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Abstract—In any network, routing and congestion control
protocols play a key role, as they allow packets to reach the
intended destination. We are interested in wireless nanonetworks
(WNNs), which are networks whose nodes have a nanometric
size and can be potentially dense in terms of neighboring nodes.
The nodes have limited processing capabilities and power. The
objective of this research is to present a fine-grained sleeping
mechanism for nodes, whose aim is to reduce node resource
usage and thereby increase the network life. We evaluate the
sleeping mechanism by presenting the impact of network density
on packet reachability and network resources used. Simulations
demonstrate the effectiveness of this mechanism and show that
nanonode resources (CPU, memory, energy) can be preserved by
decreasing the number of forwarded and ignored packets while
ensuring the arrival of the data packets to the destination.

Index Terms—Routing, Congestion, Nanonetwork, Duty-
cycling, Scalability

I. INTRODUCTION

Wireless sensor networks are built from tiny nodes,
equipped with embedded computing, sensing and actuating
devices. They usually have small CPU, small memory and
low battery. Upcoming nanosensor networks will use electro-
magnetic waves from the THz band (0.1–10 THz) for their
communications [1]. Due to power constraints, they will also
have to use multi-hop communications to cover large areas.

In a traditional dense sensor network [2], congestion is
the state where the number of packets exceeds the network
capacity. Some of them are discarded or lost due to colli-
sions. Contrary to traditional wireless networks, congestion in
nanonetworks [3] does not arise from a saturated channel, but
from an insufficient capacity of individual nodes on the multi-
hop path to process all the incoming concurrent packets.

Routing protocol is responsible to route packets from source
to the desired destination. As mentioned before, during packet
routing and due to network congestion, packets may not
reach their destination, which makes the communication in
the network unreliable. To ensure packets delivery, a reliable
routing protocol taking congestion into account should be
used. SLR (Stateless Linear-path Routing) [4] is the protocol
we use in our evaluation. It implements a coordinate-based
routing, in which data packets are routed in linear routing path.
Nodes are assumed to be placed in a cubic space, distributed

Fig. 1. SLR routing zones. Fig. 2. SLR addressing phase.

in zones (Fig. 1). In the initial SLR phase, during network
deployment, a few anchor nodes broadcast a packet (beacon)
to the whole network. The hop counter in those beacons is
used to define the coordinates of all nodes as a distance to
the anchors (Fig. 2). In the second phase, during data packet
routing, nodes choose to forward a packet if and only if they
are on the path between the source and the destination of the
packet (Fig. 1).

SLR protocol uses the TS-OOK (Time Spread On-Off
Keying) modulation [5] to share the radio terahertz channel
for nanodevices, which is based on femtosecond-long pulses
where packets are transmitted as a sequence of pulses inter-
leaved by a given duration, cf. Fig. 3. “1” bits are encoded
with a power pulse of duration Tp and “0” bits are encoded as
silence. Because sending consecutive pulses needs unavailable
hardware and power at such small sizes, consecutive bits are
spaced with a duration Ts which is usually much longer than
the pulses themselves. Collision occurs when the receiver is
receiving a “0” bit (silence), but in the same time a “1” bit
arrives, which effectively shadows the “0”, cf. Fig. 4. TS-
OOK parameters can be summarized by Tp (pulse duration), β
(spreading ratio, β = Ts/Tp) and Ts (time between symbols).

Even if the channel capacity is very high, nodes have very
low capabilities and cannot completely use it individually. Due
to the TS-OOK’s ability to interleave packets over the channel,
nodes can receive multiple packets concurrently. However,
the number of packets that could be received concurrently is



Fig. 3. TS-OOK modulation.

Fig. 4. TS-OOK error bits reception.

bound to be limited, due to technical constraints. We call this
limitation emanating from CPU, memory or other hardware
maximum concurrent receptions. In the following evaluations,
we will consider this limitation to be equal to 5. This means
that while 5 packets are already being received, new incoming
ones will be silently ignored. This is different from collisions,
as the packets being received are not affected. This mechanism
nevertheless means that nodes can very easily be saturated in a
given area, effectively reducing the available network capacity
and producing a new form of congestion.

Keeping a nanonode awake for the whole Ts duration makes
it easy to saturate. Our idea is to make it inactive for a fraction
of Ts, effectively implementing a very fast and sub-packet
level duty cycle. Thus, the node will not be able to receive all
incoming packets anymore. But we compensate this by having
the other nodes asynchronously apply the same mechanism.
By doing so, incoming packets are handled and routed only
by nodes that are awake.

In this paper (1) we introduce a novel fine-grained sleeping
mechanism dedicated to nanoscale networks and integrate
it with SLR protocol. (2) We prove the efficiency of this
combination in reducing congestion in nanonetworks, allowing
packets to reach their destination and preserving nanonode
resources (CPU, memory, energy). Also, (3) we investigate
the impact of the network density and how it reflects on the
optimal awake duration.

The rest of this paper is organized as follows. Section II
introduces the aspect of congestion detection and recovery
between macro-scale and nanoscale. Section III presents the
sleeping mechanism. Evaluation via simulations takes place in
Section IV. Finally, conclusion and future work are drawn in
Section V.

II. RELATED WORK

Congestion occurs when numerous packets have to be
exchanged but nanonodes are not able to process them because
of the limited resources. Congestion leads to packets loss and
interference, which affect the network efficiency and lifetime
[6].

Congestion can have multiple causes, but the most common
ones are either a low link bandwidth or the lack of network
resources - especially the buffer size in the nanonodes [7]. The
traditional solution was either to decrease the rate of packets
injected at the source, or to drop packets when nanonodes are
unable to receive and store them due to buffer saturation.

The mechanisms used to avoid congestion are listed under
the term of congestion control. In macro-scale internet, TCP
(Transmission Control Protocol) is one of the well known
protocols that have a network congestion avoidance algorithm
[8]. It includes various aspects of an additive increase /
multiplicative decrease (AIMD) scheme [3], along with other
schemes such as slow start and congestion window. Over time,
researchers have expanded the TCP protocol and produced
several versions such as TCP New Reno, TCP Vegas, TCP Fast
[9], [10], [11], focused on congestion avoidance techniques to
solve the packet loss problem.

The approach is different when moving to nanoscale net-
works based on tiny nodes, equipped with embedded comput-
ing devices interfacing with sensors/actuators. They are used
in indoor and outdoor applications to monitor a physical or
environmental event. Depending on application, the upstream
traffic delivery can be [3]:

• Event-based: network load is light but becomes active in
response to a detected event.

• Continuous sensing: some applications require continu-
ous sending of sensing values, ex: nuclear monitoring.

• Query-driven: sink node invokes and queries sensing
nodes to answer.

• Hybrid: bulk data is generated in addition to the con-
stantly sensing data.

Congestion detection strategies are numerous [12]. The most
used are packet loss (can be measured at the sender if ACK
is used, also it can be measured at the receiver if sequence
numbers are used), queue length (buffer usage in each node
can serve as an indication of congestion, when the buffer
exceeds a fix threshold then the congestion is signaled), packet
service time (service time is used to continuously adjust the
rate at which children send their packets), the ratio between
packet service and packet inter-arrival time (scheduler be-
tween network layer and MAC layer will quantify the number
of packet scheduled per time unit, this ratio indicates node
level and link level congestion, delay (quantifies the necessary
time starting the packet generation at the sender until its
successfully reception at the next hop receiver).

For congestion control, many algorithms for wireless sensor
networks are designed across transport layer and MAC layer
(even the network layer) for efficient congestion detection and
control.



Fig. 5. Sleeping mechanism with three nodes and three flows.

Using sleeping mechanism in sensor network is also con-
sidered in the literature. Its goal is to preserve nodes resources
(CPU, memory, energy), therefore extending network life time.
S-MAC protocol [13] is one of many protocols that use
sleeping mechanism. The nodes are awaken for a period of
time and asleep in the remaining time. This scheme requires
periodic synchronization among neighboring nodes to repair
their clock drift. Sleeping time schedule must be created by
each node and exchanged between neighbors.

III. SLEEPING MECHANISM

A common technique to preserve node resources (especially
energy consumption) is to use duty cycling (sleeping) tech-
niques, where nodes wake up from time to time to receive
packets sent to them. Our proposed sleeping mechanism differs
from those used in macro-scale network on two main aspects:

• Fine granularity: A nanonode does not stay awake for the
duration of one or several packets, but for a much shorter
duration, a fraction of the Ts value. By doing so, it is able
to receive only one bit of a given packet at a time, and
potentially a few bits that belong to other packets, due to
packet interleaving.

• Asynchronism, decentralization: There is no agreement
among nodes on awake periods. A node simply receives
the bits that arrive when it is awake, whether they are
intended for itself or not, and misses all the other bits.

In our proposed sleeping mechanism, all the nodes have the
same awake-sleep cycle, equal to Ts. Inside the cycle, all the
nodes have the same awake duration (or percentage of Ts),
but the beginning of the awake interval is different for each
node, and is randomly determined. For this to work, all the
flows must have the same β.

This is illustrated in Fig. 5, where receiver nodes Recv1,
Recv2 and Recv3 wake up at different times, but for the same
duration. Recv1 and Recv2 are able to pick the bits from flows
1 and 2, as they arrive when they are awake. Recv3 is able to
pick bits only from flow 3.

The mechanism ensures that if a node is able to pick the
first bit of a packet, it will be able to pick all the followings.
By adjusting the awake duration to the local density of the
network, one can also statistically assure that a packet will

Fig. 6. VisualTracer output for the evaluated network.

be received by at least one or a few nodes (without knowing
which ones in advance).

During simulations, we vary the network density (chang-
ing the number of nanonodes in the network) to observe
how packet transmission behaves. Intuitively, the denser the
network, the more collisions and ignored packets we should
observe. By using the sleep mechanism, we intend to reduce
the load on each individual node and thus improve the perfor-
mance of the network.

IV. EVALUATION

This section evaluates the sleeping mechanism in improving
network performance. As a detailed analytic study is not
possible, we instead evaluate the protocol through simulations.
Technical details and information about full reproducibility of
our results are provided on a separate website1.

A. Simulation platform

We use BitSimulator [14] to evaluate our proposed ideas.
BitSimulator has been designed to allow simulation of ap-
plications and routing protocols while keeping a relatively
detailed model for the MAC and physical levels. As such,
it enables exploration and understanding of the effects of low
level coding and channel access contention. It uses the TS-
OOK modulation. It comes with a visualization program which
displays graphically the simulation events, cf. Fig. 6.

B. Network scenarios

The simulation parameters are shown in Table I. The net-
work is a 2D area. The main flow has the source at the bottom
of the network, and the destination at the top. The source sends
100 unique packets to the destination. Several interfering flows
(more precisely, 92, with specific parameters β = 1000, packet
size = 1000 bits, interval time between packets is 0), if any,
cross the network from left to right of the network, as shown
in Fig. 6.

The communication range is chosen so that several hops
are necessary to cross the network. Indeed, the mono-hop
communication surface is a disc π0.352 ≈ 0.38mm2, so the

1http://eugen.dedu.free.fr/bitsimulator



TABLE I
SIMULATION PARAMETERS.

Size of simulated area 6 mm * 6 mm
Number of nodes 3000 to 15 000
Communication radius 350µm
β (TS-OOK time spreading ratio) 1000
Tp 100 fs
Packet size 1000 bit

simulated area contains 6∗6/0.38 = 94 disjoint discs. Routing
is done through the SLR protocol [4], an improved version of
CORONA protocol. Fig. 6 shows a map where each colored
zone corresponds to a different distance expressed in hop count
from the SLR anchors. The node density is high, i.e. from
3000/94 ≈ 32 to 15000/94 ≈ 160 neighbors.

In the following analysis, all the nodes use the sleeping
mechanism. We vary the number of randomly positioned nodes
and the number of competing data flows that may interfere
with the main flow. To avoid random effects, each point in
the following figures is the average of 15 simulations using
different RNG seeds, used for the position of all the nodes
except source and destination ones, all the other parameters
being kept identical.

C. Comparison metrics

The sleeping mechanism uses less node resources (CPU,
memory, energy) but can prevent packets to arrive to the
destination. Therefore, the metrics we use are the following:

• Arrived packets: the number of packets that have reached
the destination node; only unique packets from the 100
original ones reaching the destination are counted, other-
wise said multiples copies of the same packet are counted
as one.

• Main data flow forwards and receptions: the number
of times the packets of the main data flow are sent or
received by a node in the network (at “MAC” level).

• Forwards and receptions: the total number of forwards
and receptions, i.e. for the main flow plus the interfering
flows; this metric is a good indication on the energy used.

• Collided and ignored packets: a collision occurs when
packets arrive at the same time and hence prevent correct
decoding by the receiving node. Ignored packets are
discarded due to insufficient capacity to process all the
incoming concurrent packets (buffer overflow or other
physical limitations). Nodes are aware of collisions, but
may be unaware of ignored packets.

D. Results without interfering flows

In SLR, nodes receiving a packet check if they are on the
path from its source to its destination, and forward the packet
if this is the case. But multiple nodes may share the same
coordinates in SLR and they will all take the same decision to
forward. In very dense networks, as many neighbouring nodes
try to forward at the same time, this can cause collisions and
ignored packets.

pkt1 pkt2 pkt3 pkt1 pkt2 pkt3… …
interval

Fig. 7. Packets sent without interruption or sent at a fixed interval.
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Fig. 8. Percentage of arrived packets depending on awake time and network
density, for one flow and no interval between packets.

In this scenario, the source sends 100 packets (1) as fast as
possible (one after the other), or (2) with an interval between
packets equal to 5 times the duration of a packet (see Fig. 7).
In such a multi-hop scenario, sending as fast as possible is
quite demanding, as copies forwarded by neighbours tend to
interfere with new incoming packets. Slowing the transmission
speed even if data are available at the source is a good strategy,
especially as nodes are not expected to send long bursts of
data.

When inter-packet waiting period is null (Fig. 8), only
around 40% of unique packets reach the destination for always
awake nodes (100% on horizontal axis). The more the nodes
sleep, the higher the reachability, up to the point where
not enough nodes are awake and the transmission becomes
impossible. Finally, denser networks benefit even more from
the sleeping mechanism.

In case of an interval between packets, the intensity of the
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Fig. 9. Percentage of arrived packets depending on awake time and network
density, for one flow and with interval between packets.



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0  10  20  30  40  50  60  70  80  90  100

T
ot

al
 n

u
m

be
r 

o
f 

fo
rw

ar
ds

 i
n 

th
e 

ne
tw

or
k

% awaken

3000 nodes
5000 nodes
8000 nodes

15000 nodes

Fig. 10. Total number of forwards, for one flow and with interval between
packets.
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Fig. 11. Total number of receptions, for one flow and with interval between
packets.

data burst increases, and the reachability improves greatly. In
Fig. 9, at 100% of time awake, all the packets are received.
Also, decreasing the awake time does not immediately reduce
the number of arrived packets, giving space for improving the
network usage. This is especially true for very dense networks.
For example in Fig. 9, in the densest network (15 000 nodes),
10% of awake time is sufficient to allow all the packets to
arrive at the destination.

Fig. 10 and 11 highlight an unexpected behavior of our
sleep mechanism. As expected, there is a collapse of forwards
and receptions when the awake time is very low and the
data packets cannot be forwarded anymore. But for larger
percentages of awake time, curves are mostly stable. This is
contrary to what Fig. 9 showed, i.e. the reachability improves
with the decreasing of the awake time.

A stable or even an increase in transmission has a twofold
explanation: First and foremost, the sleep mechanism dis-
patches the load of forwarding packets among neighboring
nodes. As not all of them receive at the same time, they are
not saturated (ignoring packets) at the same time. The same
number of nodes becomes able to forward more data packets.
This effectively increases the capacity of the network. This is
an important result of this evaluation. As a second reason, we
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Fig. 12. Percentage of arrived packets depending on awake time and network
density, for 20 concurrent flows and with interval between packets.
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Fig. 13. Total number of forwards in the network, for 20 concurrent flows
and with interval between packets.

can also note that as packets are not lost (cf. Fig. 8 and 9),
they can be repeated along the whole path. This effectively
increases the number of times they are counted as forwarded
packets.

E. Results with interfering flows

When adding interfering (background) flows in the network,
we expect that packets from the main flow have a greater
probability of collision, and a greater probability to get ignored
by forwarding nodes given that their resources are used for
other flows too.

However, Fig. 12 shows that the sleep mechanism can
improve very significantly the reception rate, e.g. many more
packets arrive for 50% than for 100% of awaken nodes.

This ability to improve the usable capacity of the channel is
further illustrated in Fig. 13. It shows that adding more flows
in the network translates into much more forwards (it can be
compared to Fig. 10), while the reachability stays good.

F. Sleeping and destination node considerations

Sleeping improves network behavior by limiting the amount
of traffic an individual node can see. Traffic is statistically dis-
patched over all nodes, thus sharing the load. This mechanism



is especially effective while routing packets. But provisions
have to be made to ensure the destination node is not sleeping
and missing some data packets.

A first way to deal with this problem is to ensure the
destination node is not sleeping at all. This is the case
for networks where the destination node is in a relatively
calm area. As not much competing traffic comes near the
destination, it does not saturate and can stay awake all the
time.

In case of a destination being in a very loaded area, a
better strategy is to not target a specific node, but instead ”any
node providing the required service” in the destination zone.
This way, it becomes possible to have multiple nodes imple-
menting the service and sharing the same SLR coordinates.
Those nodes will sleep asynchronously, with an awake time
percentage depending on how many they are. At any time,
some of them will be awake and able to pick any incoming
packet.

Another consideration is that usually the best awake per-
centage is the one that has the lowest number of forwards,
receptions, ignored packets, while maintaining a good proba-
bility of packets arrived at the destination.

However, there are applications which do not need a 100%
reliability (reachability to the destination). For example, in
agriculture applications, nanonodes can be used to measure
plant life indicators (such as humidity, soil moisture, sun light)
and transmit this information to a central server for processing.
Whereas such applications need a high network life time, the
reliability of arrived packets is not critical, since any lost infor-
mation will be resent anyway. Our sleeping mechanism helps
such applications by improving the network life time using a
small awaken period. As for now, experimental validation is
not yet possible, because nanonodes are not yet manufactured
due to technical constraints.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed the integration of the proposed
sleeping mechanism into the SLR routing protocol and in
the context of very dense nanonetworks. Evaluations were
conducted by using a detailed simulation tool. Evaluations first
illustrated a very peculiar behavior of nanowireless networks.
While the capacity of the THz channel is very high, it may not
be directly available. Nanonodes are not able to individually
process the full throughput of this channel. Especially in dense
to very dense environments, when exposed to broadcasting
schemes, all nodes in an area tend to reach saturation and
start missing (ignoring) new incoming packets. By allowing
an asynchronous sleep mechanism, we are able to improve
significantly the amount of data that can be successfully
transferred in the network in a given amount of time (we
increase the usable capacity). Moreover, as not all nodes
participate in all local transmissions anymore (remember that
they individually receive much less packets), the load is
dispatched. As individual nodes see less activity, they also
use less resources (energy, CPU, memory, ...) Evaluations
clearly show that the percentage of time awake needs tuning by

considering the local network density and even the number of
locally competing data flows. We have shown that an optimal
value can be found, that optimizes the available capacity.
The number of packets successfully transmitted increases
while the number of ignored packets and collisions does not
change much or even decreases. Each application/deployment
can benefit very significantly from this tuning. Future work
includes the integration of sleeping mechanism in the backoff
flooding, by taking into account the flows interference. It also
includes an automatic tuning of the awaken duration based on
the neighborhood density, using the DEDeN density estimation
protocol.
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