Design of piezoelectric actuators by optimizing the electrodes topology
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Abstract— Piezoelectric materials based actuators are highly
recognized for the development of microrobotic systems thanks
to their high bandwidth, high resolution and high force density.
However, one of their main drawback is the low relative
stroke (0.1% of actuator’s size) that limits the actuator motion
range. Overcoming this limitation is challenging but would
increase the achievable working space of microrobots. In this
paper, topology optimization method is used to maximize the
actuator stroke. Instead of optimizing only the material density,
we also consider the optimization of the electrodes polarity.
This approach allows to combine both material expansion
and compression in order to increase the actuator output
displacement. To demonstrate this approach, two actuators were
designed starting from a full domain considered as a basic
reference piezoelectric actuator. The first design considered only
the density optimization while the second one took into account
the optimization of the topology of electrodes. Both simulation
and experiment showed a good agreement between the obtained
designs and the fabricated prototypes. The result revealed that
the optimized design with polarization has an improved factors
of 2.8 and 2.02 compared to full plate and actuator without
electrodes optimization, respectively.

Index Terms— piezoelectric actuators, topology optimization,
polarity optimization.

I. INTRODUCTION

Accurate and precise positioning is a key element to
enhance the capability of microrobotic systems to manip-
ulate and characterize objects in the microworld, i.e. the
world of submillimetric objects [1]. The literature tells us
how smart or active materials are widely recognized to the
development of actuators for these microrobots and improve
their accuracy [2]. These active materials are capable to
change their physical inherent properties in response to an
external stimuli like electrical field, magnetic field, thermal
gradient or variation. Such feature allowed them to be largely
employed as easily integrated and miniaturized actuators
in the above microrobotic systems. Among these materials,
piezoelectric materials are of particular interest since they
can be used as an elementary actuator with high displacement
resolution, large output force, high dynamics response and
significant scaling-down possibilities [2] [3] [4]. However,
due to their crystalline arrangement, they provide a low
relative deformation (0.1% of actuator’s size) that restricts
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their motion range [5]. Overcoming this limitation would
increase the achievable working spcaes of the microrobotic
systems in which they are integrated. As reviewed in [6],
empirical and systematic approaches were investigated to the
development of piezoelectric actuators. In particular several
solutions have been proposed to increase their displacements.
These solutions can be classified in four major categories: (i)
staking piezoelectric layers, (ii) hybridization, (iii) amplifi-
cation mechanisms, (iv) structural optimization.

The first class represents the trivial solution that operates
on the shape, the polarity and the geometric arrangement of
the actuator. It leads to piezostacks or multimorph configu-
rations [7]-[9]. Piezostacks are the result of stacking several
layers in serial in order to increase the output displacement.
However to produce reasonable output displacement, this
configuration leads to long and non-compact actuators. Mul-
timorphs consist of several piezoelectric cantilevers layers.
They provide larger displacement than piezostacks but at the
expense of the generated force. In the hybridization class, the
actuator is based on the combination of piezoelectric effect
and an additional principle. Thermopiezoelectric actuators
were mainly devoloped to this aim [10], [11]. The third
class operates on external mechanism to amplify the actuator
stroke. Known as amplifying mechanism, several structures
have been investigated. The widespread ones are flexural
lever structure [12] and flextensional mechanisms based on
empirical or optimized structures such as Moonie [13] [14],
Cymbal [15], nested rhombus structure [16] and optimal
amplification mechanisms based on passive material [17],
[18]. Despite their potential, these approaches only deal with
geometrical or topological considerations of the amplification
mechanism surrounding a predetermined actuator. In general,
the amplifying mechanisms which are augmented to the
actuators make the whole design bulky and heavy and
inappropriate for small scale or micro dimension applica-
tions. Finally, the fourth class (structural optimization) is a
systematic approach and includes parametric and topology
optimization that consider piezoelectric materials within the
optimization process [19]-[24]. The approach consists to find
the actuator’s optimal dimensions or shapes on the basis
of intervals techniques [25] or with topology optimization
methods [26] respectively. The advantage of the topology
optimization is that there is no restriction on the shape of
the actuator. Therefore, the whole structure of the actuator
can be optimized. Although topology optimization provides
a great degree of freedom in terms of structural optimization,
the obtained results might bring complexity in terms of
fabrication of the designed structures. However this challenge



can be tackled by defining proper optimization parameters as
it is explained in [26]. One of the used topology optimization
methods to integrate piezoelectric materials is the SIMP
(Solid Isotropic Material with Penalization) method [27]. For
instance it was successfully applied to design piezoelectric
structures such as gripper [28]. Designed as a monolithic
structure, the achievement has shown a quite good per-
formance by maximizing the in-plane displacement at the
output of the gripper, whilst the out-of-plane bending of the
gripper’s jaw was suppressed. In spite of these interesting
and promising achievements, this approach considers only
the piezoelectric material distribution while the polarity of
electrodes is kept fix.

In this paper, we propose to design piezoelectric actuators
with the SIMP method. In addition, not only the density is
optimized but we propose a modification of the algorithm
such that the structure polarity is also considered. Such
consideration is useful for two reasons: (i) it provides several
degrees of freedom in terms of optimization where two
variables (density and polarity) can be considered, and (ii)
it allows to combine material expansion and compression
in order to increase the output displacement. Therefore, the
proposed approach will optimize the structure of the actuator
without augmenting any additional structure. In this case,
the optimized designs can be miniaturized for microrobotic
applications. To validate the proposed approach, two ac-
tuators will be designed where their output displacements
are maximized. The design of each actuator starts from a
full domain plate considered as a basic reference actuator.
Within this domain, the first design is based on density
optimization with a fix polarization of the electrodes, whilst
the second design is based on both density and polarity
optimization. The result will reveal that when polarity is
considered, the outcome actuator provides 2.8 and 2.02
as amplification factors in term of displacement compared
to full plate and actuator without electrode optimization,
respectively. Simulations and experiments are performed to
validate the obtained designs and the fabricated prototypes.

II. TOPOLOGY OPTIMIZATION Or PIEZOELECTRIC
STRUCTURES

This section briefly reminds (i) the principle of topology
optimization (ii) the main major steps allowing to derive
finite element model of a thin piezoelectric plate and (iii)
the integration of piezoeletric model within the topology
optimization method.

A. Topology optimization

Topology optimization especially SIMP method is a design
methodology aiming to find an optimal structure within a
limited design domain [26]. Based on material distribution,
it consists to minimize systematically an objective function
while subjected to one or several constraints. To this end, the
method combines finite element formulation and penalization
power law to make material intermediate density unattractive
and therefore avoid the 0-1 problem of classical topology
optimization processes. Presented in [26], SIMP method is
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Fig. 1. Piezoelectric material sandwiched between electrodes.

easy to implement and suitable for the design of passive
structures. Since becoming a conceptual tool for structural
design, it has been successfully applied for topological design
of active structures in particular piezoelectric structures [23],
[24]. This methodology made possible the consideration of
the physics of the material within the optimization problem.
To do so, the finite element model of the piezoelectric
structure is required which we provide in the next section.

B. Piezoelectric modeling of 2D thin plate

As we target the design of 2D actuators, a plate model is
considered in this paper. It consists of a thin piezoelectric
layer sandwiched between two electrodes as illustrated in
Fig. 1. This configuration is widely used as a framework
for the design of planar active mechanism. To derive its
model, we first assumed Z the normal axis of the thin plate
which is considered to be the axis of polarization as well.
Then, by applying the plane-stress theory [29], the nominal
stresses perpendicular to the xy plane are zero. We chose a
4mm class tetragonal crystal of piezoelectric materials [30]
to derive the corresponding model. This class includes most
of the piezoelectric material in particular the well-known
PZT material [31]. According to these hypothesis, the "e"
form constitutive equations from [32] are simplified to obtain
the following new set of relations:
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The mechanical coefficients of the tensor given in equa-
tion (1) can be rewritten by identifying them with the plane
stress isotropic tensor [29]:
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Therefore, we express the mechanical stiffness tensor
of the plan-stress form of constitutive equation in (1) by
Young’s modulus and Poisson’s ratio. Considering the 4mm
piezoelectric class property where cg = %(cl —c3) [32], the
Young’s modulus E and Poisson’s ratio v according to c;
and ¢, can be expressed as follows:
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Taking advantage of planar isotropy of 4mm crystal, the
planar Young’s modulus and Poisson’s ratio of this class of
piezoelectric material can be calculated. This is an essential
step for the normalization process which will be discussed
in the next sections. In the rest of the paper, we consider
the commercial piezoelectric material PSI-SH4E from Piezo
Systems Inc. By substituting its numerical values, we obtain
E =66.2 GPa and v = 0.298. For the piezoelectric and
dielectric coefficients, we obtain ¢ = —28.30 C.m~! and

&/eo =1932 with gy the vacuum’s permittivity.

C. Finite element model of thin piezo plate

The finite element model of the piezoelectric plate can be
derived by following the general approach given in [33]. It
consists to compute the stiffness matrices using the thin plate
model described previously and results in the equilibrium
equation of the piezoelectric material. For this purpose, we
extend the bilinear 4 nodes element to take into account
the piezoelectric behavior. In this case, four classical nodes
model the mechanical behavior while two additional nodes
model the electrical degree of freedom along the 7 that
correspond to the electrodes. Each element is considered as
a flat cuboid with side length [ and thickness /. Based on this
configuration, interpolation functions for both displacement
and electrical potential are defined as follows:
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where i and j index each node, either mechanical or elec-

trical. Based on these functions, we compute the mechanical

and piezoelectric stiffness matrices following the procedure
described in [33]:
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matrix (see [34] for more details) and k¢ is the normal-
ization factor which was calculated with the help of the
derived Young modules and Poisson’s ratio. Using these two
matrices, the global finite element system for actuation is
expressed as:

{F} = [Kuu) {U} + [Kug | {6} 9)

where F and U are respectively the nodal force and displace-
ment vectors. Unlike passive material, F' here is null since
the force is generated by the material itself, i.e no external
load force. The above equation can be simplified knowing
that {¢}” ={¢1 ¢2} and the potential V = ¢1 — ¢»:
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where fy is the normalization factor of the piezoelectric
matrix. With this simplification, equation (9) can be written
as:
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Here k stands for a mechanical stiffness while fy represents
the internal force generated by the material when subjected
to voltage. For simplification, we denote in the rest of the
paper [f(;;] as [K,] and {}7;;,} as {F, }, where subscript n
stands for normalization. This last term can be interpreted as
the acting of piezoelectric forces on the element. This leads
to a simple and compact finite element equation:
ko [Knl{U} = = fo{Fu} 12)
By analogy to pure mechanical behavior, this finite el-
ement model defines the equilibrium equation of a piezo-
electric material which is mandatory to solve the topology
optimization problem. Finally, the displacement vector is
normalized for numerical considerations:
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Such normalization has two important consequences: (i)
the equation is independent from the material coefficients,
domain dimensions and input voltage, which greatly im-
proves the element versatility. The physical displacement
can still be obtained using the elemental displacement u.
It is worth to notice that we are still dependent on the
Poisson’s ratio through the stiffness matrix, (ii) each member
of equation (15) is of an order of magnitude between —2
and O that helps to reduce rounding error when resolving the
linear system described by this equilibrium equation.

D. Integration of piezoelectric material within topology op-
timization method

Based on the above-derived finite element model, two
modifications are brought in order to implement this model
within SIMP method. The first modification concerns the
extension of the classical penalization scheme that considers
both density and polarity variables, whilst the second relies
on the reformulation of the objective function and its deriva-
tion in respect to these two variables.

1) SIMP penalization scheme extension: Following the
original penalization scheme presented in [26], several ex-
tensions have been proposed to include piezoelectric ma-
terial [27], [35]-[39]. Most of them were applied on the
material properties tensor [CE] ,[e] and [SS ] However,
these schemes penalize each coefficient of the tensors at the
expense of computational time. To tackle this limitation, we
propose to apply the penalization directly as a coefficient in
front of the normalized stiffness matrix and force vector. This
leads to a simple penalization scheme which can be written



according to the material density p and polarization direction
value p. as follows:
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where pi and py are the stiffness and force penalization
coeflicients and k,;;, and f,,;,, are the minimum stiffness and
force factors. These minimum values are defined to avoid the
singularity problems during the optimization [26] [40] [41].
The consideration of polarization direction as a variable is
introduced in a methodology known as "piezoelectric mate-
rial with penalization and polarization" (PEMAP-P) [27].

To apply this new penalization scheme, all parameters
must be known. For k,, fp, kmin and fuin, we use the
recommended numerical values (k, = f, =1 and kp,;, =
fmin = 107%) given in [26]. Material Density (p) and po-
larization direction (p.) can have values between zero and
one. By introduction of penalization coefficients (pi,py),
the material density (p) will steer to zero (void) or one
(material) during the optimization iterations. However, the
penalization coefficients are difficult to estimate since there
is no analogy with pure mechanical behavior. Beside, the
fact that the penalization coefficients need to be higher
than one [26], there is no computation of those coefficients
for plane stress heterogeneous piezoelectric material to the
knowledge of the authors. This challenging issue remains an
active research domain as shown in [42]-[44]. In this work
we set both penalization factors constant to a value of three
and no penalization coefficient is defined for the polarization
direction since the best value for it is one [27]. Giving rise
to consistent results, we did not investigate further this issue.

2) Objective function reformulation: Optimizing piezo-
electric actuators can be done following several objectives
like electric-mechanical conversion [37] or optimal displace-
ment [27]. For simplicity, only the latter is considered in this
paper. Following the classical mechanical approach reported
in [26], we rewrote the objective as a minimization of an
objective function J,,; = —Upyr = —LTU, where L is a
vector with a value of one that corresponds to the output
displacement node and zero otherwise. However, while the
variation of this objective function reflects the evolution
of the optimization process, its value holds no meaning
due to the normalization of the finite element system. The
elementary displacement uy could be used, but this would
nullify the versatility of the approach. Instead, we propose
to normalize the objective function using its value when the
domain is not yet optimized. This initial objective function
value is now named Jy. This has an immediate consequence
that allows to understand the objective as how much more
displacement can be obtained by the optimized design com-
paring to full domain. This new objective function can be
written as J = % = —-LTU, where the vector L includes
the normalization factor Jg.

To perform a gradient based optimization, the sensitivities
of this objective function with respect to material density
(p) and polarization (p.) are calculated using the well-known
adjoint method. In addition, we wrote the system of equation
(15) as KU = —F and the objective function as J =—L7 U in
order to simplify the notations.
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We obtain the last simplification by specifying —L7 +
AT K=0. This system can be rewritten as KA = L using the
property K =K”, hence A can be seen as a displacement
field resulting from a dummy force L which is applied
at the output displacement node [26]. Following the same
procedure, the sensitivity of objective function with respect

to polarization can be obtained:
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The main difference with pure mechanics is the depen-

dency on the sensitivities of the piezoelectric force g—g and

(;97]. The stiffness matrix sensibility can be directly computed

as follows:
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The same procedure is applied for the piezoelectric force
sensibility:
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This last step complete the integration process of the
piezoelectric material within the SIMP method. In terms
of programming, we re-use and fit the 88 lines code [34]
in order to include the 2D finite element presented above.
Then, the OC (Optimal Criteria) is substituted with the MMA
(Method of Moving Asymptotes) in order to improve the
stability and performances of the optimization algorithm.

III. OPTIMAL DESIGN OF PIEZOELECTRIC ACTUATORS

This section focuses on the design of one degree of
freedom piezoelectric actuators using the approach described
previously. Two actuators are designed in order to highlight
the importance of optimizing the electrodes topology. The
first actuator was based on density optimization with uniform
electrodes while the second is based on the combination of
density and polarity optimization.
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A. Designs specification

Figure 2.a illustrates the initial optimization domain set
to design both actuators. It consists on a square plate of
dimensions 25 mmx25 mmx127 pm. Within this domain,
the middle point of the top edge is chosen as the actuator tip.
Thus the objective is to maximize the displacement of this
point when optimizing the design. According to section II-
D.2, we proceed by modeling this output as a force in the
opposite direction and an artificial spring with low stiffness
in comparison to piezoelectric material itself, as shown in
red in Fig. 2.b. This is a well known procedure in designing
the compliant mechanisms and further details can be found
in [26]. We consider the stiffness of the spring to be 0.01
of the derived young modulus of the piezoelectric material
in section II-B. Furthermore, we model the clamping of the
plate by adding supports at the bottom edge of the domain
(blue boundary). At this stage, these specification are the
same for both designs. For the first design a fixed uniform
voltage over the upper electrode is considered and the lower
electrode is grounded. In contrast, the second design con-
siders electrodes polarity as an optimization variable. In this
case, the electrodes can be set to ground, positive or negative
potential depending on the optimization process. Finally, we
take advantage of the symmetry to have the entire working
domain in order to reduce the computation time and memory
usage.

To solve this problem, we start by discretizing the design
domain using the finite element approach presented in Sec. II.
The size of each element is set to 200 pum, resulting in a
mesh of 125%250 elements. Finally, the volume fraction is
set to 0.3, meaning that only 30% of the full domain will be
retained for the optimized design.

B. Post-processing

The obtained designs after optimization can be seen in
Fig. 3.a and Fig. 4.a. The efficiencies (output mechanical
energy/input electrical energy [45]) of the full piezoelectric
plate, optimized design without polarity optimization and
with polarity optimization are 0.482, 0.474 and 0.445 respec-
tively. A negligible decrease in the efficiency of the optimized
design can be seen. However, the details of force and
displacement should be investigated after post processing.
Although the raw designs are already well defined, we apply

a classic post-processing approach to ease the exportation of
the design as CAD model. First, the resolution is increased by
a factor of three using bilinear interpolation. This operation
allows to perform an anti-aliasing effect by smoothing the
boundaries for cleaner exportation results. Next, a volume
preserving threshold is performed to convert the intermediate
binary densities, while maintaining the global volume of the
domain. This is done using a simple dichotomy approach
to find the optimal threshold. Doing so, it is easy to export
the design to CAD software following the afterwards steps:
(i) perform a contour detection of the post processed design
under Matlab, (ii) export the resulted contour under Space
Claim software from ANSYS (ANSYS, Inc, Canonsburg,
USA) as a cloud of point, (iii) interpolate the sketch us-
ing splines and extrude the thickness of the piezoelectric
plate. Then, with the help of the obtained CAD files, the
performances of the optimized designs are analyzed with the
commercial finite element software COMSOL Multiphysics
(COMSOL, Inc.,Burlington, USA)

C. Simulation

Figure 3.a presents the result of the topology optimization
algorithm for the case of no polarization optimization. Differ-
ent interesting features can be observed from the result. The
overall structure can be described as a three members lattice
beams. When powered, the beams straighten, increasing their
length. As a result, two amplification effects are created.
First, the beams on the left side play a role of mechanical
lever that converts the symmetrical extension to horizontal
movement by rotation. Second, the right beam acts as an
extension rod, further pushing forward. This behavior is
well illustrated in Fig. 3.b presenting the displacement field
norm superposed with the resulting deformed domain. We
conclude on the raw design by evaluating its performance as
presented in section II-D.2 resulting in an amplification ratio
of 1.38, i.e. we have obtained +38% displacement than a full
plate of the same dimensions.

The result of the topology optimization with polarization
optimization is shown in Fig 4.a. In this figure, the working
principle of the grey areas which have the same polarization
direction is similar to the one of previous result without
polarization optimization. However, the major difference is
the part with inverse polarization direction. With the same
applied voltage, this part will be retracted and the combina-
tion of retraction and extension in the design will result to
considerable improvement of displacement amplification. For
example, the simulation in Fig 4.b shows that displacement
of the optimized design with optimization of the polarity
is almost twice the displacement of the one without the
optimization of the polarity in Fig. 3.

The numerical data of simulation is reported in Table I.
In this table the displacement per volt, the blocking force,
energy density and the related gains for an applied voltage
of 5 volt are reported. Energy density is the mechanical
energy divided by piezoelectric mass. The mechanical energy
is calculated as presented in [22]. As can be seen in Table
I, the displacement gains with respect to full plate for
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Fig. 3. Optimized design without polarization optimization. a) The obtained
layout by optimization b) COMSOL simulated deformation after applying
5(V) actuation voltage.
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Fig. 4. Optimized design with polarization optimization. a) The obtained
layout by optimization b) COMSOL simulated deformation after applying
5(V) actuation voltage.

optimized design without polarization and with polarization
optimization are 1.42 and 2.82 respectively. On the other
hand, the gains of blocking force are decreasing by factors of
0.66 and 0.33 respectively. This is expected since increasing
the displacement is always accompanied by reduction of
output force. However, it should be noted here that optimized
designs have only 30 percent of the volume of the full plate.
Therefore, a great improvement in energy density can be seen
for optimized designs as it is reported in Table I.

IV. EXPERIMENTAL VALIDATION
A. Prototype fabrication

The fabrication process of the prototypes start by con-
verting the optimzed designs to an exploitable CAD model.
Based on the CAD model, a Starlight laser engraving ma-
chine from SiroLasertec (Siro Lasertec GmbH, Pforzheim,
Germany) is used to achieve cutting operations. Start-
ing from a piezoelectric full plate with a dimensions of
70x70x0.127 mm (from Piezo Systems), the three prototypes
shown in Fig. 5(a,b,c) were fabricated: (a) full plate, (b)
prototype without optimized polarity and (c) prototype with
optimized polarity. For the last one, two cutting operations
were necessary. The first one consisted to cut the main struc-
ture of the actuator while the second consisted to separate
the electrodes following the optimized electrode profile. It is
worth to note that a rectangle domain of 5 mm was added on
the resulting design. This extension allows to fix the design
on a custom made PCB to ensure mechanical clamping.
Furthermore, silver-based conductive glue was used to ease
the electrical connection with the lower and upper electrodes.

©
separated electrode
to induce
compression

electrode
to induce
extension

Fig. 5. Fabricated prototypes and experimental bench. a) full plate actuator,
b) actuator prototype without optimized polarity, c) actuator prototype with
optimized polarity following the profile of Fig. 4 (a), d) general view of the
experimental set-up.

B. Experimental Bench

Figure 5.d shows the experimental set-up used to charac-

terize the prototype. It is composed of:

- an interferometer (SIOS, GmbH company) able to mea-
sure displacements (deformations) with nanometric res-
olution,

- the prototypes to be characterized and fixed on PCB
supports,

- an acquisition system (computer with Matlab + dSPACE
board) to generate excitation signals, and to record,
process and analyze measured experimental data.

The prototypes and the interferometer probe were placed on
an anti-vibration table to avoid vibrations that may come
from the ground.

C. Characterization of Results and Discussion

The objective of experimental investigation is to measure
the displacements in order to demonstrate the efficiency of
optimized designs in comparison to full plate and to validate
the results obtained in the simulation part. We use sine volt-
age signals with low amplitude in order to respect linearity
assumption of the modelling. A series of measurements is
performed under an excitation that goes from OV to 5V with
a step of 0.5V and a frequency of 2Hz. This frequency is low
enough in comparison with the plate and prototypes natural
frequency such that the static model of the system which was
presented in section II-C is respected. The domain of applied
voltage is chosen to keep the material behavior only in its
linear domain, as the model used for the optimization is based
on linear assumptions. Higher voltage and higher frequencies
can result in nonlinear behavior as hysteresis [46]. Each
series is applied alternatively on the full plate, prototype
without polarization and prototype with polarization. The
resulting average displacements are reported in Fig. 6 and



TABLE I

SUMMARY OF SIMULATION AND EXPERIMENTAL DATA

Simulation ( Input voltage = 5V )

Full plate Opt without pol  Opt with pol
Displacement (nm/V) 57 81 161
Displacement gain w.r.t.f.p - 1.42 2.82
Blocking force (N) 2.56 0.21 0.18
Blocking force gain w.r.t.f.p - 0.08 0.07
Energy density (J /m?) 4.55 1.81 3.10
Energy density gain w.r.t.f.p - 0.39 0.68
Experiment ( Input voltage = 5V )
Full plate Opt without pol  Opt with pol
Displacement (nm/V) 62 86 174
Displacement gain w.r.t.f.p - 1.38 2.8
*w.r.t.f.p : with respect to full plate
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Fig. 6. Experimental characterization of prototypes.

Table I summarizes the obtained performance gains for both
simulations and experimental validation.

First, based on Fig. 6, it is obvious that there is a satisfying
agreement between the experimental and the simulation data.
However by increasing the voltage, the difference between the
experimental and the simulation data increases. This is due
to the inherit nonlinear behavior of piezoelectric materials.
Though, within the domain of the applied voltage, linear
assumption in the modelling produces negligible error.

Then, Fig. 6 demonstrates better performances of the opti-
mized designs with respect to full plate design. The improve-
ment factor from the optimized design without polarization
optimization is 1.38. On the other hand, the improvement
factor from the optimized design with polarization opti-
mization is close to 2.8. Hence, the optimized polarization
design proposes 2 times more displacement than the non-
optimized polarization design. This improvement primarily
proves that reducing the material volume and optimizing
the topology of the structures within the structures domain
can provide more flexible design in terms of producing the
desired displacement. Furthermore, it is illustrated that polar-
ization optimization allows both expansion and contraction
within the design domain and thus amplifies the displacement
amplitude significantly.

The results in Fig. 6 and Table I demonstrate two accom-

plishments in term of precision and displacement. However,
it is true that the displacement amplification is acquired by
decreasing the output force of the actuator. Although the
experimental measurements of the piezoelectric actuator’s
output force is highly challenging due to the low thickness
to length ratio of the piezoelectric plate, the decrease in
the output force is calculated by FEM simulation and it is
reported in Table I. In fact, by increasing the stiffness of the
modeled spring at the tip of the actuator, the optimization
will produce a simple bar beam to maximize the force. On the
other hand, the in-plane piezoelectric force is much higher
than the out of plane force. Therefore, the output force of
the optimized designs are still enough for the applications
like atomic microscopy or in applications where the actuator
stroke is essential.

In summary, the method allows to reduce drastically the
material amount. Indeed, only 30% of the material was opti-
mally distributed in order to provide a displacement greater
than the displacement of an actuator with a uniform polariza-
tion. This leads to a compact and economical design. This
is particularly interesting in the context of miniaturization,
since the non-occupied space can be utilized to implement
additional functionalities like sensors or electronic circuits.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, the optimal design of a piezoelectric ac-
tuators was presented. Based on topology optimization ap-
proach, the design improved the actuator maximum stroke
comparing to conventional actuators, owing to the combina-
tion of material density and electrodes polarity optimization.
To do so, first a finite element model of piezoelectric plate
with the help of plane-stress assumption was established and
a normalization was introduced to increase the generality
of the proposed method. In addition, the polarization was
considered as a variable of optimization to give further
degree of freedom to the topology optimization algorithm
for finding the optimal layout of the piezoelectric actuator.
The objective function was defined to maximize the stroke
of the actuator based on the defined stiffness of the movable
object. To better investigate the effect of polarization, two
optimized design with and without polarization optimization
were obtained. The performance of these two optimized
designs were investigated by numerical simulation and exper-
imental validation. Satisfying agreement between the numer-
ical and experimental results were observed. It was proved
that optimization of polarization brings both expansion and
contraction within the design domain which will magnify
the amplitude of the displacement significantly. The stroke
obtained from the optimized design with the polarization
optimization is twice larger than that from the design without
polarization optimization.

Future work extend the approach to take into account the
out-of-plane displacement. Indeed, a large class of piezoelec-
tric actuators use multilayered structure which benefit from
large bending displacement in [47]. This extend will pave the
way for the design of multi-degrees of freedom actuators.
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