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Abstract This paper deals with the task of autocalibration
of Scanning Electron Microscope (SEM), which is a tech-
nique allowing to compute camera motion and intrinsic pa-
rameters. In contrast to classical calibration, which implies
the use of a calibration object and is known to be a tedious
and rigid operation, auto- or selfcalibration is performed di-
rectly on the images acquired for the visual task. As auto-
calibration represents an optimization problem, all the steps
contributing to the success of the algorithm are presented:
formulation of the cost function incorporating metric con-
straints, definition of bounds, regularization, and optimiza-
tion algorithm.

The presented method allows full estimation of camera
matrices for all views in the sequence. It was validated on
virtual images as well as on real SEM images (pollen grains,
cutting tools, etc.). The results show a good convergence
range and low execution time, notably compared to classical
methods, and even more in the context of the calibration of
SEM.

Keywords Autocalibration · SEM · Affine camera · Global
optimization

1 Introduction

The use of vision in robotics currently requires camera cal-
ibration, i.e. the knowledge of its motion (extrinsic parame-
ters) and model (intrinsic parameters). In the present work,
the aim is to achieve calibration of a Scanning Electron Mi-
croscope (SEM) directly from images of a specimen (like
pollen grains presented in Fig. 1).

For SEM, the perspective effects can be neglected and
the affine camera model is considered [1,2]. But even if this
subject is well studied, the calibration can be very complex
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Fig. 1 Examples of SEM images with 100 µm pollen grains.

due to the following reasons. First, in most cases it requires
a calibration object. It often means a special step of fabri-
cation, which can be very expensive and time consuming
especially when working with SEM as, at microscale, the
calibration object is of micrometric size. Moreover, it is very
difficult to guarantee the quality of its fabrication, which has
a profound impact on the accuracy of further image process-
ing. Secondly, the classic calibration [3] needs to be done
offline, which can be very restrictive in some applications
where the calibration object can’t be placed in front of the
camera once the operation started. Thirdly, which includes
partially the second point, there is a problem of maintain-
ability of calibration parameters. In order to re-calibrate a
camera, the main operation task has to be stopped.

It is important to mention that computation of intrin-
sic camera parameters is inseparable from camera motion,
i.e. extrinsic camera parameters. In fact, autocalibration is a
method of calibration, allowing to recover both the intrin-
sic and extrinsic camera parameters, and is carried out using
the same images required for performing the visual task [4].
Most autocalibration methods use a projective calibration
as a starting point: it is a calibration from point correspon-
dances only, without any knowledge about camera and scene
(scale factor, aspect ratio, skew between image axis, scene
orientation, position of principal point, etc.), and it is dif-
ferent from the metric, i.e. true, one up to a 3D projective
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transformation. Affine calibration and euclidean calibration
differs from metric one up to an affine transformation and a
similarity transformation, respectively. In the literature, Eu-
clidean calibration is often referenced as similarity or metric
calibration [5]. Furthermore, in this work, the term metric
will be referred only to a true calibration with the known
scale. In our case, as there is no particular information about
the object size only Euclidean calibration is achievable, i.e.,
an up-to-scale calibration. There is a variety of methods for
projective calibration computation and the most common
ones are factorization-based methods [6, 7]. Then, once the
projective calibration is obtained, the goal of autocalibration
algorithms is to determine a rectifying homography H from
autocalibration constraints and then to transform the calibra-
tion to an Euclidean one. However, these methods are often
blamed for instability [8].

In case of affine camera, by using a factorization tech-
nique, it is possible to directly obtain an affine calibration [9].
It means that the plane at infinity is already in its canonical
position and the goal is hence to determine the intrinsic pa-
rameters of the camera in order to upgrade the calibration
from affine to Euclidean. A variety of methods are based on
the use of some calibration constraints (zero skew, known
aspect ratio, etc.) or motion constraints (pure rotation, pla-
nar motion, etc.) [10–12]. One of the most significant article
in the field of autocalibration of affine camera is the work of
Long Quan [13]. In his paper, the author proposes a method
allowing to upgrade the affine calibration (in this case ob-
tained with a factorization algorithm) to the Euclidean one
by using an optimization algorithm. The goal is to find a
non-singular 3× 3 homography matrix and the criterion of
optimization is based on Euclidean motion constraints. One
of the steps of estimation contains a Cholesky decomposi-
tion, which accepts only positive-definite matrices. A priori,
this condition is not satisfied in the presence of noise in real
images [14]. Thus, the author proposed an elegant way to
avoid this problem by imposing the constraints on the matrix
to decompose and to assure by this that it is positive-definite.
However, the experiments that will be presented further have
shown that the method of Long Quan (further referenced as
LQ) can not guarantee the respect of the metric constraints,
such as aspect ratio close to one, at least in case of SEM.

As many other selfcalibration algorithms, LQ uses local
optimization that aims to find a local minimum of the ob-
jective function, i.e. the minimum that is the closest to the
initial solution. However, it is not sufficient for the applica-
tion presented here, because the objective function contains
non-linearities which results in non-convex cost function. It
means that one should use more complex techniques allow-
ing to expand the search space. More recently, this prob-
lem was addressed by the methods of global optimization.
Fusiello et al. in [15] addressed this problem by an inter-
val branch-and-bound method employed for numerical min-

imization based on constraint on the fundamental matrix.
In [16], the global optimization was used to compute the
dual image of the absolute conic to find a rectifying ho-
mography. However, even if these global optimization al-
gorithms can guarantee a theoretical global optimality, their
lock is a computational time which turns out to be a critical
issue for some applications. According to Heinrich et al., the
fundamental limitation of these algorithms is that the mini-
mized objective function has no particular geometric mean-
ing which results in instability of these methods [17]. In re-
turn, they proposed a method based on a maximum likeli-
hood objective function.

This paper presents a new method of autocalibration of
SEM, considered as an affine camera, which allows to di-
rectly obtain Euclidean set of camera matrices by means
of global optimization, without passing by affine calibra-
tion. It is worth mentioning that it is considered that cam-
era intrinsic parameters are constant and the scene is rigid,
i.e. the change of 2D projections across the images is due
only to the camera motion. The crucial topics contributing
to the success of the algorithm are discussed. Section 2 in-
troduces the specificities of Scanning Electron Microscope.
Section 3 presents the representation of SEM considered as
an affine camera. The formulation of optimization criteria
that include error function, bound constraints and regulariza-
tion is presented in Section 4. Section 5 is about the global
optimization algorithms. Next, the robustness and conver-
gence range of the auto-calibration is tested on synthetic
images and compared to classical methods in Section 6. Fi-
nally the auto-calibration is tested on real SEM images in
Section 7.

2 Background of SEM

From a physical point of view, electronic imaging is based
on the interaction between a radiation of high energy elec-
trons and the atoms of matter. Kinetic energy of an electron
accelerated with the voltage E is eE, where e is the charge
of the electron. The relation of De Broglie shows that the
wavelength λ of the electron is inversely proportional to its
level of energy, and then to its accelerating voltage E [18].
This leads to very low values of wavelength compared to
light (radiation of photons), in the range of X-rays radiation.
According to Abbe formula, the resolving power of a radi-
ation (the minimal distance required to resolve two objects)
is about λ/2, then with electrons the resolving power can be
very low, i.e. the imaging resolution very high: for 1 V ac-
celerating voltage, the resolving power is about 1.2 nm that
is about 200 times smaller than optical imaging resolving
power; for 2 kV accelerating voltage, the resolving power is
about 0.02 nm that is about 40 000 times smaller than optical
imaging resolving power [18] [19]. Finally electron imaging
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is a very high resolution imaging, up to atomic scale. Nowa-
days, SEM is a central observation instrument for material
and life sciences, and micro-nano-engineering [20].

SEM has the following working principle. High energy
electrons, that collide with the atoms of a sample, induce two
types of scattering: elastic and inelastic [21]. Elastic scat-
tering comes with elastic shock, usually with kernel: there
is no energy loss, instead, electron is diffracted and atomic
bonds are broken. After the shock, the electron becomes a
Back-Scattered Electron (BSE). Inelastic scattering comes
with inelastic shock, usually with an electron of the cloud:
there is a loss of energy. After the collision, the atom is ion-
ized and emits a Secondary Electron or SE. The scanning
of the sample surface and the collection of back-scattered
or secondary electrons leads to a 2D image of that surface,
reflecting the atomic number and topography, respectively.
Fig. 1 shows some examples of pollen grains images from
secondary electrons detector: the topography is very well
presented.

A Scanning Electron Microscope comprises at least the
following components (Fig.2):

1. a gun (source) to generate the beam of electrons,
2. a condenser lens to make the beam cylindrical as possi-

ble,
3. an aperture and astigmatism lenses to reduce the diame-

ter of the beam,
4. an objective lens to focus the beam onto the specimen,
5. some scanning lenses to scan the surface of the sample

by the beam,
6. a detector to collect and amplify the emitted electrons

and to generate pixels.

All these components are located inside a vacuum envi-
ronment in order to avoid every possible interaction between
gas molecules and electrons (both emitted and detected).

For the experiments, in this project, we used a Carl Zeiss
Auriga FE-SEM along with its own computer, and a remote
computer to run user applications (Fig. 3). The SEM, that is
equipped with a six degrees-of-freedom micro-manipulator
for object manipulation, features an electron column based
on Schottky field emission gun and three detectors (SE de-
tector in the chamber, SE detector in the column, BSE detec-
tor in the column). We used the SE detector in the chamber.
Some specifications of the SEM are: magnification ranging
from×10 to×106, working distance from 0 to 20 mm, max-
imum frame rate of 20 Hz.

3 Geometrical modeling of SEM

While SEM has no matrix sensor, it still can be modeled as a
camera. According to the literature [22–24], in case of SEM,
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Fig. 2 Basic SEM internal structure.

Fig. 3 Carl Zeiss Auriga SEM used in experiments.

the perspective effects can be neglected for magnification
values bigger than ×1000 and then an affine model may be
used.

Affine camera model assumes that all projection rays are
parallel to each other, i.e. the camera centre is at infinity.
That is why affine camera model is often referred as paral-
lel projection model. With regard to SEM, consider the fol-
lowing situation which is quite common: the object with a
size of 10 µm is visualized using SEM tuned to the working
distance of 10 mm. The ratio between the distance camera-
object and the object size is equal to 1000. Evidently, in such
conditions, the projection rays are very close to be parallel.
This example gives the intuition behind the usage of affine
camera model for SEM. Getting back to geometry, the pro-
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Fig. 4 Image formation under assumption of affine camera model.

cess of image formation with an affine camera is represented
schematically in Fig. 4.

The camera matrix P in this case is different from per-
spective projection by a parallel projection matrix Π:

P = KΠ
[
R t
]

(1)

where K is the matrix of intrinsic parameters,
[
R t
]

is the
motion matrix (R rotation matrix, t translation vector) and

Π =

1 0 0 0
0 1 0 0
0 0 0 1

.

As a result, the affine projection matrix is of the form:

P =

∗ ∗ ∗ ∗∗ ∗ ∗ ∗
0 0 0 ∗

 (2)

Affine camera does not have principal point as all pro-
jection rays are parallel (camera center is infinitely far from
the image plane). It has a direct impact on the form of in-
trinsic matrix K that has the following form in affine case:

K =

α f s′ 0
0 f 0
0 0 1

= diag( f , f ,1)

α s 0
0 1 0
0 0 1

 (3)

with the three following parameters:

– Aspect ratio α that represents the ratio between height
and width of a pixel. In ideal situation its value is equal
or at least close to one. It is also true for SEM images
which was confirmed in [24].

– Skew parameter s reflects the orthogonality level of x
and y axis in image frame. Its value should be close to
zero.

– Overall scale factor f represents pixel
m ratio.

In addition to the special form of the intrinsic parameters
matrix, parallel projection imposes some other interesting
properties. First, image is invariant to the object displace-
ment along the direction of projection (see Fig.5.a). In other
words, image is invariant to the distance between camera

and object, which is the case in SEM. For instance, moving
the sample closer to the electron beam or moving it away
will not change the resulting 2D projection. As a result, the
depth coordinate is completely lost in the process of image
formation in case of parallel projection.

Secondly, the projection of the object is independent of
translations in x and y directions of image frame if the rel-
ative coordinates are used both in 3D object frame and in
camera frame (see [13]). If such translation is performed,
only the position of the object in the image changes, but not
the relative disposition of its feature points (see Fig.5.b). A
reference point is often chosen as the centroid of 2D projec-
tion which is the centroid of corresponding 3D points at the
same time. The exact same points may be obtained by using
relative coordinates and translating the centroid to (0,0)>.

In the case of SEM the displacement of 2D projections
is due to the object motion (the motion of the robotic stage).
However, for the remainder of the manuscript we will con-
sider that the camera is moving and the object is fixed. Both
situations are geometrically equivalent, yet, the latter one
simplifies a lot the presentation.

Concerning the subject of motion estimation, it is known
that motion parameters as well as the camera intrinsic pa-
rameters are contained in the camera matrix which has a
special form in affine case (see Eq. 2) [14]. It can be de-
composed as:

P =

α f s 0
0 f 0
0 0 1


︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 0 1

( R t
0 0 0 1

)
(4)

=

(
A2×2 02×1

0 1

)
︸ ︷︷ ︸

K

r11 r12 r13 tx
r21 r22 r23 ty
0 0 0 1

 (5)

Thus, the 2D projection q of a 3D point Q is written as
(in homogeneous coordinates):

q = PQ (6)

which is equivalent to

(
qx
qy

)
=

(
α f s
0 f

)(
r11 r12 r13
r21 r22 r23

)Qx
Qy
Qz

+

(
α f s
0 f

)(
tx
ty

)
(7)

Finally, taking into account all the described properties
and equations, the total number of parameters for an affine
camera is: 3intrinsic +3rotations +2translations = 8.

In this way, for Nim images corresponding to as many
camera poses, the total number of parameters is: 3intrinsic +

3rotations.Nim +2translations.Nim = 3+5.Nim.
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Fig. 5 Illustration of affine camera properties: a) invariance to depth variation; b) invariance to in-plane translations of camera or object.

4 Problem formulation

Now the challenge is to find a method to compute the intrin-
sic and extrinsic parameters of affine camera. Taking as a
basis a measurement matrix, we will define a principled cost
function usable in an global search optimization method.

4.1 Measurement matrix

Mathematically, a set of feature correspondences is repre-
sented as a matrix W that will be further referred as mea-
surement matrix. Consider that Nim images of the same ob-
ject were taken from different view points by the same but
moving affine camera. It is possible to extract a measure-
ment matrixW that contains the projections of Npt 3D points
in different images:

W =


W1
W2

...
WNim

=


q1

1 q1
2 . . . q1

Npt

q2
1 q2

2 . . . q2
Npt

...
...

...
...

qNim
1 qNim

2 . . . qNim
Npt

 (8)

with Wi the set of features extracted from the i-th image:

Wi =
[
qi

1 qi
2 . . . qi

Npt

]
(9)

Several remarks are to be done about the measurement
matrix:

– the number of columns is equal to the number Npt of
extracted features,

– one column corresponds to Nim projections of one 3D
point,

– the number of rows is equal to 3Nim in homogeneous
coordinated,

– all features are viewed in all images.

4.2 Cost function formulation

The problem of autocalibration can be formulated as the fol-
lowing optimization problem:

arg min
ξ∈Rn

f (ξ ) (10)

where ξ is a vector of camera’s parameters (both intrinsic
and extrinsic) and f (ξ ) is the cost or objective function rep-
resenting the error. Obviously, the formulation of this func-
tion is a decisive point to obtain good properties for autocal-
ibration such as robustness and accuracy.

Knowing that every element of W can be obtained by
the multiplication of 3D point coordinates and the matrix of
camera in which it is projected, the expression for the esti-
mated measurement matrix (Ŵ) can be written as follows:

Ŵ =


Ŵ1

Ŵ2
...

ŴNim

=


P1
P2
...

PNim

[Q1 Q2 · · · QNpt

]
= PQ (11)

where P is a stack of camera matrices (3Nim×4 matrix con-
taining camera matrices for all views and Q is the set of 3D
points in homogeneous coordinates with the size 4×Npt .
Every camera matrix (Pi) has 8 degrees-of-freedom. Fur-
thermore, it will be considered that images are taken with
the same camera, thus only 5 extrinsic parameters have to
be estimated separately for every image. Thus, we need to
find such P and Q that would minimize the difference be-
tween W and Ŵ . In this formulation the total number of
parameters is equal to:

length(ξ ) = 3︸︷︷︸
intrinsic

+ 3Nim︸︷︷︸
rotation

+ 2Nim︸︷︷︸
translation

+ 3Npt︸︷︷︸
3D points

(12)

The first item in this equation stands for three intrinsic pa-
rameters (scale factor, aspect ratio and skew) of the camera;



6 Andrey V. Kudryavtsev et al.

the second and third ones represent motion parameters that
are different for each view; the last component is the 3D co-
ordinates of object points.

Next, we undertake several steps allowing to reduce the
number of parameters. Actually, as general optimization prob-
lems involve more variables to be optimized, it is harder to
make them well-constrained. If they are not well-constrained,
the optimization will proceed in a way that minimizes the
global mathematical error, but that does not correspond to
a solution of a real problem, i.e. has no physical meaning.
Thus, it is very important to reduce the number of parame-
ters as much as possible.

Step 1. On the basis of only images taken, only Eu-
clidean calibration could be achieve, and not metric one. In
order to make the upgrade to metric calibration, one can use
the information about the pixel size for a given magnifica-
tion which is generally given by SEM manufacturer. Here
the scale factor f will be considered constant and equal to
one, because the metric calibration is not needed. In this
way, only two intrinsic parameters have to be founded.

Step 2. As the position of the world frame is unknown,
we are free to fix its orientation equal to the frame of the first
camera, so that:

R1 =

[
1 0 0
0 1 0

]
which allows to exclude three parameters:

length(ξ ) = 2+3(Nim−1)+2Nim +3Npt (13)

Step 3. The biggest term in (12) corresponds to 3D points.
One of the possible ways to eliminate it is to use the pseudo-
inverse of the matrix P . This solution reduce drastically the
number of parameters, in return for more calculations. In-
deed, the stack of 3D points Q may be replaced by:

Q= P+W (14)

where P+ is the pseudo-inverse of the matrix P . Here, we
obtain it using SVD (Singular Value Decomposition) algo-
rithm. Therefore, (11) transforms into:

Ŵ = PP+W (15)

and the number of parameters is reduced to:

length(ξ ) = 2+3(Nim−1)+2Nim (16)

Step 4. The number of parameters can be further re-
duced by using relative coordinates and eliminating transla-
tions. Indeed, as stated in section 3 and Fig.5.b, affine model
is invariant to translations in image plan. The use of relatives
coordinates will allow to eliminate ti and the number of pa-
rameters to estimate can be reduced to:

length(ξ ) = 2+3(Nim−1) (17)

and the equation (15) takes the following form:

Ŵ =MM+Wr (18)

In this expression, Wr is the measurement matrix in non-
homogenious relative coordinates andM is:

M=


M1
M2

...
Mi

=


AR1
AR2

...
ARi

 (19)

where M is a 2× 3 upper-left components of affine camera
matrix P.

Recall that

A = f
(

α s
0 1

)
(20)

and Ri is the first two rows of the rotate matrix, according to
[25]:

Ri = Rz(
i
θi−1)Ry(ρi,i−1)R>z (

i−1
θi) (21)

where the angles θ are in-plane rotations and ρ is out-
of-plane rotation.

In-plane rotation can be estimated from a pair of affine
images, but there is an issue with out-of-plane rotation es-
timation because of bas-relief ambiguity: from two affine
views, the scene (motion and structure) may be recovered
only up to the combination of depth variation and out-of-
plane rotation [26].

With three or more views, this ambiguity disappears in
general. In our implementation, we use the self-calibration
approach of [25] which computes directly, from the affine
factorization of three views, the scene (structure and pose of
the three views), up to an Euclidean transformation, as well
as the intrinsic parameters. We use this to initialize a global
non-linear optimization of all variables, as described in the
following. Note that using 3 views for this initialization step
makes it straightforward and efficient to embed it in a robust
estimation scheme such as RANSAC.

Ideally, we are looking for such set of parameters ξ that
ensure Ŵ =Wr. However, due to the presence of noise in
the estimation of image features, this equality is never sat-
isfied exactly, which means that a way of comparison needs
to be found. As in common, a geometric distance d between
estimated and measured points will be used in present work.
Hartley and Zisserman in [14] specify that the minimiza-
tion of geometric error between measured and estimated 2D
points is equivalent to finding such a Ŵ as close as possible
toWr in Frobenius norm. Thus, the autocalibration task con-
verges to an optimization problem with the following cost
function:
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f (ξ ) =
Nim

∑
i=1

Npt

∑
j=1

d(q̃i
j,Mi(ξ )M+

i (ξ )q̃
i
j)

2 (22)

= ‖Wr−Ŵ‖2
F (23)

= ‖Wr−M(ξ )M+(ξ )Wr‖2
F (24)

= ‖Wr−MM+Wr‖2
F (25)

The goal is to find a global minimum of this function sub-
ject to a set of constraints that will be developed in the next
sections.

It is important to add that, in Euclidean calibration, the
matrix Mi is the result of the product of two matrices: an
upper-triangular matrix of intrinsic parameters Ai and a ro-
tation matrix. Such matrices can be obtained using RQ -
decomposition of Mi matrix. It is important to notice that
the result of such decomposition is unique if rank(Mi) = 2.
Thus, by computing Mi as the product of upper-triangular
matrix and a rotation matrix, we ensure that the obtained
calibration is an Euclidean one.

4.3 Regularization

Many optimization algorithms encounter the following prob-
lem: they do not take into account the physical meaning
of the optimization parameters, nor the stochastic nature of
noise. Thus, due to the presence of noise, they find a so-
lution that actually makes the global error smaller, but the
values of parameters do not correspond to a realistic model.
Moreover, the autocalibration problem may be considered
ill-posed [27] and strongly non-linear due to presence of
multiplication of sine and cosine functions. The method al-
lowing to compensate the issue is called regularization and
more specifically Tikhonov regularization [28]. The idea be-
hind it consists in introducing more knowledges about the
system, by adding weight coefficients to each of the opti-
mized parameter. It allows to improve the likelihood that the
minimization converges to the desired solution.

In current cost function (25), all parameters have the
same weight. However, we would like to tell the algorithm
that the values of intrinsic parameters should be close to the
initial ones and that the biggest impact should be made on
the values of out-of-plane rotations. In other words, during
the optimization, the error should be minimized mainly by
adapting motion parameters and not the intrinsic ones.

Mathematically, it translates in adding a standard regu-
larization term of the following form:

r = ‖Γ ξ‖2
F (26)

where Γ is a regularization diagonal square matrix that has
the same number of rows as ξ . Each value on the diagonal
represents the desirable impact of corresponding parameter,

i.e. the weight. The bigger the value, the less the algorithm
would tend to change the given parameter. Note that the def-
inition of this regularization term is currently based on the
assumption of a normal distribution of parameters, but this
model will be refined in futur works.

In this work, we defined all weights as powers of 10:

– 100, for intrinsic parameters
– 0.1, for slope angles θ1 and θ2
– 0.01, for out-of-plane rotation ρ

These values were found well suited experimentally.
Finally, the cost function with regularization term is writ-

ten as:

fr(ξ ) = ‖Wr−M(ξ )M+(ξ )Wr‖2
F + ‖Γ ξ‖2

F (27)

4.4 Bound constraints

Finding a minimum of the objective function obtained previ-
ously is the subject of nonlinear optimization, which is typ-
ically a challenge without any additional information and
thorough understanding of the nature of parameters. In pre-
sented formulation of the objective function all of the pa-
rameters ξ have an actual geometric meaning which allows
to largely reduce the search space of the solution by imple-
menting the bound constraints. It is all the more pertinent for
global optimization, where starting points are actually gen-
erated inside predefined bounds. It means that tighter bounds
lead to faster convergence and higher probability of finding
the solution.

The constraints for the elements of Mi matrix can be
defined as follows. First, as regards the matrix of intrinsic
parameters, as the common scale factor f is factored out,
the constraints can be easily imposed: the value of aspect
ratio should be close to one, because the pixels are gener-
ally squared, and the skew factor should be close to zero,
which would denote that x and y axis of camera are perpen-
dicular. Furthermore, as the metric calibration can not be
obtained (the only possible is the Euclidean "up-to-scale"
calibration), in case of constant focal length, the value of
f can be fixed to any positive real value, e.g., to one. Sec-
ondly, the rotation matrix is decomposed into a sequence
of three elemental rotations in a spherical coordinate system
with angles θ1, ρ and θ2. Hereafter, we speak about intrinsic
rotations which means that they don’t occur about the axes
of the fixed coordinate system, but about the axes of the ro-
tating coordinate system, which changes its orientation after
each elemental rotation. It results in a following constraints
for the angles: θ1 and θ2 can vary in a range of (−90◦;90◦).
The angle ρ , the out-of-plane rotation may vary in range that
depends on the acquisition process. In typical situation, this
angle is equal to several degrees. Here it will be fixed in the
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Table 1 Examples of initial values and bound constraints for autocal-
ibration. The rotation of the first camera is fixed and equal to I2×3.

Initial value Bounds

Aspect ratio α 1 [0.5;1.5]
Skew s 0 [−0.5;0.5]

θ1 0 [−90◦;90◦]
ρ 0 [−90◦;90◦]
θ2 0 [−90◦;90◦]

Total number of
varying parameters 2+3(Nim−1)

range (−90◦;90◦). Thus, the constraint for all elements of
Mi matrix are combined in Table 1.

Here, constraints values are chosen larger than what is
needed, in order to demonstrate the high convergence range
of this method. However, applications could be done with
reduced bounds if preliminary data are known.

5 Problem solution based on global search

At this point, two cost functions are defined for autocalibra-
tion, f (ξ ) and fr(ξ ), the latter one containing the regulariza-
tion term. Generally, local optimization is often used in com-
puter vision and autocalibration in particular, which works
well for convex problems. However, for strongly non-linear
cost functions, in order to find the minimum, it is preferable
to use global optimization algorithms.

Global optimization algorithms can be subdivided in two
main classes [29]: deterministic and probabilistic. In case
of deterministic algorithms, the search space can be subdi-
vided into multiple pieces, similarly to the divide and con-
quer strategy. This step is then followed by the exploration
of each smaller region by a local solver. After that, the re-
sults are combined and the best one is taken as a global min-
imum. Deterministic methods can provide a certain level of
assurance that the global optimum will be located. How-
ever, even if they can guarantee that the solution found is
the global one, no algorithm can do it in a finite time [30]. It
comes from the fact that the smaller the regions on which the
space search is subdivided, the more times the local solver
should be launched. At the same time, it becomes evident
that if the sizes of the regions are close to zero, the likelihood
of finding a global minimum increases. In return, the prob-
abilistic algorithms generate the solution based on random
variables. They include algorithms like simulated annealing
and evolutionary algorithms. In this case, the solution can
be found with relatively high time efficiency, however, the
global optimality can not be guaranteed. In present work,
we decided to apply both types of algorithms: Scatter Search
with a local solver, presented by Ugray et al. in [31], and the
Genetic Algorithm [32]. For both algorithms, their MatLab
implementations were used.

The Scatter Search algorithm (further referenced as GS
for Global Search) is a population based meta-heuristic al-
gorithm devised to intelligently perform a search on the prob-
lem domain algorithm. It consists in a generation of multiple
trial points within finite bounds, which are candidate starting
points for a local solver. These are then filtered to provide a
smaller subset from which the solver attempt to find a local
optimum. Then it evaluates remaining possible candidates
and start a local solver. The best solution is retained as the
global minimum of the problem. More detailed description
of the scatter search algorithm is given in [33].

The Genetic Algorithm (GA) is an heuristic algorithm of
search, which is used to solve different optimization prob-
lems using random search, mutation and variation of pa-
rameters. It belongs to the class of evolutionary algorithms,
which generate solutions by the techniques inspired by natu-
ral evolution. GA differs from other evolutionary algorithms
by putting an accent on the use of cross-over operator, which
conducts the operation of recombination of solution candi-
dates.

6 Tests on virtual images

6.1 Accuracy on nominal case

In order to find the best solution, we tested four combina-
tions:

– GSR, scatter search optimization with regularization
– GS, scatter search optimization without regularization
– GAR, genetic algorithm optimization with regulariza-

tion
– GA, genetic algorithm optimization without regulariza-

tion

As stated previously, MatLab implementations of these
algorithm were used. Their performance were compared to
the state-of-the-art optimization algorithm of Long Quan [13],
refereed as LQ in the text. The factorization method pre-
sented by Tomasi and Kanade [9], refereed as TK, will be
also used as reference. It consists in inferring scene geom-
etry and camera motion from a stream of images, recover-
ing shape and motion under orthography, without computing
depth. This method mainly uses the singular value decom-
position of the measurement matrix Ŵ to find the rotation
matrix and the shape matrix. This method stays a standard to
analyze the displacements of an object from multiple views.

A sequence of four synthetic images of a diamond (see
Fig. 6) was used. The 3D structure and the cameras parame-
ters are known, so the measurement matrix contains perfect
noise-free correspondences. The faces between vertices are
given only in a purpose of better visualization of the object.
As it was mentioned previously, it is not possible to obtain
the metric calibration without any additional information on
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Fig. 6 Four images of diamond sequence with 3D view. Cameras are represented by local coordinate axes.

d

a
b

c

(a)

d

a
b

c

(b)

Fig. 7 Front (a) and side view (b) of the virtual object. The marked
sides are used for the analysis of performance of the autocalibration
algorithms.

the object structure or camera magnification. Thus, in order
to analyze the results, only the properties that are preserved
under similarity transformation might be used. Among them
are ratio of lengths and angles. For the analysis four vertices
of the object were chosen: a, b, c, d (see Fig. 7). The real val-
ues of the ratios of lengths and the angles between vertices
(αab, αbc, αcd) as well as the estimated ones are presented
in Table 2. It can be noticed that all global methods give a
similar results, the estimation error for both ratios and an-
gles is lower than thousandth of percent. This result is not
highly significant, but confirm the viability of the presented
approach and allows to proceed to more tests on noisy or
real images.

It is also interesting to look at the execution time (Ta-
ble 3). It was measured for MatLab R2017b implementation
of global optimization on the computer with the following
parameters: Windows10 x64, 3.80 GHz Intel Xeon CPU,
32 GB of RAM. One can remark, that for the same out-
put results, the genetic algorithm takes 100 times more time
than scatter search method. Thus, genetic algorithm will no
longer be used for tests.

6.2 Robustness to noise

We have several methods (LQ, GS, GSR,TK) that perform
equally well for noise free images. However, this situation
is far from reality as the set of feature coordinates always
contain noisy measurements. Hence, it is important to test
the performance of the algorithms at different noise levels.
The procedure is exactly the same as above, except for a
Gaussian noise with different variance is added to 2D image
coordinates. For every noise level, the autocalibration was
repeated 100 times. The results are represented in Fig. 8.

At this point we remark that GSR and TK outperforms
both the LQ and GS methods. Even for high noise level, the
error for estimation of length ratios stays inferior to 2%. In
contrast, it may reach 4.5% for LQ method and 3.5% for the
scatter search optimization without regularization (GS). The
situation with angles is similar, but the difference between
methods is lower. These results prove at the same time the
efficiency of presented method and the importance of regu-
larization term.

6.3 Convergence range

As it was already shown, global optimization is a time con-
suming technique. Typically, for a sequence of four images
with 22 points, the autocalibration takes about 0.5 seconds.
So it is important to verify if it is worth using global opti-
mization instead of local one. To test that, we conducted the
following experiment. Once again, four images are obtained
in a way that the out-of-plane rotation between the first im-
age and the second one is 5 degrees. Then, we run autocal-
ibration with different initial conditions using GSR method
and the same method but with Levenberg-Marquardt (LM)
local optimizer (LMR, for Levenberg-Marquardt with regu-
larization). The results are summarized in Table 4.
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Table 2 Comparison of performance of different algorithms on a noise free sequence of synthetic images.

Ratios of lengths Angles
a/b b/c c/d αab αbc αcd

Real value 0.761 12.661 0.036 94.028 114.747 136.544

LQ 0.761 12.661 0.036 94.028 114.747 136.544
GSR 0.761 12.664 0.036 94.030 114.746 136.533
GS 0.761 12.664 0.036 94.021 114.743 136.534
GAR 0.761 12.664 0.036 94.030 114.746 136.533
GA 0.761 12.664 0.036 94.021 114.743 136.534
TK 0.761 12.661 0.036 94.028 114.747 136.544

Errors:
εLQ,% 6.56e-13 4.21e-14 1.34e-13 4.53e-13 5.70e-13 6.24e-14
εGSR,% 5.91e-03 2.97e-02 1.91e-02 2.69e-03 1.71e-03 8.15e-03
εGS,% 2.75e-03 3.19e-02 1.70e-02 7.07e-03 3.99e-03 7.08e-03
εGAR,% 5.91e-03 2.97e-02 1.91e-02 2.68e-03 1.71e-03 8.14e-03
εGA,% 2.75e-03 3.19e-02 1.70e-02 7.07e-03 3.99e-03 7.07e-03
εT K ,% 1.75e-13 4.91e-13 4.48e-13 4.08e-13 3.96e-13 1.25e-13

Table 3 Mean execution time of different autocalibration methods for
4 images and 22 points.

Method LQ GSR GS GAR GA TK
Time, s 0.0156 0.408 0.842 109.118 101.074 0.0011

As expected, with LMR algorithm, optimization suffers
from multiple local minima of the cost function, so is needed
a very good initial estimate to use this algorithm. In con-
trast, global optimization allows indeed the arbitrary choice
of starting point as it is capable to compensate the error of
45 degrees.

7 Tests on real images

Five image datasets were used:

– affine camera images:
– hotel: 10 images from the hotel image sequence [34].

– SEM images from [35]:
– brassica: 4 images of pollen grain of white turnip

plant from a Hitachi S-4800 FE-SEM.
– grid: 5 images of TEM copper grid from a Hitachi

S-4800 FE-SEM.
– SEM images acquired at FEMTO-ST Institute, taken us-

ing a SEM Zeiss AURIGA 60:
– pot: 7 images of pollen grain of aquatic, mostly fresh-

water, plant of the family Potamogetonaceae.
– pot2: 6 images of another Potamogetonaceae pollen

grain.

The hotel sequence is the image dataset used by Long
Quan to validate his algorithm. In our implementation, 196
matches were extracted and the results of autocalibration, as
expected, were exactly the same for all four methods (TK,
LQ, GS, GSR). An example of camera poses as well as the
sparse 3D calibration is shown in Fig. 9.

Back to SEM images, three datasets were analyzed. As
all image datasets were taken using SEM, there is no avail-
able information on the location of the camera. Thus, we will
use two criteria allowing to judge on the algorithm perfor-
mance. First, the respect of metric constraints and, secondly,
the reprojection error (Fig. 10). It is important to note that
we use a leave-one-out method to do the reprojection: for a
set of N images, we extract each image one time to estimate
the 3D-points, then reproject these points according to the
estimated pose for this image. In this way, the method’s ro-
bustness has to be better than if the 3D-points are defined
from the N images.

We consider that metric constraints are respected if the
aspect ratio is within the interval (0.9;1.1) although we know
that it has to be close to one. For LQ and GS method, the
constraints are never respected. The TK cannot estimate the
metric constraints. GSR algorithm gives the desired result
for all datasets as the constraints on aspect ratio and skew
are already included in cost function formulation.

In terms of reprojection error, the algorithms gave good
results for TK and GSR. This result is important because it
proves that even if we prevent the change of intrinsic param-
eters, the GSR algorithm succeeds in keeping the same level
of accuracy as TK.

Obviously, these two criteria do not allow full valida-
tion of the autocalibration: one can consider them as manda-
tory but not sufficient. Unfortunately, when working at such
scales and with small objects, there is no measurement de-
vice capable to provide the ground truth. However, for some
datasets, we know the actual angle of tilt: 3 degrees for bras-
sica, 7 degrees for grid, and 3 degrees for pot. For other
datasets, the rotation between images were performed as a
combination of two articular robot movement which was not
calibrated, which means that the angle of out-of-plane rota-
tion cannot be extracted.
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Table 4 Comparison of convergence range between local optimizer (Levenberg-Marquardt, LMR) and global optimizer (GSR). Tests were run on
noise-free images.

Initial ρ12,
in degrees -20 0 1 2 3 4 5 6 7 8 20 45

LMR 5.23 0.00 1.69 4.07 4.67 4.81 5.00 5.06 5.08 5.10 5.23 5.4
GSR 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
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Fig. 8 Robustness of different autocalibration algorithms to noisy
measurements. TK and GSR obtain best results, mainly overlaid on
curves.

To compare the rotation angles, the following procedure
was performed. Once the sequence passed through autocali-
bration, the rotation matrices for every frame were extracted
and then transformed into axis-angle representation. There-
fore, if the rotation were performed in one movement, these
angles should match the angles given by robot sensor. The
results are presented in Table 5. The difference do not ex-
ceed 0.21 degrees on all tries.

Fig. 9 Result of autocalibration for hotel image dataset.

Table 5 Comparison between rotation angles in degrees given by robot
sensors (true), and autocalibration algorithm (estimated).

brassica grid pot

true estimated true estimated true estimated
ρ12 3 2.9425 7 6.9103 3 3.0312
ρ23 3 3.0182 7 7.0851 3 3.0965
ρ34 3 2.8270 7 6.7993 3 3.0723
ρ45 - - 7 6.8596 3 3.1131
ρ56 - - 7 - 3 2.9628
ρ67 - - - - 3 3.0676

8 Conclusion

In this paper, a new method of autocalibration for affine
camera was presented. All its components have been com-
puted: model as well as motion parameters. The presented
method, being based on global optimization, has the follow-
ing advantages comparing to the state-of-the-art techniques:

– All metric constraints are imposed directly on the op-
timized parameters. Moreover, with regularization, it is
possible to guide the optimization towards the desired
result, i.e. add a penalty score for excessive change of
such parameters as aspect ratio and skew.

– All optimization parameters have a physical meaning. It
means that all known elements about camera location
can be easily imposed. For example, one can impose
the equality of out-of-plane rotation if the angle of tilt
is known to be constant for all image sequence.

– Thanks to the deep analysis of camera properties, the
final number of optimized parameters is low and good
initial estimate is provided from the elements of funda-
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hotel: 10 points (10 images) 

grid: 57 points (5 images) 

pot: 75 points (7 images) 

pot2: 28 points (6 images) 

GSR LQ GS 

p
ix

el
s 

-1                 0                  1 

1 

 

0 

 

-1 

TK 

Fig. 10 Analysis of reprojection error for different autocalibration algorithms: TK, LQ, GS, GSR. Red background means that metric constraints
are not respected: typically, aspect ratio is greater than 1.1 or lower than 0.9. Grey background means that metric constraints are not calculated. For
points inside circles, the reprojection error is lower than: 1 pixel for blue circle, 0.5 pixel for red circle. Numbers reflect the percentage of points
inside the corresponding circle.

mental matrices. These are the key success factors of
optimization. Moreover, in contrast to classical bundle
adjustment techniques, the 3D points are excluded from
optimization process.

– The fact of using global optimization ensures high con-
vergence range.

– The execution time is relatively low: less than 0.5 sec-
onds for 4 images. It can be improved, first, by imple-
menting global optimization in C++. Secondly, the opti-
mization for multiple starting points may be carried out
in parallel which would also decrease the optimization
time.

With regard to microscopy community, we presented the
first autocalibration algorithm for Scanning Electron Micro-
scope.

It is worth adding that the crucial step in all autocalibra-
tion algorithms is the feature matching across the images.
In case of affine camera less points are needed to constraint
camera parameters, because of the reduced number of de-
grees of freedom. As it was shown before, we used the num-
ber of features from 20 to 200. If it is possible to increase
the number of matches without loss of their quality, it will
improve the final results, however, will slightly increase the
execution time. Though, the quality of the correspondences
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is much more important than their quantity: even if a feature
is an inlier, its quality may vary. Outliers are rejected at the
step of fundamental matrix estimation.
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