pressure in chip-scale cells is rapidly degraded by gas
permeation through the glass substrates40, material out-gassing, and residual impurities generated during the alkali generation
and cell bonding processes41. In 2012, Scherer et al. reported the characterization of alkali metal dispensers and NEG pumps
in UHV systems for cold-atom sensors42 and showed that a MOT could be sustained for several hours in a 500 cm3 volume
pumped only with NEGs. In other studies, the activation of thin-film43 or pill-type NEGs44 were demonstrated to mitigate the
concentration of impurities in hermetically sealed micro-machined vapor cells.



In this paper, a 6-beam MOT, detected first in a MEMS cell with ASG windows and later in a glass-blown borosilicate cell, is
used to study the benefit of laser activated NEGs on the MOT observation time and vacuum pressure longevity with purely
passive pumping. Key experimental parameters including the number of atoms trapped in the MOT, the Rb vapor pressure and
the non-Rb background pressure are routinely monitored. The MOT observation time, defined as the time taken for the MOT to
decay to the detection noise-floor level, was measured to increase by 2 orders of magnitude, up to 10 minutes, after activation
of a single NEG in the MEMS cell. An additional test, performed in the conventional borosilicate cuvette-cell with 5 similar
NEGs, led to the observation of a MOT for more than 4 days in a regime of pure passive-pumping. This MOT observation time
is almost five orders of magnitude longer than in the no-NEG scenario. These results are encouraging for the development of
UHV MEMS cells compatible with integrated and low-power cold-atom quantum sensors.

Methods
Figure 1(a) shows a simplified schematic of the experimental setup. At the center of the laser-cooling system is an actively-
pumped micro-fabricated cell. The cell consists of a 40mm×20mm×4mm silicon frame etched by deep-reactive ion-etching
(DRIE) and sandwiched between two 40mm×20mm×0.7mm anodically-bonded low helium permeation aluminosilicate
glass wafers (ASG-SD2-Hoya. Product reference is for technical clarity; does not imply endorsement by NIST)40. A 6 mm
circular hole is cut through one of the glass windows by laser ablation before anodic bonding to the silicon, allowing the MEMS
cell to be connected to an external ion pump via a 7 cm long borosilicate tube. A photograph of the cell, prior to attaching the
tube, is shown in Fig. 1(b).
Cavities were etched into the walls of the Si frame to embed non-evaporable getters (SAES Getters, ST172/WHC/4-2/100.
Product reference is for technical clarity and does not imply endorsement by NIST), as illustrated in Fig. 1 (b). NEGs are
inserted manually into the frame prior to anodic bonding and are held in place by thin 200 µm fingers to ensure mechanical
stability. The active pumping vacuum system contains an electrically-heated alkali-metal dispenser that is used to provide the
Rb vapor density.
Rubidium atoms (85Rb) are cooled inside the cell using up to 20 mW of total laser power, red-detuned from the D2 cycling
transition at 780 nm45. The beam diameter is 8 mm and repumping from the F = 2 ground state is accomplished by frequency
modulating the cooling laser at 2.92 GHz to create an optical sideband at the appropriate detuning. The fluorescence from the
MOT is collected using an imaging system with a numerical aperture of 0.4, and imaged onto a CCD. We reduced imaging to
the region of interest to mitigate thermal vapor contribution to the MOT counts. A second fluorescence imaging arm connected
to a photodiode enables MOT loading time measurements.
NEGs are externally activated by heating with a 1 mm-diameter 975 nm laser beam. During activation of each NEG, the
activation laser power was gradually increased until the short term pumping of an individual NEG reached a maximum. A
photodiode detects a small amount of light from the activation laser and is used to time stamp the laser activation windows.

Figure 1. (a): Schematic of the MEMS-MOT cell experimental set-up. PD: Photodiode. CCD: Charge-coupled-device. AHC:
Anti-Helmholtz coils. M: mirror, (b): MEMS cell after bonding with embedded NEGs. The hole for the vaccum tube
connection is visible. A zoom on the NEG cavity is shown.
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Figure 2. Typical sequence of the MEMS-MOT cell measurement. The MOT atom number, the 85Rb pressure (or density)
and the non-Rb background pressure are routinely measured in the cell throughout the NEGs’ activation.

The measurement sequence is shown in Fig. 2. An image I1 from the MOT is acquired over a given exposure time (5 or 10 ms) in
the presence of both cooling light and magnetic field gradient. The field gradient is then switched off, a background image I2 is
taken and a background-subtracted image I3 = I1− I2 is then generated. In this sequence, since the cooling laser is ON when the
B-field is OFF, the number of counts of the image I3 is actually proportional to (NMOT +Nhot)− (Nmol +Nhot) = NMOT−Nmol,
where NMOT, Nmol and Nhot are the number of atoms actually trapped in the MOT, the number of atoms slowed down by the
optical molasses and the number of room-temperature atoms in the vapor, respectively. In our experimental conditions, we
calculated using a simplified 1-D model46 that NMOT/Nmol ' 2. Taking this factor of 2 into account, the MOT atom number
was estimated from the number of counts contained in the image I3 using the formula reported in Ref.47.
The residual background pressure in the cell was routinely extracted from measurements of the MOT atom number loading
curve time constant using the photodiode fluorescence channel (PD4 on Fig. 1). As shown in Fig. 2, the MOT loading curve
is acquired each time the B-field is turned ON (to turn on the MOT). Data points of the MOT atom number loading curve
are then approximated by an exponential function of time constant τMOT used to calculate the background pressure48, 49. All
background pressure data points shown in figures of this manuscript were obtained using this approach. We mention also that
measurements of the background pressure through MOT loading curves were confirmed by measurements of the background
pressure extracted from the ion pump current (in situations where the ion pump was activated). The alkali density probe at
795 nm is aligned through the cell, with the transmission actively monitored on a photodiode (PD3). The density probe is
scanned over a GHz range to resolve absorption spectrum within the cell vapor. A lock-in amplifier is used to aid density
extraction due to the small absorption path length in the MEMS cell.

Results
Prior to NEG activation, a MOT is initially established in the MEMS cell with an electrically driven alkali dispenser. During
NEG activation the background pressure and Rb density increase slightly. Once the atom number again reaches a steady-state,
the ion pump is then suddenly turned off and the evolution of the MOT atom number and background pressure are measured,
while the Rb density is observed to be constant in the cell. Corresponding results are shown in Fig. 3(a) and (b). In this
configuration, the MOT atom number NMOT decays rapidly to the detection noise-floor, measured here to be about 8 × 104

atoms, within 10 s. Experimental data of the MOT atom number NMOT are fitted by a single exponential decay function
such that NMOT(t) = A× exp(−t/τN)+ c, with a time constant τN = 1.9±0.2 s. Simultaneously, the background pressure
exponentially increases with the time t, following the expected law P(t) = Pf −∆Pexp(−t/τP), where Pf is the final pressure,
∆P = Pf −Pi, Pi is the initial pressure, and τP = 4.2±3.5 s is the time constant.
Following this first test, the NEG is activated and the above-described experiment is repeated, 10 minutes after the end of the
activation window, with the results shown in Fig. 3 (c) and (d). In this test, the MOT number decays significantly slower,
remaining visible for times exceeding 10 minutes. Thus, with this single NEG activation, an improvement of about 100 was
reported in the MOT observation time. In this test, contrary to the test performed before NEG activation, we found that the MOT
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Figure 3. (Color online) Decay of the MOT atom-number and evolution of the background pressure versus time in the
MEMS-cell in the regime of passive-pumping (after extinction of the ion pump), before (a, b) and after (c, d) the activation of
the NEG. Smoothed data (30-pt Savitsky-Golay smoothing) are used for more clarity. In (a), the MOT is not visible after 11 s
(no MOT on image (iii)) and data measurement is limited by the imaging system noise-floor. The imaging system noise-floor is
higher in (a) than in (c) (after NEG activation), while the initial atom number is smaller, due to an increased cooling power
degrading the MOT number and increasing the detected density fluorescence50. Data in (a) are fitted with a single exponential
fit function (dashed blue line), with a time constant τN = 1.9±0.2 s. In (b), original data points at 5.2, 6.5 and 9.2 s were
spurious and were removed. Data shown in (b) are fitted by a single exponential function (red dashed line), with a time constant
of τP = 4.2±3.5 s. In (c), after the NEG activation, the evolution of the MOT atom number is found to be well-fitted by a
dual-exponential function (cyan dashed line). Background pressure data in (d) are fitted (red dashed line) with the same
function as in (b), with an improved time constant of τP = 74±9 s. The very first data points of (b) and (d) each have
background pressure levels close to 2 × 10−7 mbar.

atom number decay could not be fitted by a single time constant exponential decay function, likely due to the simultaneously
evolving background pressure and alkali density within the cell during the initiation of passive pumping. In the present case, as
shown in Fig. 3 (c), the MOT atom number decay is found to be well-fitted over 450 s by a dual-exponential function such
as NMOT(t) = A1× exp(−t/τN1)+A2× exp(−t/τN2)+ c, with time constants τN1 = 11±1 s and τN2 = 109±2 s dominating
before and after the first 10 s respectively. This approximation is reported as a phenomenological model. Further studies are
required to understand better and model the MOT atom number dynamics. Background pressure data reported in Fig. 3 (d) are
again correctly fitted by the expected pressure-rise law, with a time constant τP = 74±9 s. This increased time constant of the
vacuum pressure is directly related to the activation of the NEG pump.
Following the initial demonstration in the MEMS cell, we performed a similar experiment in a standard borosilicate glass-blown
cell with a length of 10 cm and a cross-sectional area of 1 cm2, containing 5 NEGs. The use of a glass-blown cell here permits
insight to further NEG characterization, without implying the fabrication of a MEMS cell with additional NEG cavities. The
NEGs were sequentially activated while the steady-state MOT atom number and background pressure, as established from
the MOT loading curves, were tracked in the absence of active pumping. In these measurements, the ion pump was turned
off 10 minutes after NEG activation and was turned back on again after each new NEG measurement, to let the system reach
a new steady-state. Figure 4 shows an example of the MOT atom number decay (a) and background pressure (b) evolution,
following the activation of the fourth NEG and subsequent extinction of the ion pump. In Fig. 4(a), we found that the decay
of NMOT was reasonably fitted by a dual-exponential function, as described above, with τN1 = 10±0.1 s and τN2 = 70±1 s
dominating before and after the first 40 s respectively. The background pressure data (b) are fitted by an exponential function,
here with a time constant τP = 73±12 s. Figure 4(c) reports the measured value of the time constant τP versus the number
of activated NEGs in the glass-blown cell. We note that the performance of a single activated NEG is less efficient than the
single NEG performance in the MEMS cell. This is likely due to the significantly reduced vacuum volume of the MEMS cell
compared to the glass-blown cuvette. It is also observed that the pressure time constant τP increases with each additional NEG
activation, showing a summing contribution to the passive pumping within the cell environment. Following the activation of
five NEGs, the time constant τP is found to be improved by a factor of 30, in comparison to the initial test (before any NEG
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Figure 4. (Color online) Decay of the MOT atom number (a) and evolution of the background pressure (b), in the glass-blown
cell, after activation of the fourth NEG. In (a), after the NEG activation, the evolution of the MOT atom number is fitted by a
dual-exponential function (cyan dashed line). Background pressure data in (b) are fitted by a single exponential function,
described in the text, with a time constant τP = 73±12 s. (c): Values of the time constant τP extracted from the background
pressure rise exponential fit versus the number of activated NEGs. Error bars are extracted from the exponential fit, applied to
raw (non-smoothed) data of background pressure rise curves. (d): Initial values of the MOT atom number at the beginning of
each subsequent NEG activation process, with a linear fit shown as a solid blue line. The cell inner atmosphere is improved
after each new activated NEG.

activation). After each passive pumping period with the NEGs, the ion pump was turned back on and the MOT was recovered.
We found that with each subsequent NEG activation, the number of atoms in the MOT after ion pump turn-on also increased, as
shown in Fig. 4 (d). This increase is roughly linear with the number of activated NEGs, showing that the NEGs contribute to
the pumping dynamics in the cell in the presence of the ion pump. We noted also that the Rb pressure in the cell increased
slightly after each subsequently activated NEG. This could be explained by Rb adsorption onto NEGs prior to activation.
Following the evaluation of the short-term impact of passive pumping on the cell environment evolution, the mid to long-term
evolution of the cell in the regime of purely passive pumping was investigated. Figure 5 shows the long-term evolution of the
MOT atom number (a), the background pressure (b) and the 85Rb pressure (c), in the borosilicate cell with 5 activated NEGs,
after the ion pump is turned off (at t = 0). The MOT atom number, initially at the level of about 106, is observed to decrease
until 1000 s at a value of a few 104. Following this initial decay, the atom number increases again, flattening around 104 s
before decaying to 2×103 at 2×105 s. The resurgence of the MOT number is likely due to a simultaneous decrease of the
background pressure and slight increase of the Rb density at 104 s. The Rb pressure increase can be explained by the fact
that the electric dispenser was operating at a fixed current throughout this sequence, leading to a slow increase in alkali vapor
pressure due to the lack of active pumping that would otherwise remove Rb from the vacuum. The gradual increase reaches a
maximum at 105 s, where the Rb pressure decreases again until the MOT drops below the detection noise-floor. The reason for
the background pressure fluctuation between 103-104 s was further investigated. We found that the short-term τP was increased
by a factor 10 when a valve was used to remove the ion pump rather than turning it off. This indicates that turning off the ion
pump may release contaminants into the vacuum that could take the time scale seen in Fig. 5 (b) for the NEG to remove them,
resulting in the background pressure fluctuation that is observed.
After the resurgence of the MOT atom number near 104 s, the MOT number decay is fitted by an exponential decay function,
shown in Fig. 5 (d), with a time constant of 5.2×104 s. The MOT was still clearly visible after 3.5×105 s, i.e. more than 4 days.
Using expressions reported in Ref.40, we calculated that He permeation through the borosilicate glass may contribute to the
background gas increase at this stage of the experiment. We checked that actual variations of the Rb density, cell temperature,
magnetic field gradient, total laser intensity or laser detuning, measured during the test, could not explain the MOT atom number
dynamics on long integration times. Possible variations of the MOT beam alignment or the MOT beams power distribution (not
measured in the experiment) could have contributed to slow variations of the MOT number seen at long observation times46.
Although further work is required to demonstrate longer passive pumping times, this proof-of-principle measurement with the
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Figure 5. (Color online) (a): Steady-state MOT atom number with inset fluorescence images of the MOT at specific times. (b):
Background pressure extracted from the MOT loading time constant. (c): 85Rb pressure for the full time set of the data. (d):
MOT atom number evolution extracted from (a) after the bump appearing at about 104 s. The y-axis is here in linear scale.
Experimental data on (d) are fitted by an exponential decay function (solid black line), with a time constant of about 5.2 ×
104 s. The electric dispenser remained on at a low level throughout the sequence. A 5 s data averaging has been applied to the
background pressure data in (b). The absence of points between 6 × 104 and 105 s in (b) is due to a software issue with the
MOT loading time extraction. We note on (a) that at long time scales, the MOT exhibits a diffuse shape due to the high
background pressure and alkali density regime. In addition, the MOT height likely changes a little over the 4-day measurement.
These changes might result from slight mechanical, polarization or optical alignment changes.

activation of five NEGs has yielded the demonstration of a MOT observation time that exceeds 5 orders of magnitude from the
no-NEG scenario.
In a last test, to demonstrate that a degradation of the NEGs pumping-rate was not a systematic limitation, the ion pump was
re-activated to recover the MOT, before being shut-down again to evaluate the continued pumping performance of the NEGs.
In this scenario, we found that 8 days after the NEGs activation, the values of the time constant τP did not demonstrate any
clear sign of degradation of the short-term pumping rate. This result is an additional source of encouragement for the future
development of passively-pumped cold-atom MEMS cells.

Conclusions
We have reported the detection of a 6-beam magneto-optical trap in a MEMS cell and in a glass-blown cell, each embedding
laser-activated passive non-evaporable getter (NEGs) pumps. In each cell, the evolution of the cell inner atmosphere was
monitored after achievement of a steady-state MOT thoughout the NEG activation windows and passive pumping tests were
later performed by turning off the external active ion pump. In the MEMS cell using ASG windows, a single NEG was
successfully laser-activated, demonstrating 2 orders of magnitude improvement of the MOT observation time to 10 minutes.
In the glass-blown borosilicate cuvette cell, activation of 5 NEGs yielded a MOT observation time greater than 4 days in the
regime of purely passive-pumping, i.e. about five orders of magnitude longer than in the no-NEG scenario. These results
open the way to the development of UHV MEMS cells devoted to be exploited in fully-miniaturized cold-atom sensors and
instruments.
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