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Abstract

Managing the risks arising from the actions and conditions of the various ele-

ments that make up an operating room is a major concern during a surgical

procedure. One of the main challenges is to define alert thresholds in a non-

deterministic context where unpredictable adverse events occur. In response to

this problematic, this paper presents an architecture that couples a Multi-Agent

System (MAS) with Case-Based Reasoning (CBR). The possibility of emulat-

ing a large number of situations thanks to MAS, combined with analytical data

management thanks to CBR, is an original and efficient way of determining

thresholds that are not defined a priori. We also compared different similarity



calculation methods (Retrieve phase of CBR). The results presented in this ar-

ticle show that our model can manage alert thresholds in an environment that

manages data as disparate as infectious agents, patient’s vitals and human fa-

tigue. In addition, they reveal that the thresholds proposed by the system are

more efficient than the predefined ones. These results tends to prove that our

simulator is an effective alert generator. Nevertheless, the context remains a

simulation mode that we would like to enrich with real data from, for example,

monitoring sensors (bracelet for human fatigue, monitoring ...).

Keywords: Case-based reasoning, multi-agent system, simulation, risk predic-

tion, adverse events in surgery.

1 Introduction

In hospitals, surgery is performed in increasingly innovative and high-performance

settings. Instruments are connected and maintained with all the rigor required

by health and safety standards. All parameters are checked before and after

the surgery (patient identity and condition, surgical equipment, surgical instru-

ments, etc.) in order to leave as little space as possible for unforeseen events.

However, even in this secure environment, minimizing the risk of serious adverse

events, incidents, remains one of the main concerns of practitioners [?]. As an

example, despite all the implemented protocols, J. W. Suliburk recorded 188 ad-

verse events out of the 5365 operations included in their study: 56,4% were due to

human error and 51,6% were due to human performance deficiencies [?]. Among

many other incidents, we can note dosage errors, gestural clumsiness and hu-

man fatigue. In this context, we aim at model the operating room environment

and resources in order to predict and quantify the patient’s exposure to risk.

Our proposal is to create a simulator able to reproduce the system evolution,



where the system state depends on a set of values, each of which corresponds to

the value of attributes such as the vital signs of a patient (temperature, capnia,

etc.), the rate of infectious particles or the fatigue of a person. For each attribute,

individual alert and incident thresholds are defined by experts. With the sim-

ulator, we aim to generate a large number of varied situations and determine

their evolution towards incidents. Depending on the risk exposure level, the sys-

tem state is then classified as normal, alert or incident. The issue we face is to

aggregate the values of the attributes in order to identify alert states and thus

anticipate incidents. Our study is oriented towards predictive models composed

of non-deterministic entities raises, among other things. Our ambition consists of

determining alert states which characterize a system evolving toward an incident

state. Our objective therefore consists in bringing out risky situations that are

a priori unpredictable. In this case, a situation can be considered risky when no

alert threshold (individual alert) is reached. A combination of thresholds must

then be considered. Consequently, the difficulty resides in the determination of

these combined and non-predefined thresholds.

despite no individual alert is raised. Basic alert states are triggered when the

value of one of our system attributes reaches its associated single threshold. Nev-

ertheless, more complex alert states must also be triggered when values of a set

of different attributes are reached. In this partical case, a combination of thresh-

olds must be considered, with combined thresholds values different from single

thresholds values. Consequently, the difficulty resides in the determination of

these combined and non-predefined thresholds. In this context, our contribution

consists in identifying these complex alert states on the basis of acquired knowl-

edge (past experiences). This knowledge is then analysed using decision support

tools. Consequently, the multi-agent system is the paradigm we have chosen to

generate a large number of situations, some of which are initially unpredictable.



However, this model shows weaknesses in terms of the acquisition of knowledge

based on experience. We therefore propose the coupling between a multi-agents

system (MAS) where agents interact in a given environment, and a case-based

reasoning (CBR) system that allows solving a target problem by analogy with

stored knowledge. In response to these issues, our contribution consists, on the

one hand, in bringing out situations with risks that are a priori unforeseeable,

and on the other hand in capitalizing on all the simulations (experience base).

To achieve these two objectives, we have chosen to couple a multi-agents system

with a case-based reasoning, knowing that :

– the SMA paradigm is characterized by agents that interact with each other

and produce emerging phenomena;

– the CBR paradigm allows us to solve problems by analogy with past expe-

riences.

In addition to the presentation of this architecture, this paper exposes our

work on the classification of different methods of similarity calculations that we

consider essential. Indeed, the operating room environment requires a great rigor

in terms of the veracity of the information processed.

In this paper, we therefore explore conceptual approaches in relation to the

problematic: “risk prediction in a non-deterministic context”. The specific litera-

ture on predictive modeling (Prognostics and Health Management, Multi-Agents

System, Case-Based Reasoning) is the subject of Section 2. We then expose our

MAS and CBR architectures in Section 3. Section 4 materializes this architecture

with a description of our simulator. Section 5 describes analysis of data manage-

ment (discrimination between distance calculations). In particular, we present

our positioning in response to the determination of aggregated thresholds. We

then present our first results in Section 6 and comment them in the next one.



2 Definitions and related work

“Predictive systems” aim to deliver new information from past observations,

from simulations or from learning. They mainly depend on the environment

and on available data. The era of big data is a major current track in the pro-

duction of the last ones, which we hope will be both exhaustive and reliable.

Several paradigms exist and coexist, either independently or in a complemen-

tary manner. Among them, the literature gives great importance to Prognostics

and Health Management (PHM). PHM is a major paradigm in the detection of

failures for industry, since the impact of an incident is often far-reaching. PHM

is a five-step process [?] that starts with data acquisition from sensors (monitor-

ing), proceeds with data manipulation (or processing), then assesses conditions,

establishes a diagnosis and finishes with prognostics and decision support.

With this in mind, integrity measures for machining tools, such as cutting

machines, prevent the deterioration of work pieces (often expensive) through the

anticipation of tools replacement [?]. In [?], the authors show the effectiveness of

PHM modeling in identifying risks that are specific to the oil and gas industry in

terms of reliability, availability, and maintainability of equipment while achiev-

ing cost savings. More and more committees apply the principles of the PHM

in the context of human health prognosis [?] with the aim of empowering tech-

nologies to provide care. The focus is on biofeedback control of these intelligent

technologies for health [?], in a context where a hardware failure can have seri-

ous consequences on the diagnosis of human pathologies. However, we did not

find any study on risk prediction of complex interactive systems operating in

non-determinist contexts such as surgery and the operating room environment.

The multi-agent systems described in the following section are built according

to the interaction principle and overcome this disadvantage.



Definitions taken from the literature characterize MAS as systems composed

of autonomous entities that interact with each other according to certain rules

in a specific environment. In [?], Ferber defines agents as autonomous software

entities able to perceive (by messages, by data capture...) in an environment.

In this context, cognitive agents act with reflection and awareness of their en-

vironment composed of other entities, unlike reactive agents that only react to

stimuli. Thus, in the case of complex problems such as the epidemiological and

ecological analysis of infectious diseases, standard models based on differential

equations become unsuitable due to too many parameters and are supplanted

by MAS [?]. There is also an increasing integration of the agent paradigm in

strengthening collaborative automatic learning that cannot be dissociated from

knowledge acquisition. It characterizes the autonomy of the agents and can be

implemented beforehand (innate knowledge) or acquired through experience.

This second case concerns the entity’s ability to explore a knowledge base [?].

Its performance depends mainly on the collection of information that enriches

its learning. The CBR architecture designed according to this principle can be

a solution to this requirement.

The notion of knowledge acquisition is at the heart of dynamic models en-

riched by experience. Our modelling of non-deterministic entities is part of this

framework and values of the solutions are not necessarily known. It is therefore

essential to have a memory of previous cases and an ontology to structure them.

Case-based reasoning is an artificial intelligence paradigm based on the develop-

ment of solutions by analogy with prior experience and general knowledge in the

field of application. It is widely used in medicine [?], in industrial maintenance

[?] or in stock market analysis [?]. To find a solution, the CBR needs a database

of solved cases, the characterization of similarities and finally the knowledge of

adaptation processes. Several articles deal with knowledge acquisition, similarity



or decision-making with MAS [?]. The different predictive approaches structure

their modeling based on the analysis of past experiences. The nature of the

data and the analysis tools distinguish these predictive concepts. Two main ap-

proaches are considered in the literature for the use of CBR in an MAS. In the

first approach, the CBR coupling with MAS integrates, in the agent, the capac-

ity to solve problems from experiments extracted from a case database. In [?]

problems are solved locally with sometimes a collaborative approach [?]. In [?],

case-based reasoning gives to the multi-agents system the access to a structured

database that accelerates data mining. This case search mode, built for a spe-

cific problem, however, shows its limitations on non-similar cases. In addition,

the CBR/MAS coupling brings a dynamic aspect since it produces a dynamic

model enriched by experiments. Indeed, multi-agents simulation remains at the

heart of our work, whose challenge is to “predict in a non-deterministic context”.

The CBR is therefore integrated as a source of active knowledge acquisition and

proposes a decision support system in a multi-agent environment. One of the

main objectives is to suggest possible answers in different contexts constrained

by many parameters. Once again, the value of a case-by-case approach lies in

its ability to find solutions by analogy. These can be ordered according to a

hierarchy (bargaining agent (BA), expert agent (EA)) [?] or organized into col-

laborative committees. The system can explore its own case database [?], several

merged databases [?], or independent databases. The search for similar cases can

integrate different principles of initiation and learning such as artificial neural

networks [?]. These decision support tools, which integrate greater adaptability

in the acquisition of knowledge, are one of the possibilities we have explored.

However, this is limited to case bases, while other types of data such as traces

are interesting sources of information.



This type of coupling meets our need in terms of knowledge acquisition, but

remains incomplete in response to our predictability problem. Indeed, our model

must also integrate the anticipation of non-deterministic situations through an

analytical approach of past experiences. As we mentioned in the introduction,

our contribution to the integration of this type of analysis uses the MAS/CBR

coupling presented in the following section.

3 Architecture of the model

This section highlights our originality in relation to the determination of alert

thresholds that are not defined a priori. We describe the architecture of our

model that integrates the MAS/CBR coupling as a response to our predictive

approach. Figure ?? describes the architecture of our decision path.

Our research work, which aims to prevent risks in a non-deterministic en-

vironment, is materialized (among others) by the implementation of an alert

generator. This supposes the possibility of producing a large number of situa-

tions as close as possible to those of the studied context (operating room in our

case). The MAS paradigm that we have chosen meets this expectation thanks

to its ability to highlight unexpected situations. Concerning the acquisition of

knowledge, it can either be implemented beforehand (innate knowledge) or ac-

quired through experience. The second case supposes the capacity to explore

a knowledge base by the entity. This is why we have integrated a CBR in our

architecture whose principle consists in solving a problem by analogy with a

problem resulting from past experience. This method also allows to capitalize

on experiences. In a schematic way, the coupling between our multi-agent system

and a case-based reasoning can thus be defined as a collaboration operated by

exchanges. Figure 1 summarizes these. The SMA generates situations (at risk

or without risk) which are transmitted to the CBR to be compared with past



experiences. The result of this comparison can lead to a modification of the sys-

tem data (MAS and/or CBR) and generate, for example, an alert (modification

of the status of the alert agent).

Fig. 1: MAS/CBR exchanges

At each cycle (interval between two times ti and ti+1 i ∈ J1, nK equal here to

60 seconds) a new case which takes again the value of each attribute (specific to

each agent a1, a2, ..., a7) is generated. Each of them enriches a knowledge base

(CBR Base) which is then exploited following the CBR steps described in sec-

tion 3.3. The following section details the architecture of our MAS and CBR.The

next three paragraphs describe respectively: the formalism used, our multi-agent

system, our case-based reasoning, and finally the MAS/CBR coupling (global vi-

sion).



3.1 Formalism

All simulations are sequenced in identical time periods called cycles. Each of

them corresponds to a period of time going from ti to ti+1 i ∈ J1;nK which

can be parameterized (for example 60s). The state variables (named attributes)

define the behavior of each agent that is essential to achieve the simulation objec-

tives. Their values are modified at each simulation cycle. They give us the state of

the system which thus corresponds to the value of the attribute(s) of each agent

(the patient’s temperature for example) at a given moment (at a given cycle).

All these values give a state to the system (global state of the system): normal,

alert or failure. The state normal precedes the state alerti which is succeeded

by the state failure. There are three increasing levels of alert (i ranging from

1 to 3) whose intensity is inversely proportional to the time that separates an

alert from an incident (failure). As far as data acquisition is concerned, we dis-

tinguish two modes within our architecture: offline mode and online mode also

called ‘real-time mode”. In the offline mode, the data results from a function or

statistical data and is assigned to each cycle. In the connected mode, the data are

issued from a dynamic capture: the connected sensors (bracelet for fatigue, elec-

trochemical sensors for infection rate...) and the monitoring devices.. Whatever

the mode considered, these sources of information are considered as resources

“at the disposal” of the agents. Thus an agent can request one or more instances

of a resource (for example the sound level of a sensor) according to his rights.

In this article, we only deal with the unconnected mode, which corresponds to

the one currently implemented. This formalism being posed, we now approach

the description of our two paradigms.



3.2 MAS model for the operating room

In this non-deterministic context, and in order to achieve our objective (predict-

ing operating room incidents), we model the operating room as a multi-agent

system. Thus, the operating room is designed as a multi-agent system where each

entity is represented by one agent. Each of them, belongs to a group called species

(the agent surgeon belongs to the species Personal). Note that a species can

be composed of only one agent (agent alert belongs to the species Supervisor).

This type of model allows to create different scenarios and to simulate the pos-

sible evolutions of the state of the system. Moreover, these models, in which

agents interact with each other, make it possible to incorporate risks that have

been minimized or ignored to date and thus contribute to the optimization of

safety in the operating room. For example, simulating the movement of persons

(personal agent) allows to determine the level of suspended particles [?] which in

turn allows to calculate the level of risk. The architecture of our model, which in-

tegrates the BDI (Belief, Desire, Intention) paradigm, has five species of entities:

Personal, Material, Infection, Patient, Supervisor. Table 2 gives a descrip-

tion of the attributes of these agents. On an experimental basis, we simulated

the evolution of infection sites in parallel with human fatigue and patient’s vitals

over a period of time divided into cycles.

We chose to model the evolution of the values of the most significant at-

tributes in an operating room according to experts in the field (surgeons and

anaesthetists of the Besancon University Hospital). The following paragraphs

therefore explain the modelling of human fatigue, that of patient’s vitals and

that of infection. The major role of the agent alert will also be described.

Modeling fatigue. Fatigue can be modelled using several data acquisition meth-

ods. In offline mode, data is extracted from statistical files or from a function. If

it is a dynamic capture, the connected sensors (bracelet for fatigue) and moni-



Species Attributes Comments
Personal intention operate a patient under optimal safety conditions

desire use human and material resources (personal, material)
belief measures useful for decision making (monitoring, alert)
tiredness fatigue rate (scale from 1 slightly tired to 5 exhausted)
experience junior, senior

Material function hardware functionality
mat tiredness material efficiency (scale from 1 effective to 5 ineffective)
infected Boolean

Infection type type of infectious agent (contaminant, resistant)
local has an impact on an area, on the operating room or on both of them
desire defined according to its type (contaminant, resistant)
belief appreciate the recovery with the future host

Patient state health status
surgery type urgent, not urgent, complex, not complex

Supervisor intention prevent a failure
desire preventive alert (before the failure occurs)
belief listen and monitor the evolution of the data influencing the surgical

intervention
level alert thresholds

Fig. 2: State variables of simulated agents

toring will provide the information. In our case (offline mode), we have chosen to

define the growth of fatigue based on an exponential function (user-configurable)

because it can be applied to continuous phenomena and highlights the non-linear

nature of fatigue. It is given by the following relationship: f(t) = ae(k×t) where

a is the initial value, k the growth constant, and t the time. It should be noted

that in our case we treated the fatigue level of a single agent knowing that each

participant may have its own risk threshold.

Modeling patient’s vitals. As for the fatigue, Patient characteristics and con-

stants can be extracted from statistical data. However, there are no adapted

monotonous functions for this type of variation. For this reason, the data evolve

randomly according to a step set by the experts. We choose dynamic data cap-

tured from sensors or monitoring in a connected context.



Modeling the infection. The two main types of contamination which can be

observed are, on the one hand, exogenous agents in the operating room and,

on the other hand, endogenous agents (belonging to the patient). Our system is

able to simulate the evolution of the infection rate of exogenous hosts according

to decontaminating agents and time. The progression or regression of infection

is related to the overlap between contaminated or healthy particles over time.

alert agent The alert cognitive agent is central to our architecture and plays

the role of:

– central control (gathers the different alert thresholds);

– adapter (manages a collective alert level);

– regulator (proposes possible solutions).

Its preventive role, characterized by the possibility of alerting or adjusting its

alert thresholds, requires prior access to the past experiences which characterize

the case base in CBR.

Other key points of our predictive model include the interactions between

different entities (agents). An alert does not only depend on an single threshold

but also on the aggregation of different levels depending on each attribute of

the system. It implies to think about the definition, the representation and the

measure of these collective thresholds. To overcome these two necessities related

to alerts and interactions between agents, we suggest coupling our MAS with

case-based reasoning. In the introduction of this paper, we have notified the im-

portance of knowledge acquisition in our system. More precisely, it is a question

of choosing a paradigm that integrates on the one hand the enrichment of its

database from experiences, and on the other hand the search for the solution of

a problem by analogy with other problems already solved. Case-based reasoning,

adapted to this type of learning, is presented in the following section.



3.3 Knowledge acquisition: case-based reasoning

In the following paragraph, we propose a brief description of the five specific

steps of the case-based reasoning cycle.

Elaborate. The monitoring of our system and the resulting decision aids are

formalised as follows: U → R with U characterizing a sequence of quadruplets

(E,A, V, c) and R the couple (attribute value,recommendation). We have as-

signed the attribute A of value V at cycle c to each entity E. In the example

: (nurse,fatigue,1.5,1200) → (normal,no preco), the value 1.5 is assigned to the

attribute “fatigue” of the agent “nurse” at cycle 1200. In our CBR system, a

case is composed of two parts: the problem part corresponds to the quadruplet

U and the solution part corresponds to the couple R.

Retrieve. The retrieve step is usually based on finding the source case (stored

in the case base) the most similar to the target case (case to be retrieved). In

our context, we will compare a set of target cases with a set of source cases.

Indeed, the system state (MAS) that we record in our CBR database at each

cycle, or that we compare, is composed of an identifiable set of cases (for example

{((surgeon, fatigue, 1, 10),(normal, no preco)),((patient, temperature, 38, 10),

(normal, no preco))}).

Since quadruplets are not necessarily homologous (different attributes), we

have chosen to compare each quadruplet of the set of target cases with all sets

of quadruplets of the source case. The calculation of the distance of the selected

vector is defined according to the relation :

sim(
−→
C ,
−→
S ) =

1

n2

n∑
i=1

n∑
j=1

√√√√ 4∑
k=1

(1− I)2 (1)

I =
(

xki

ykj

)
if xki ≤ ykj . Otherwise (ykj ≤ xki) I =

(
ykj

xki

)
.



xki and ykj are respectively the values associated with each element of the

target quadruplet (
−→
C ) and the source quadruplet (

−→
S ) among n quadruplets.

The comparison of quotients exonerates us from the scale problems specific to

the different attributes. We consider this distance calculation as canonical and

complementary to other approaches defined in Section 5.

Reuse. This step is used to define the target case solution. In the case of auto-

matic processing, the inheritance of the source case solution modifies the target

case one. When an adaptation is necessary, (for example with a sufficient but

imperfect similarity), we apply the following decomposition:

path(srce,target) = (p0
r1→ p1

r2→ p2...pn−1
rn→ pn )

pi : system state, ri : transition between two states (pi and pi+ 1)

As an example, let us consider the following case:

target p0 = (nurse fatigue limit∧nurse dexterity threshold),

srce pn = (surgeon fatigue limit∧surgeon dexterity limit).

Figure 3 summarizes this request: the agent nurse does not belong to the case

base, but it belongs to a parental (personal) class with which it is possible to

compare the degree of similarity of an agent of the same nature (from the same

group). It is therefore possible to associate the collective thresholds inherited

from the surgeon class to this new class.

Review and retain. Once experts in the field have corrected it if possible, each

new target case, is added to the case base with in order to optimize further

searches of similar events.

In this section, we have shown that integrating case-based reasoning into

an MAS improves automatic knowledge acquisition. Beyond this coupling, data



Fig. 3: Adaptation

analysis and the quality of data selection are key elements developed in the

following section.

The global vision of the two paradigms we have just discussed is the subject

of the following paragraph.

3.4 Global vision of the MAS/CBR coupling

The diagram 4 provides a global vision of the MAS/CBR coupling. It distin-

guishes the MAS and CBR paradigms. The multi-agent system is composed of

agents belonging to different species such as: Personal, Infectious and Patient.

The state variables described in Section 3.2 characterize the behaviors, actions

and objectives of each agent. CBR is represented according to the five cycles

(Recall, Reuse, Review, Memorize) described in Section 3.3. MAS and CBR

interact in the form of cooperation. This is because the determination of the

system status and its updating depends on the reasoning by analogy specific to

CBR. In the same way, the enrichment of the case base results from the state

of the system exhibited at each cycle by the MAS. Beyond a classical repre-

sentation, our architecture integrates a holistic organization to our SMA (agent

aa interacts with all species), and the possibility for our case based reasoning

to interact with several data acquisition sources (data sensors, monotoring ...).

These two specificities are not discussed in more detail in this paper.



Fig. 4: Global architecture

The following section presents the interface of the simulator, the form used

for each type of data by RÃ PC and our first simulations.

4 A similator for risk prediction

We have described in the Section 3 of this paper, our architecture built accord-

ing to the coupling of a multi-agent system with a case-based reasoning. Our

different choices and contributions in terms of structure have been explained.

The present section is rather devoted to the exploitation of the model and thus

to the generated simulations. We distinguish a visual aspect through the MAS,

unlike the CBR which is rather similar to the hidden side of the simulator. The

two following paragraphs present respectively our simulator built from the Gama

platform and the structuring of the data of CBR.



4.1 Gama platform: a tool to implement the simulator

As shown in Figure 5 the user interface is split into two blocks. The first one is

reserved for parameterization and the second one for visualization of the current

simulations. In this example, this last one is subdivided into several windows in

which evolve (among others): operating room agents, patient constants, infec-

tious agents and system status (visualization of alerts).

Fig. 5: Global vision of the simulator

The parameterization interface (Parameters) allows to instantiate the alert

thresholds specific to the monitored attributes (human fatigue, patient constants,

level of infectious risk) and to determine the type of evolution of the values (in-

creasing, decreasing, random). In addition to these parameters, there are also the

following possibilities: neutralization of one or more attributes and deletion of

one or more agents that you wish to exclude from the simulation. Figure 6 illus-

trates the possibilities offered by the “Actions” tool of the Gama platform. Each

attribute of an agent can be disabled (alert fatigue in our example) and each



agent can be excluded from the simulation by a simple deletion (“Kil” option).

These features are useful among others to evaluate the interactions between

agents.

Fig. 6: Control of attributes and agents

The visualization interface of the simulation in progress, offers several views

of the evolution of the different attributes being monitored. These views take

several forms depending on the type of agent being modeled. Thus, practition-

ers (agents of the species Personal) are represented by objects (characters)

evolving in the operating room. The evolution of the values of their fatigue

attribute is visible individually as shown in the “envPersonal” view. The pa-

tient constants are represented by graphs (see “global patient” view) and the

agents of the species “Infectious” by a 3D view. The alerts that appear in the

“failure display” window indicate their proximity to the occurrence of an inci-

dent (far, near, imminent). This visual approach is legitimate in a simulation

context where the aim is to highlight alerts. That said, we have integrated the

case-based reasoning and motivated our choices in the previous section. The fol-

lowing section presents the operational mode of CBR and in particular the forms

and methods used for the exploitation of the case base.



4.2 Data exploitation: an approach by analogy

The implementation of case-based reasoning and the quality of its exploitation

are closely linked to the care taken during the elaboration phase. Indeed, the

determination of a case and the indexes used condition the operational efficiency

of the CBR. The interactions between the two paradigms impose either the cre-

ation of a gateway or the same data structuring. This second option that we

have chosen, led us to integrate the state variables of an agent as descriptors

of a case while keeping the same data structure. Thus the state variable (at-

tribute) fatigue and the agent surgeon are taken up in the same form and

correspond to the descriptors A (attribute) and E (entity) of a case. Currently,

the case database is enriched from the multi-agent system. The example in Fig-

ure 7 represents a set of cases that illustrates the possible states for each of

them (normal, failure). The attributes (temperature, capnia, desaturation,

pressure increase, hypoxia) of the agent patient0 chosen for this simulation

have a status equal to normal for cycles ranging from 15 to 25. It is equal to

failure in cycle 65. It is a detailed view of all the agents and attributes of the

system for a given cycle. The state of the system that we recall is driven by the

agent alert, is a synthesis of all the states of all the attributes observed at a given

cycle. Any serious undesirable event resulting from the evolution of one or more

attributes, then modifies the state of the system whose value becomes failure

for the current cycle. The previous states browsed in an antechronological order

take respectively the values: alert0, alert1 and alert2.

Figure 8 shows a failure state at cycle 65, then respectively alert0, alert1

and alert2 for the previous cycles. We observe that the state failure of the sys-

tem, results in our example from the failure of only one attribute (cf Figure 7

status failure of the attribute pressure increase). The levels of alerts preceding

this state, are those which will be proposed by the system during the search for



Fig. 7: System Status Detail

analogy between the target case and the source case. The SMA/RÃ PC coupling

is an architecture intended to observe the virtual dynamics of a possible repre-

sentation of reality but also allows the emergence of unpredictable phenomena.

In this section, we have shown that integrating case-based reasoning into

an MAS improves automatic knowledge acquisition. Beyond this coupling, data

analysis and the quality of data selection are key elements developed in the



Fig. 8: Focus on system status

following section. We did not find any architecture coupling MAS and CBR

in the context of risk predictability within an operating room. However, the

(multi-player) game “3D Virtual Operating Room” [?] is an interesting tool for

risk prevention in an operating room that we compared to our simulator. This

comparison is presented in the following section.

4.3 Comparison of our simulator with 3D Virtual Room

“3D Virtual Operation Room” is a role-playing game for medical and nursing

students. It consists for each player to take the professional role he intends to

play. Each of them then finds himself in a virtual operating room with a patient

ready to be operated on. This tool allows the player to be confronted with pro-

fessional situations resulting from real cases of adverse events. A balance sheet

established for each player allows to analyze their behaviors. Table 9 summa-

rizes the comparison according to the objectives to be achieved, the targeted

personnel, and the operational mode.

On reading Table 9, we can see differences for each of the elements compared.

In terms of objectives, the “3D Virtual Room” platform aims to train students

while our architecture is designed to simulate the world of the operating room

to produce undesirable events that are a priori unpredictable. Next, in the case

of the game “3D Virtual Room”, it is the students who are targeted while in the

case of our simulator, it is the health professionals already trained or in training.



Comparative elements MAS/CBR Architecture 3D Virtual Operting Room

Objectives Generate alerts and identify Training students in risk prevention

new serious adverse events in an operating room
Targeted Personnel Operating Room Practitioners Medical and nursing students

Operational mode A simulator produces a large number Role-playing game where players

of scenarios for the emergence react to serious adverse events
and analysis of serious adverse events
that cannot be predicted a priori

Fig. 9: MAS/CBR Comparison with “3D Virtual Room”

Finally, the operational mode differs between the two tools, knowing that “3D

Virtual Room” involves players in the form of a role-playing game, whereas our

simulator makes virtual agents evolve in the operating room environment. In

conclusion, our architecture, which makes it possible to alert and prevent new

risks, is more of an operational tool, whereas the “3D Virtual Room” platform

is more of an educational tool.

The next section is devoted to comparing different similarity calculations. We

believe that the quality of the data selection is a key element of our MAS/CBR-

coupled predictive system.

5 Evaluation of different similarity calculations

The notion of event has been linked to cases. The CBR cycle followed allows our

system to identify alert states based on the combination of attributes values.

As explained in Section 3, alerts are weighted according to their proximity to

the preceding failure, which threshold is determined by the expert (e.g. 40 for

temperature). We thus obtain a base containing 3 types of cases:

– normal: without alert;

– failure: incident;

– alert: alert0 weight 0 (case n − 1 ) > alert1 weight 1 (case n − 2 ) >,...,>

alertk weight k (case n− k + 1). failure = case n.



An alert is therefore linked to the exceeding of the threshold of a case attribute

observed in our case base. Knowing that a case always belongs to a set (cf 3.3), we

have a global approach of the alert. It is no longer only attached to a value, but

corresponds to an aggregation of values. This overcomes the difficulty of manual

and empirical determination of these alerts. In parallel to this case classification,

we propose to open the “retrieve” step to main similarity calculations we have

evaluated:

– Euclidian distances calculations (see Formula 1);

– Confidence interval calculations;

– Complexity Invariance Distance [?] (CID) calculations;

– Cosine similarity calculations.

In order to simplify the reading of this article the expression similarity calcula-

tion includes the calculations we have just listed. These calculations are described

in the following formula with the exemption of the Euclidean distances already

described in Section 3.3 (see Formula 1).

Confidence interval calculations. Using the state application previously defined

in the “elaborate” step of CBR (see 3.3), the formula of the calculation of the

confidence value p, for instance for three attributes X = (x1, x2, ..., xn), Y =

(y1, y2, ..., yn), Z = (z1, z2, ..., zn) , is:

p =


α

β
, β 6= 0 (cf figure 10a )

0 , β = 0

(2)

with α and β defined by:



α = card{xi ≥ yi ∀ i ∈ J1, nK, state(X) = state(Y )}

β = card{Z / ∃ zk ∈ [xi, yi]}
(3)

Figure 10 illustrates the measure of confidence interval membership. The x-

axis shows the attributes and the y-axis shows their values from the source and

target cases. Thus, xi, yi, zi, which belong to X, Y , Z respectively, correspond

to the y-axis coordinates in Figure 10a. When p > ind (ind: confidence index

initialized or calculated from the evaluation results of the model) any vector

belonging to this interval inherits the value of state system (normal, failure)

common to both of the vectors surrounding it. Figure 10a which represents non-

secant curves illustrates this type of interval. Otherwise (secant curve as shown

in Figure 10b), the system will enrich its learning with distance calculations

(euclidian distances dED, cosinus similarity, CID).
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(a) Prediction zone: no secant curves
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(b) Prediction zone: secant curves

Fig. 10: Prediction zone

CID distance. The first measure of distance (CID distance) is written as follows:

CID(s, c) = dED(s, c).
max{CE(s) , CE(c)}
max{CE(s) , CE(c)}



where CE(x) =
√∑N−1

i=1 (xi − xi−1)
2

and N is the number of attributes of each

case, s and c designating respectively the source case and the target case. This

calculation offers a more robust notion than Euclidean distance, because it in-

cludes a corrective factor that refines the similarity measurement.

Cosine distance. The second measure of distances (cosine distance) is obtained

by:

SimCos(s, c) =
s.c

| c | . | s |

In this calculation, s corresponds to the source case and c to the target case.

The development of a decision tree allows to prioritize these four calculations

(Euclidian distance C0, confidence interval C1, cosine distance C2, CID C3) in

a readable way, unlike neural networks where the predictor is a black box. The

classification measurements were constructed according to the C4.5 classification

algorithm [?] based on Algorithm 1.

Knowing that several modalities are possible (calculates: C0, C1, C2, C3)

the prioritization rule must be consistent and explicit. In our study, it is related

to the strongest representation of modality. The example presented in Table 1

shows the results obtained when applying the 4 calculations which return the

state of the source case the most similar to the target case:

∀i ∈ J0, 2 K,
2∑

i=0

C3i >

2∑
i=0

C0i >

2∑
i=0

C2i >

2∑
i=0

C1i

C1 = {(normal, normal), (alertj , normal), (alertj , alertj)} with j ∈ N

C0 = C2 = C3 = {normal, alertj}



Input : R: no targeted attribute set, C: targeted attribute, S: learning
data

Output : decision tree
1 Function ID3(RCS)
2 if S isEmpty then
3 return simple node value failure ;
4 end
5 if S contains identical values for the target then
6 return simple node of this value
7 end
8 if R isEmpty then
9 return a simple node with as value the most frequent of the

values of the categorical attribute that are found in records of S
10 end
11 D ← the attribute that has the largest gain (D, S) among all the

attributes of R
12 {dj with j == 1, 2, ...,m} ← the attribute values of D
13 {sj with j == 1, 2, ...,m} ← the subsets of S respectively

constituting of records of values dj for the attribute D
14 return a tree whose root is D and the arcs are labeled by d1, d2, ...,

dm and going to subtrees ID3 (R- D, C,s1), ID3 (R- D, C , s2), ...,
ID3 (R- D, C, sm)

15 end
Algorithme 1 : Decision tree ID3

We applied this hierarchical ranking to five attributes (hypothermia, hypoxia,

capnia, infection, human tiredness) and obtained the following result:

C3 > C0 > C2 > C1

This example shows that we have extended the similarity calculation based

Case Cycle state C0 C1 C2 C3
122 150 normal normal (normal,normal) normal normal
123 155 normal normal (normal,alert2) normal normal
124 160 alert2 alert2 (normal,alert1) normal alert2
125 165 alert1 alert0 (alert0,alert1) alert2 alert1

Table 1: Learning test for the best similarity calculation



only on Euclidean distance. Thus, we have added to the system the ability to dis-

criminate between calculation choices such as CID, cosine distance or confidence

interval calculation. This learning optimizes the choice of calculations.

6 Results

We have chosen GAMA [?] as the development framework. GAMA allows to

build agent models in an integrated development environment (IDE) includ-

ing the GAML language (GAMA Modeling Language). The determination of

thresholds, which results from a retroactive analysis of an incident (failure),

can generate an alert when a complex and dangerous situation is reached (prox-

imity detection with a set of thresholds) before reaching each single threshold.

Figure 11 illustrates this type of case. Indeed, we can see from the “Infection”

and “Personal Tiredness” graphs that their individual failure threshold is not

exceeded while a collective alert is triggered (determined based on the similarity

calculations that we evaluated and explained in the Section 5).

Fig. 11: Fatigue and infection aggregation

In addition to this operational aspect, we compare both of the threshold types

(predefined single thresholds, calculated thresholds). In each case, the validity

of the status (alerti” i ∈ N, normal) is dynamically affected and verified. In the

example of Table 2 we observe that among the 3 cases (case 2049, case 2050, case



2051) prior to case 2052, the CID calculation chosen by our decision support tool

(Algorithm 1) is always verified. An approach based on predefined thresholds is

only verified once in the same case.

case status CID Predefined thresholds

2049 normal normal normal

2050 alert1 alert1 normal

2051 alert0 alert0 normal

2052 failure

Table 2: Algorithm comparison

Alert detection is determined according to the threshold levels (individual

and collective) set during the simulator initialization phase. The curve “Prede-

fined thresholds” in Figure 12 shows that there is no linear relationship between

the number of validated cases and time. In addition, the relatively small num-

ber of cases validated even after 500 cycles is explained by the difficulty of

pre-defining aggregated thresholds in a context where the influences are both

multiple and time-dependent.

The determination of the alert depends on distance calculations chosen by

screening according to the the evaluation of several similarity calculations de-

scribed in Section 5. The curve “Calculated” in Figure 12 shows results which

are quite close to the reference values.
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Fig. 12: Prediction zone: secant curves



We applied this same comparison protocol to 1000 simulations and obtained

a coefficient of variation equal to 7.1% for the predefined thresholds and equal

to 5.3% for the calculated thresholds.

As these results show, the measurement of the coefficient of variation of the

standard deviations of each type of threshold (single and predefined versus ag-

gregated and not predefined) for the entire test set (1000 simulations) is low

(<15%: the values are homogeneous). This confirms the effectiveness of our re-

sults and therefore our position in relation to the MAS/CBR coupling, which

allows us to effectively determine the threshold combinations.

7 Discussion

This study shows the effectiveness of the MAS/CBR coupling which allows ana-

lytical management of thresholds and avoids contexts where each global thresh-

old is predetermined. For example, the number of possible thresholds for 7 vari-

ables would be 127 (27 − {∅} combinations). In addition, a module for pri-

oritizing similarity calculations (decision tree) has been integrated in order to

optimize the selection of source cases. We evaluated four distance calculations

(Euclidian distances, confidence interval calculations, cosine distance and CID)

knowing that the decision support tool (decision tree) allows us to extend this

number to n (n ∈ N) calculations. This architecture, which allows cases to be

generated and then analyzed, is efficient in determining alerts before an incident

(failure) occurs.

Similarly, this system, which is able to listen to the generated data by a

MAS, can be coupled with monitoring systems which evaluate in real time the

state of the various entities of the simulator (patient constants, human fatigue,

equipment efficiency, etc.). It can therefore be enriched by real situations rather

than data from arbitrarily chosen functions (e.g. human fatigue). This new source



of values for each attribute will make the case base more reliable. Consequently,

the validation by experts of the thresholds determined by the system (aggregated

thresholds) increases its efficiency.

One of this MAS/CBR system limitations concerns the anticipation of these

alerts and therefore the possibility of making assumptions about the evolution of

the system at a given time. Indeed, beyond the automatic determination of alert

thresholds, we consider in our perspectives their anticipation by extrapolating

the state of the system at time t.

8 Conclusion

This paper presents the MAS/CBR system we have designed and implemented

in order to predict the risks in surgery blocks.

The results show that our model can manage data in an environment where

the data are as disparate as infectious agents or human fatigue. We have also

described our positioning in determining thresholds that are not predictable a

priori and therefore difficult to configure since based on combinations of factors.

We consider that, in its current form, our simulator is an effective alert generator.

Nevertheless, in a medium term, we plan to integrate our system in a dynamic

mode (connection to sensors, monitoring, etc.). We hope that the surgery room

environment will benefit from a system where entities are not only reactive but

also interactive. Finally, we believe that beyond alert detection (which we have

optimized), we could plan a set of possible trajectories from the first cycles based

on the state of the system. This is a retroactive study of the drift zones.
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