Hybridization of resonant modes and Bloch waves in acousto-elastic phononic crystals
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In phononic crystals composed of solid inclusions distributed periodically in a fluid matrix, Bloch
waves are a superposition of acoustic and elastic waves coupled at the boundaries of inclusions.
Resonances internal to the unit cell and localized on the solid inclusions, when present, populate the
phononic band structure with additional hybridization bands. Comparing the cases of nylon-in-water
and of steel-in-water, that are conveniently accessible to experiment, we relate the hybridization
bands to the resonant modes, also termed quasi-normal modes, of a single solid inclusion immersed
in water, that are identified numerically using a stochastic excitation technique. To characterize the
hybridization of the resonant modes with the continuum of Bloch waves, we compute the complex
phononic band structure giving evanescent Bloch waves with acousto-elastic coupling taken into
account. In the particular case of hexagonal acousto-elastic phononic crystals, we observe that the
acoustic Dirac cone centered at K points of the first Brillouin zone can be severely affected without

breaking the symmetry of the crystal.

I. INTRODUCTION

Mechanical waves propagating in media composed of
a mixture of solid and fluid parts are superpositions of
scalar acoustic waves in the fluid and of vector elastic
waves in the solid [1]. Acoustic and elastic waves are
coupled at every solid-fluid boundary. The number of
degrees of freedom (dof) is not the same in the acoustic
domain and in the elastic domain. Acoustic waves are
typically described using a single dof, for instance pres-
sure, whereas elastic waves are described with up to three
dof, for instance displacements in physical space. Solid-
fluid boundary conditions are the continuity of pressure
and of normal particle acceleration [2].

Phononic crystals formed from periodic solid-fluid
composites are very practical for experiments [3], since a
porous solid crystal or a manufactured structure are eas-
ily immersed in or filled with air or water [4—6]. Phononic
crystal sensors have been proposed that use resonances
of fluid inclusions inside a solid matrix [7]. The reverse
case of solid inclusions in a fluid matrix has been con-
sidered extensively for demonstration of phononic band
gaps [8], waveguiding [5], negative refraction [9], tunnel-
ing [10], or topological properties [11]. The appearance
of local resonances in this case actually depends on the
contrast between inclusions and matrix. When the ma-
trix is air, acoustic waves feel the boundary condition
on any rigid solid as almost equivalent to a fully rigid
boundary condition, because of the huge impedance con-
trast. The problem hence reduces effectively to a single
scalar acoustic wave equation only [12]. In water with
heavy metal inclusions, a composition that has often been
considered experimentally, acousto-elastic boundary cou-
pling definitely results in the excitation of elastic waves
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in the solid inclusion, but the effect on wave dispersion
is mostly a shift of the bands, at least for frequencies up
to and slightly above the first Bragg band gap [8]. For
the soft inclusions of colloidal crystals [13-15] or of ran-
dom composites of nylon rods in water [16, 17], however,
the appearance of hybridizations can be observed in the
band structure already below the first Bragg band gap.
Elastic resonances of the solid inclusions can indeed cou-
ple with longitudinal acoustic waves in the fluid because
in-plane elastic waves have mixed shear and longitudinal
polarization.

In this paper, we consider the periodic case of acousto-
elastic phononic crystals. We observe that the phononic
band structure is populated by additional hybridization
bands for nylon-in-water that are absent for steel-in-
water. Comparing both cases, we definitely relate the
hybridization bands to the resonant modes, also termed
quasi-normal modes, of a single solid inclusion immersed
in an infinite water domain. The resonant modes are
identified numerically using a stochastic excitation tech-
nique [18]. To characterize the hybridization of the reso-
nant modes with the continuum of Bloch waves, we com-
pute the complex phononic band structure giving evanes-
cent Bloch waves with acousto-elastic coupling taken into
account. In the particular case of hexagonal acousto-
elastic phononic crystals, we observe that the acoustic
Dirac cone centered at K points of the first Brillouin zone
can be severely affected without breaking the symmetry
of the crystal.

II. BAND STRUCTURE OF
ACOUSTO-ELASTIC PHONONIC CRYSTALS

We first consider in this section the phononic band
structure and the Bloch waves of acousto-elastic phononic
crystals. This problem has been considered before, espe-
cially in the case of heavy and stiff solid inclusions in air
and water [5, 8]. The consideration of nylon in water,
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Table I. Mass density p, longitudinal velocity cr, and shear
velocity cs for the materials considered in this paper.

p(kgm™) cr(mfs)  cs (m/s)
Water 1000.0 1500.0 -
Steel 7800.0 6023.0 3222.0
Nylon 1150.0 2396.0 932.0

for which the shear elastic velocity is smaller than the

acoustic velocity, in contrast leads to additional bands.
The scalar equation of motion for acoustic waves in the

fluid can be written for the pressure as the variable as [2]

2
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with B the bulk modulus and p¢ the mass density for
the fluid. This single scalar equation supplemented with
rigid boundary conditions describes well sonic crystals in
air.

In the case of solid inclusions in water, or whenever the
contrast between the properties of fluid and solid is not
overwhelming, acousto-elastic interaction must be taken
into consideration. Elastodynamic motion in the solid
can be described as [19]

wpsu+ V- (c:Vu) =0, (2)

with ps the mass density of the solid and ¢ the rank-4 elas-
tic tensor. The displacement vector u has 3 components
in physical space. In this paper, we restrict our con-
sideration to in-plane elastic waves in two-dimensional
phononic crystals, so only 2 displacement components
will be needed.

Acousto-elastic interaction can be generally described
as follows. First, the normal acceleration is continuous
across solid and fluid domains, leading to

1

wu-n=n- (—Vp) ) (3)
Pr

with n the vector normal to the boundary. Second, the

normal traction is continuous across the interface, i.e.,

(¢c:Vu) -n=—pn, (4)

The phononic band structure can be obtained by com-
bining Eqgs. (1-4) with Bloch’s theorem as outlined in
Appendix A.

For concreteness we consider the two-dimensional
phononic crystal whose primitive unit cell is depicted in
Figure 1(a). Cylindrical solid rods of radius r are ar-
ranged periodically according to an hexagonal Bravais
lattice with lattice constant a. The filling fraction is
(2w /+/3)(r?/a?) = 0.4. Material constants listed in Ta-
ble I are specified with mass density and bulk phase ve-
locities. The fluid matrix is chosen as water, with longitu-

dinal phase velocity ¢, = , /%. Either steel or nylon are

Figure 1. (a) Primitive unit cell for two-dimensional hexago-
nal phononic crystals composed of solid cylindrical rods em-
bedded in a fluid matrix. Lattice vectors are represented by
the red vectors, with a; = a(i—+/3j)/2 and az = a(i++/3j)/2.
(b) The first Brillouin zone is also hexagonal. High-symmetry
points T', K and M are indicated. b1 = b(i — v/3/3j) and
bs = b(i + V/3/3j) with b = 27 /a.
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Figure 2.  Phononic band structure for a two-dimensional
hexagonal phononic crystal of steel rods in water, accounting
for acousto-elastic coupling. Dashed lines are for the simpli-
fied fluid-fluid case, with shear waves in the solid neglected.
The first two Bloch waves at the M and K points of the first
Brillouin zone are presented below the band structure. The
color scale represents the pressure in water, from negative
(blue) to positive (red) amplitudes. The thin arrows repre-
sent the displacement vector in the solid inclusion. The thick
arrow indicates the direction of propagation of Bloch waves.
The two Bloch waves at the K point are degenerate in fre-

quency.

considered for the solid inclusions. For isotropic elastic
solids there are only two independent elastic constants.

Note that in this case ¢, = /‘ZA and cg = /Cpﬂ.
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Figure 3.  Phononic band structure for a two-dimensional
hexagonal phononic crystal of nylon rods in water, accounting
for acousto-elastic coupling. Dashed lines are for the simpli-
fied fluid-fluid case, with shear waves in the solid neglected.
The first eight Bloch waves at the M and K points of the first
Brillouin zone are presented below the band structure. The
color scale represents the pressure in water, from negative
(blue) to positive (red) amplitudes. The thin arrows repre-
sent the displacement vector in the solid inclusion. The thick
arrow indicates the direction of propagation of Bloch waves.

Band structures for steel-in-water and nylon-in-water
are shown in Figs. 2 and 3, respectively. They present the
reduced frequency wa/(2m) of Bloch waves as a function

of the wavenumber inside the first Brillouin zone. The
band structures without acousto-elastic coupling taken
into account are also presented for comparison. They are
obtained by replacing the solid with an equivalent fluid
having the same longitudinal velocity, i.e. neglecting the
contribution of shear elastic waves. It is found that for
steel-in-water acousto-elastic coupling does not change
significantly the band structure. The main effect is a
frequency down-shift of the bands, which can be under-
stood by the fact that the shear part of the elastic energy
is neglected when acousto-elastic coupling is ignored. A
Bragg gap appears for steel-in-water in the I'M direction
for reduced frequencies ranging between 673 m/s and 928
m/s. At the K point of the first Brillouin zone a Dirac
cone is formed [20]. The first two Bloch waves at the M
and K points are further presented. The first two Bloch
waves at the M point have even symmetry with respect
to the direction of propagation. At the K point, they are
degenerate in frequency but the symmetries of the bands
they form are orthogonal.

In the case of nylon-in-water shown in Fig. 3, in con-
trast, the band structure is strongly affected by acousto-
elastic coupling. Comparing with the fluid-fluid band
structure, it is noticed that additional bands appear. As
we outline in the following section, a single nylon rod
in water possesses more resonances in the low frequency
range than a steel rod of identical diameter. Both the
shear and the longitudinal bulk velocities of nylon are
closer to the acoustic velocity of water than are the ve-
locities of steel, and the reduced contrast favors the gen-
eration of locally resonant gaps. The Dirac cone at the K
point is strongly affected as well. Actually, as we discuss
later, it is pushed upward by the mixing between bands 3
and 4, counted in order of appearance from the I" point.
The first eight Bloch waves are plotted in Fig. 3 at the
M and K points. They will be further discussed later in
Section IV, once resonant modes of the rod have been in-
troduced. For now we notice that they can be classified
according to their even or odd symmetry with respect to
the direction of propagation. Pairs of Bloch waves can
further be degenerate at the K point. The latter situa-
tion happens for the first and the second Bloch waves,
the 4th and 5th Bloch waves, and the 7th and 8th Bloch

waves.

We argue in the following that the additional bands for
nylon-in-water result from hybridization of Bloch waves
with resonant in-plane polarized elastic waves that are
partly trapped in the solid rods. Since the coupling of
elastic waves in the rods and acoustic waves in water
is significant, the surrounding water indeed creates the
possibility for them to radiate energy. One resonant gap
for instance appears between 628 m/s and 722 m/s for
nylon-in-water. The Bragg gap in the I'M direction forms
between the second and the fourth bands, i.e. between
879 m/s and 1073 m/s, slightly higher than for steel-in-
water. The up-shift of the Bragg band gap is consistent
with the effective velocity of the phononic crystal in the
long wavelength limit. This effective velocity is simply



obtained numerically from the slope of the first band
starting at the zero frequency. As a note, effective ve-
locities for periodic elastic composites were obtained by
the multiple scattering method [21] and effective veloci-
ties for periodic acoustic composites were obtained by the
plane wave expansion method [22], but we are not aware
of theoretical results for periodic acousto-elastic compos-
ites. The effective velocity for the nylon-in-water com-
posite is 1672 m/s, compared to 1401 m/s for the steel-in-
water composite. We have also checked that the effective
velocity only increases very slightly when acousto-elastic
coupling is ignored.

III. RESONANT MODES

How can we identify the resonant modes participating
in the hybridizations with Bloch waves? Our idea is to
obtain first the free modes of vibration of an isolated solid
rod in water. Since in-plane polarized elastic vibrations
are coupled with pressure waves in water, radiation at
infinity is expected. A resonant mode is also termed a
quasi-normal mode (QNM) in the literature [23]. In con-
trast to normal modes of a closed domain that are loss-
less, QNM has a complex resonance frequency with the
imaginary part accounting for radiation loss. Because
the physical domain of radiation is infinite, the practi-
cal problem of obtaining the eigenmodes is generally non
trivial. Different approaches have been proposed in the
literature, for instance based on coupling the acoustic
Green’s function of the infinite radiation medium to the
elastic solution in the rod [24, 25]. Analytical solutions
for the scattering of plane waves by circular cylinders
and spheres are also available [26]. However, they do not
provide with the QNMs directly, but rather with their
contribution to the scattering cross-section as a function
of frequency. Here we consider a numerical approach
based on the use of a perfectly matched layer (PML)
to truncate the computation domain to a finite region
of space and at the same time minimize reflections from
boundaries [23, 27]. This approach provides us with both
the frequency response and the spatial distribution of the
QNMs.

The stochastic excitation technique considers a time-
harmonic and spatially random body force applied to
the solid rod, with zero spatial mean [18]. Appendix B
summarizes the equations that are solved. Since QNMs
constitute a complete basis for solutions of the time-
harmonic wave equation, the response to the random ex-
citation contains the contributions of all QNMs. In prac-
tice, the total elastic energy of the solid rod is plotted as
the forcing angular frequency is tuned continuously and
all resonances of the system are revealed. The responses
for nylon and steel in water are plotted in Fig. 4. No res-
onance is observed for steel-in-water, whereas three dis-
tinct resonances are observed for nylon-in-water in the
considered frequency range. The difference between steel
and nylon is apparent in Table I: the shear wave veloc-
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Figure 4. (a) Stochastic response of a single nylon (solid line)
or steel (dashed line) rod in water. The plot shows the total
elastic energy as a function of the forcing reduced frequency
wa/(2m), with the lattice constant a having the same value
as for the phononic crystal. (b) The resonant modes at the
three resonant peaks are shown for the nylon rod. The color
scale represents the pressure from negative (blue) to positive
(red) maximum amplitude. The thin arrows indicate the dis-
placement vectors. The external annular domain is the per-
fectly matched layer (see text). Modal symmetry is either
quadrupolar (Q), hexapolar (H), or dipolar (D).

ity for nylon is smaller than the longitudinal velocity for
pressure waves in water, even though the longitudinal
wave velocity in nylon remains larger. In-plane vibra-
tions of the rod have mixed shear and longitudinal dis-
placements, leading to their partial spatial confinement.
As a note, steel rods in water also support QNMs, but
at frequencies larger than those considered in the band
structures presented in this paper; see Appendix B.

The stochastic excitation method also provides us with
approximations of the quasi-normal modes when they
are non degenerate [18]. When the forcing frequency
matches a resonance, the mixture of eigenmodes form-
ing the solution indeed converges to the nearest QNM.
Furthermore, the real part of the eigenfrequency is ap-
proximated by the frequency of the maximum and its
imaginary part can be estimated from the quality fac-
tor of the resonance by Q = R(w)/(23¥(w)). The solu-
tions at the three resonant peaks for nylon-in-water are
illustrated in Fig. 4. Eigenmode R1 (R(w)a/(27) ~ 733
m/s, @ ~ 14) has quadrupolar symmetry. Eigenmode R2
(R(w)a/(27) =~ 1162 m/s, Q = 21) has hexapolar sym-
metry. Eigenmode R3 (R(w)a/(27) ~ 1336 m/s, Q ~ 88)
has dipolar symmetry.

Because of the circular symmetry of the rod, the res-
onant modes in Fig. 4(b) can be freely rotated. If they
hybridize to form Bloch waves of the crystal, however,



they must respect the even or odd symmetry with re-
spect to the direction of propagation. We hypothesize
that the Bloch waves in Fig. 3 can be approximated by
such hybridizations with one resonant mode. Specifically,
we mean that the approximation for Bloch wave BWn is
a linear superposition of the form

UBWn ~ Qpill; + BrjuRr; (5)

with complex numbers a,; and 3,,; weighting the mixture
of a non-resonant Bloch wave u; similar to those found for
steel rods (i = 1 or 2; see Fig. 2) and a resonant mode ug;
( = 1,2, or 3; see Fig. 4(b)). According to such a model,
the features of the resonant modes should be apparent in
the Bloch waves whenever 3,,; is not negligible compared
to ag;.

Applying the above classification, the Bloch waves in
Fig. 3 are labeled BWn, n = 1 to 8, with increasing
frequency. The symmetry (E for even, O for odd) is in-
dicated at the bottom left corner of each distribution.
The resonant mode when easily recognized is indicated
at the top right corner (Q for the quadrupolar mode R1,
H for the hexapolar mode R2, and D for the dipolar mode
R3). At the M point, each of the resonant modes appears
at most twice, for either even or odd symmetry of the
Bloch wave. Furthermore, Bloch waves BW3 (respec-
tively, BW5) looks similar to non-resonant Bloch wave
u; (resp., us), consistently with their interpretation as
entrance and exit points of the Bragg band gap. The in-
terpretation of Bloch waves for point K is similar as for
point M.

IV. HYBRIDIZATIONS IN THE COMPLEX
BAND STRUCTURE

The complex band structure has been shown to be a
valuable tool to study local resonances in phononic crys-
tals and metamaterials [19, 28, 29]. Evanescent Bloch
waves indeed form a complete basis for the solutions of
the time-harmonic elastodynamic equation and the num-
ber of complex bands k(w) is conserved as a function of
frequency [30], in contrast to the classical band struc-
ture w(k) for which the number of propagating bands
generally increases with frequency. The finite element
formulation we use to obtain the complex band structure
considering acousto-elastic interaction is summarized in
Appendix C.

Figs. 5 and 6 show the complex band structures for
steel-in-water and nylon-in-water in the I'M and the 'K
directions, respectively. For comparison, the classical
band structures of Figs. 2 and 3 are superimposed. As
usual the real bands in the complex band structure match
those of the real band structure, though flat bands are
hardly caught by the k(w) representation. The even or
odd symmetry of Bloch waves is quantitatively evalu-
ated by considering a boundary integration of the peri-
odic pressure solution px(r). Odd Bloch waves are also
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Figure 5. Complex band structure of the two-dimensional
hexagonal phononic crystal in the I'M direction, for (a) steel-
in-water and (b) nylon-in-water. In either case, the left and
right panels show the variation of reduced frequency versus
the real or imaginary part of the wave vector, respectively.
The solid lines are for the classical band structure. Even-
symmetric Bloch waves appear in red, odd-symmetric Bloch
waves appear in blue. The black points in between the pan-
els of (b) mark the resonant frequencies for nylon-in-water.
(¢) Modal field patterns (periodic part only) are displayed at
points A, B, and C. The thick arrows indicate the direction
of propagation of Bloch waves.

termed deaf since they can not be excited by a symmetric
plane source [31].

In the I'M direction (Fig. 5), Bragg gaps are charac-
terized by smooth and nonzero imaginary parts as well
as constant real parts. Around the frequencies of the
different resonant modes of nylon-in-water, however, the
complex bands are varying sharply in the complex plane.
For instance, a resonant gap appears around resonant
mode R1 for even Bloch waves, with the lower and the
upper propagating bands connected by evanescent waves
with nonzero real and imaginary parts. The even prop-
agating band holding the Bloch wave labelled A indeed



1200
o (a) N
~
E
o :::,
S 800
Q
35
o
2
<
S 400
3
ael
3
o

. L.
r K o 1 2

1500
KQ
E
9
2 1000
[
=]
o
2
<
S 500
=}
ael
(U]
o

0 ‘
r K o 1 2
Re(ka/2n) Im(ka/2r)
() |
,/\\Q
A B C
Figure 6. Complex band structure of the two-dimensional

hexagonal phononic crystal in the I'K direction, for (a) steel-
in-water and (b) nylon-in-water. In either case, the left and
right panels show the variation of reduced frequency versus
the real or imaginary part of the wave vector, respectively.
The solid lines are for the classical band structure. Even-
symmetric Bloch waves appear in red, odd-symmetric Bloch
waves appear in blue. The black points in between the pan-
els of (b) mark the resonant frequencies for nylon-in-water.
(c) Modal field patterns (periodic part only) are displayed at
points A, B, and C. The thick arrows indicate the direction
of propagation of Bloch waves.

interacts with the even complex band holding the Bloch
wave labelled B to create that resonant gap. In contrast,
the odd imaginary band holding the Bloch wave labelled
C is the origin of an independent system of odd complex
bands. The quadrupolar symmetry of eigenmode R1 ap-
pears clearly in Bloch wave C and continues at least up
to BW2. An odd Bragg gap then opens up to BW4, at
which point the hexapolar symmetry of R2 is now domi-
nant. The next odd Bloch wave at the M point is BW?7,
with the dipolar symmetry of R3. A a note, the two
complex bands B and C starting at the zero frequency
are sub-diffractive. They do not arise from frustrated or-

ders of diffraction in the crystal [30], but because of the
existence of resonant mode R1. They appear only for the
first resonant mode, since the total number of complex
bands is generally preserved with frequency.

Per the above discussion, it appears that in the I'M di-
rection resonant modes dominate the mixture described
by Eq. (5) in the formation of odd Bloch waves. In
the case of even Bloch waves, the mixture is more bal-
anced in favor of the initially non-resonant propagating
waves, with the exception of BW6 that clearly displays
the hexapolar symmetry of resonant mode R2. Anyway,
each of the resonant modes creates an even resonant band
gap in the complex band structure. Since there are two
independent groups of Bloch waves (even or odd), each
group can hybridize independently if the (adequately ro-
tated) free mode respects the even/odd symmetry.

In the T'K direction (Fig. 6), similar observations can
be made. We only focus on the main differences with the
I'M direction for brevity. The first non-resonant band is
still even but the second one starting at the Dirac point
is now odd, as the case of steel-in-water illustrates [8].
For nylon-in-water, the first resonant band gap for R1
is even, R2 induces both an even and an odd resonant
band gap, and R3 induces an odd resonant band gap.
The Bloch waves labeled A, B and C now all clearly dis-
play the quadrupolar symmetry of R1. The Dirac point,
originally quite close to R2, is strongly affected by the
different hybridizations. The condition of a pair of de-
generate Bloch waves with orthogonal symmetry is met
three times, for BW1-BW2, BW4-BW5, and BW7-BWS.
These points thus respect symmetry conditions similar
to those of Dirac points, but they are not Dirac points
since a band gap does not open concurrently along the
I'M direction.

V. CONCLUSION

We have investigated phononic crystals composed of
solid inclusions distributed periodically in a fluid ma-
trix. Taking into account acousto-elastic coupling at the
boundary of inclusions, it was observed that the existence
of resonances internal to the unit cell critically affects the
Bloch waves of the crystal. Indeed, the phononic band
structure is populated by additional hybridization bands
that are absent otherwise. The resonant modes (or quasi-
normal modes) of a single solid rod immersed in water
were obtained by applying a stochastic excitation tech-
nique and could be recognized in certain hybridized Bloch
waves. Complex band structures considering acousto-
elastic coupling were obtained and were shown to charac-
terize the hybridization process between resonant modes
and the initially present non-resonant Bloch waves. In
the particular case of hexagonal acousto-elastic phononic
crystals considered, we observed that the acoustic Dirac
cone centered at K points of the first Brillouin zone can be
severely affected without breaking the symmetry of the
crystal. This work could be extended to non-hexagonal



and to three-dimensional acousto-elastic phononic crys-
tals. Generally speaking, we emphasize that acousto-
elastic coupling should not be neglected or overlooked in
actual experiments with solid crystals immersed in a fluid
matrix.
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Appendix A: Weak form of acousto/elastic wave
interaction

We consider the two-dimensional hexagonal phononic
crystal shown in Fig. 1, composed of periodically ar-
ranged solid rods embedded in a fluid matrix. Waves in
the fluid and solid parts are coupled at the fluid/solid
interface by Egs. (3-4). Acoustic waves in the fluid are
governed by Eq. (1) whereas elastic waves in the solid
satisfy Eq. (2). A mixed finite element formulation of the
problem can be obtained as for instance detailed in Ref.
[2]. We multiply (1) by test function p’ living in the same
finite element space as p and (2) by vector test function
u} (i =1,2,3) living in the same finite element space as
u;, and integrate independently over the fluid and the
solid domains. Further applying Green’s formula to both
domains and inserting the coupling boundary conditions

(3-4) leads to the coupled system

2 /1 / / 1
w p Ep + DUun | = Pi—Pi
Qf o Qf pf
w2/ ugpsuiz/pu;-&-/ U;7jcijkluk,l-
Q, o Qs
(

A2)

(A1)

In order to obtain the band structure, the inclusion
of the wavevector dependence follows the application of
Bloch’s theorem. Practically, it is sufficient to make the
following replacements in the pair of equations above

D =D — Jk:D, P =+ kg, (A3)
Uy = Uk — kil wg ;= U 5 + gk (A4)

Equations (A1-A2) then form a generalized eigenvalue
problem for w? that can be solved as a function of k.
The eigenvector is composed of the periodic parts of the
pressure and displacement fields, (p, @;).

Appendix B: Weak form for stochastic excitation of
resonant modes

In the stochastic excitation method [18], a spatially
random body force fis applied to the solid rod so that
Eq. (A2) becomes

2 / / / !
w / uipsuiz/pun-k/ ui,jcijkluk,l_/ u; fi-
Qg o Qg Qg

(B1)

Equation (A1) is further modified to include a perfectly
matched layer as

1
w? det(J)p’—p—&—/p’un =
Qp B o

1
det(J)J_th'p—J_th. (B2)
f

Qf

In this expression, J is the Jacobian matrix of a com-
plex coordinate transform. For the cylindrical PML con-
sidered in this paper, the expression of the inverse and
transposed Jacobian matrix is [2]

det(J) =1+ %"(T) =a”, (B3)
-t az? +y?)/r? (a—1)zy/r?
T <((a - 1)Zy)//r2 ((ay2 +)x§/)//r2) . (B4)

with o(r) a loss function that is zero outside the PML
and is continusously increasing inside it.

The total energy E in the solid rod is used to evaluate
the response of the system and is calculated as

1 « 1 *
E= 5/ Uj jCijkiUk,l + §w2/ Psthi Ui
Q Qs

s

(B5)

This expression was used to plot the stochastic response
of Fig. 4(a). Extending the frequency range in Fig. 7, it
can be checked that the steel rod also supports resonant
modes, but at higher frequencies compared to the nylon
rod. The QNM at a reduced frequency of about 3600 m/s
has a quadrupolar modal shape similar to that of R1. Its
resonant frequencies could be decreased by increasing the
radius of the rod. In a hexagonal crystal, however, the
value of the radius is limited to a maximum given by the
close-packing condition (r = a/2). Even for that radius,
the frequency of the first QNM for steel-in-water thus
remains above the Bragg band gap.

Appendix C: Complex band structure with
acousto-elastic coupling

According to Bloch’s theorem, the displacement and
pressure fields in a periodic system can be expressed as

p(r) = e p(r), ui(r) = e EPay(r), (C1)
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Figure 7. Stochastic response of a single steel rod in water.
The plot shows the total elastic energy as a function of the
forcing reduced frequency wa/(2w), with the lattice constant
a having the same value as for the phononic crystal.

where k is the wave vector whose real part is restricted
to the first Brillouin zone of the reciprocal lattice, and p
and u; are periodical functions with the same periodicity
as the crystal lattice. In the complex band structure, one
considers a direction of propagation along unit vector o
and defines k = ka with k the (complex) wavenumber.
The goal is to find the dispersion relation k(w) in a given
direction [30].

For both the acoustic and the elastic problem, it is use-
ful to consider first-order differential equations of motion
instead of the second-order equations (1-2). This consid-
eration leads to a mixed formulation with variables (¢, p)
and (7;, ;) where ¢ = —w?a - 1 is the normal acceler-
ation and 7; = ajTij are the stress components in the
direction of propagation. Combining the weak forms for
the acoustic and the elastic complex band structure leads
to a generalized eigenvalue problem of the form

A Ao
Az Ago

By 0
0 DB

=1k (C2)

The block matrices A7 and B account for the acoustic
part of the problem. They are obtained from the finite
element expressions [2]

A 500), [ Bul@.ion). (G
Qpf Qpf
with (¢, p’) vectors test functions and
’o—t _ / /1 _ 2y 1_
An (9,05 0,0) =¢'¢ + ¢ ;(a "Vp) +wP 5D
1
- (Vﬁ’)t;Vﬁ, (C4)

Bi(¢,7:6,5) = ¢’%15 (e Vm%p _Fé. (CH)

Similarly, the block matrices Aso and Bas account for the
elastic part of the problem. They are obtained from the
finite element expressions [2]

drAg(t/,u'; T, 1), drBao (7', u'; T, 1), (C6)

Qs Qs

with (77, @')vectors test functions and

Ago (7! 0"y, u) =(7") i1 — cijraoy (7))t
+ pw? (0)it; — cijia (W) juny, (CT7)
T, ) = — cigmagou (')t

— (W) joqty + (a');m;.

BQQ (T/, ’l_l,I

(C8)
Coupling between the acoustic and the elastic domains

occurs thanks to block matrices Ao and Bs;. They are
obtained respectively from the boundary integrals

/ _prlﬂn’
o
/ P, .
o

(C9)
and

(C10)
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