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Abstract Lightweight cryptography (LWC) is an interesting research area in the field of information
security. Some limitations like: increased components usage, time consumption, power consumption and
memory requirement mandate the need for lightweight cryptography. One of the proposed algorithms
in this field is Speck which was designed by the National Security Agency (NSA) in June 2013. In this
paper, we propose a new ultra-lightweight cryptographic algorithm based on Speck known as Speck-R.
Speck-R is a hybrid cipher, combining ARX architecture with a dynamic substitution layer. The novelty
in this paper resides in adding a key-dynamic substitution layer that changes according to a dynamic key.
With this modification, the number of rounds can be reduced from 26 (in Speck) to 7 (in Speck-R). Thus,
the main contribution of this paper consists in reducing the execution time of Speck by at least 18% on
limited devices to reach a reduction of 77% while keeping a high level of security. To backbone Speck-
R’s security, different security and statistical tests are exerted on Speck-R. In addition, a real hardware
implementation on three different famous IoT devices is also presented where Speck-R outperformed
Speck in terms of execution times. Finally, extensive tests show that Speck-R possesses the necessary
criteria to be considered as a good cipher scheme that is suitable for lightweight devices.

Keywords: Security; Encryption; Internet of Things; Cryptography; Randomness ; Confusion.

1 Introduction

The Internet of Things has been a buzzing word in all fields (medical, academic, industry etc..) and is
generally defined in different ways. Generally, it is an infrastructure of heterogeneous computing devices
that communicate in spite of all the existing differences. They can communicate among each other, with
people, and other services through the Internet without the intervention of humans [1,2]. Another def-
inition was given by the European Technology Platform on Smart Systems Integration (EPoSS) which
stated that the IoT is a world wide network of interconnected objects uniquely addressable, based on
standard communication protocols [3]. The word "things" stands for the devices that link the physical
and digital words while connected to the Internet [4]. These things usually include embedded devices that
are placed in different places for different reasons. They can be placed at hospitals, universities, industries
and even in our own homes. Some of the IoT devices are RFID tags, wireless sensors, actuators etc..
However, most of these aforementioned IoT devices suffer from many limitations. They are low-resource
devices with limited computing power, battery (lifetime), memory and computational speed. Thus, a
careful attention has to be paid to such devices especially for data processing. Having huge amount of
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data exchanged among all nodes of the wireless networks will lead to new risks and more challenges. A
limited amount of resources is one of them (i.e. energy), and many other combination of factors that
suffer from financial constraints at the end. However, the amount of resources that are dedicated to
security are very low, in fact, they are just a fraction of the total available resources. As a consequence of
the negligible cost for these devices, security flaws have started to emerge. Researchers started to think
differently, and enhancements were added to the network and the application layers [5] to limit the effects
of the threat. However, this would not eliminate the fact that the limited devices are still vulnerable to
more attacks comparing them to more sophisticated devices. One of the attacks is simply draining the
battery of these devices to put it in a Denial of Service state and eventually shut it down [6].
To ensure the safety, confidentiality and to stand against different kinds of attacks, the data exchanged
should be encrypted. However, the conventional ways of encryption in such stringent environments do
not work and will not be efficient. Therefore, lightweight cryptography was suggested to meet the require-
ments in such limited devices. Many research works have been targeting lightweight methods to encrypt
the data in an efficient manner. For example, the National Institute of Standards and Technology has
initiated a process to solicit, evaluate, and standardize lightweight cryptographic algorithms that are
suitable for use in constrained environments where the performance of the current NIST cryptographic
standards is not acceptable anymore [7]. However, lightweight cryptography must require less resources
and must remove any computation overhead that is caused by the encryption/decryption process. To
clarify and classify the lightweight cryptography, several works have been proposed. In [8], the authors
differentiated the research works into (1) lightweight cryptography, (2) ultra-lightweight cryptography
and (3) IoT cryptography. Another classification was presented in [2] and [9]. According to these works,
it can be said that a lightweight algorithm must have the following criteria:
– Small block size: 64-bit or less.
– Small key size: 80 bits or more.
– Simple round function: Avoid heavy computations and use simple operations.
– Simple key scheduling: The key scheduling must also be simple without complications in the design.

1.1 State-of-the-art

Encryption can be mainly divided into symmetric or asymmetric algorithms. In real implementations,
the symmetric-key scheme is preferred as it needs less computational complexity, memory consumption,
and resources when comparing it to the asymmetric one. Symmetric ciphers can be divided into two
classes: Stream ciphers and Block ciphers. AES is one of the most used algorithms in cryptogra-
phy [10], and most of the time, it is used with the Counter mode (CTR) variant [2]. In this case, the
ciphering process is independent from the plain-text, thus, the block cipher operates as a stream cipher.
However, block ciphers in general use multiple rounds to reach the desired security level. Round functions
themselves can be based on Feistel Networks (FN) or Substitution-Permutation Networks (SPN). The
aim of increasing the number of rounds is to preserve the confusion and diffusion properties.
Until today, many efforts have been exerted to transform AES into lightweight block cipher. It needs
computation power and is not practical for limited devices that suffer from many limitations. For exam-
ple, in [11], a proposal aims at providing a hardware ASCI implementation of AES-128 with 2400 Gate
Equivalents (GE). Efficient software AES implementations are also presented for 8-bit in [12], 16-bit
in [13] and 32-bit in [14]. Additionally, AES optimized instructions were added to the instruction set
of Intel’s [15,16]. In [17], the authors proposed an optimization method for AES on FPGA. However,
FPGA is considered more powerful than other limited devices. To our knowledge, there are no further
optimization techniques to AES, and there might be no more possible optimization. In addition, accord-
ing to NIST, the current optimization of AES is not sufficient for these kinds of limited devices [18]. A
new project to find the best lightweight candidate has been launched indicating the required properties
and parameters that should be respected (for example, having the GE less than 2000).

To wrap the limitations for AES in particular, it is necessary to take into account: (1) the complexity
of the implementation itself, (2) the number of rounds needed to ensure its security (3) the presented
implementation in [19] which shows that AES drains the battery on different limited platforms (ZigBee
and WirelessHART). Therefore, it can be concluded that AES is not really suitable for constrained de-
vices, such as IoT ones, as stated in [18,20,21].
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Therefore, efforts are being re-directed towards finding a better solution that can be used in such
constrained devices. Reducing the number of rounds, GEs, execution times, memory requirements have
been the most demanded criteria for any new proposal. For example, some of the proposed works are pre-
sented in Table 1: TEA [22], XTEA [23], HIGHT [24], FeW [25], Simon [20], Speck [20], PRESENT [26],
Rectangle [27], LEA [28], Prince [29], AES, and RC5 [30].

However, what all of these ciphers have in common is that they are all based on static substitution
and diffusion primitives. Which means that the substitution layer of the diffusion layer does not change
during the process of encryption. This will require a higher number of rounds to reach the desired level
of security. Increasing the number of rounds will probably end in increasing the execution times and the
memory consumption which is a limitation in such targeted hardware. Thus, there is a trade-off between
the number of rounds and the execution times which will be dependent on the number of rounds denoted
by r.

Therefore, using such algorithms with limited hardware abilities can prevent the device from guar-
anteeing its main functionality and might impact the whole system [18]. As a conclusion, proposing a
new lightweight cipher that can deal with such limitations is the sole aim of this work. Based on the
works previously done, Speck-R is proposed. It will ensure a low computational overhead on IoT nodes
while preserving a high level of security. According to different surveys and comparisons done between
different ciphers, Speck performs well on different limited hardware platforms [31]. It is one of the best
performing ciphers concerning the energy consumption and the throughput on both 8-bit and 16 bits. It
is also one of the best software efficient ciphers among more than 50 different tested algorithms. For this
reason, we considered enhancing the performance of the Speck, since it possesses all the necessary values
for a lightweight cipher. Thus, it can be said by convention that having a better cipher than Speck is
the same as having a better cipher than all the other proposed ciphers (already compared in [31]). In
addition to that, the urge for updating Speck rises from the fact that the reduced version of Speck [32]
has been attacked by either differential fault attacks or linear attacks [33,34,35].

Table 1: List of some lightweight cryptographic algorithms

Algorithm No. of rounds Key size Block size Structure

TEA [22] 64 128 64 FN
XTEA [23] 64 128 64 FN
HIGHT [24] 32 128 64 GFS
FeW [25] 32 80/128 64 FN-M
Simon [20] 32/36/42/44/52/54/68/69/72 64/72/96/128/144/192/256 32/48/64/92/128 FNl

Speck 22/23/26/27/28/29/32/33/34 64/72/96/128/144/192/256 32/48/64/92/128 FN
PRESENT [26] 31 80/128 64 SPN

RECTANGLE [27] 25 80/120 64 SPN
LEA [28] 24/28/32 128/192/256 128 FN
Prince [29] 11 128 64 SPN

AES 10/12/14 128/192/256 128 SPN
RC5 [30] 12 128 32/64/128 FN

1.2 Main Contribution

In this paper, we propose a new reduced ultra-lightweight cipher based on Speck and we name it Speck-
R. Speck is one of the famous ARX (Addition/Rotation/XOR) lightweight ciphers which was proposed
by the US National Security Agency (NSA) in 2013. Its aim is to offer security in constrained devices.
Besides, it is well-known for its fast execution time, its security and the simple operations it uses. Speck-
R is a hybrid cipher that has more or less the same properties as Speck, but with an added twist its
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"Dynamicity" that helps overcoming the differential and linear attacks that previously succeeded on
reduced versions of Speck. In Speck-R, a dynamic key-substitution layer was added into the structure of
the original Speck. Based on that, an enhancement/reduction of the Speck algorithm is proposed,
that results in a lower number of rounds (7) in Speck-R compared to Speck (26). The main contribu-
tion here is enhancing the execution time of Speck, in the new version Speck-R, which ranges between
18% and 77% depending on the hardware used while keeping a high security level. The new proposed
cipher ensures (a) the confidentiality of the transmitted/stored data content in a robust way to protect
it against attacks and (b) maintain a fast execution time in order to cope with the advanced demands
of new devices. Finally, extensive security tests have been exerted to validate that Speck-R possesses all
the necessary requirements that makes it a good lightweight cipher candidate.

1.3 Organization

This paper is divided as follows. The main features of the proposed image encryption algorithm are
described in Section 2. Then in Section 3, a deeper look into Speck and its variants is presented. After that,
Section 4 discusses the proposed cipher. Then, the added cryptographic layer is explained in Section 5 and
specific tests are exerted to prove the robustness of the added substitution layer. After that, randomness
tests done using Practrand are explained in Section 6. Security results that have been conducted to
evaluate the efficiency of this algorithm are also explained in Section 7. Then in Section 8, a performance
analysis of Speck-R is presented and a comparison with the original Speck is given. A discussion about
the efficiency of the proposed algorithm against the best known types of attacks is investigated in Section
9. Finally, Section 10 ends with a brief conclusion resuming the work.

2 Features of The Proposed Approach Speck-R

Before digging deep into the original versions of Speck, the goals of the new updated Speck are described.
This algorithm will be called Speck-R, the "R" standing for "Reduced". Speck-R’s two main contribu-
tions, compared to Speck, are a higher efficiency and an increased level of security. Below, the desired
system performance and security performance are described.

System Performance:

– Lightweight: The minimum required number of iterations, for recent lightweight cryptographic al-
gorithms, is 4 such as the Hummingbird2 cipher [36]. For Speck, the minimum number of rounds
is 22. In fact, Speck is based on ARX (Addition/Rotation/XOR) which is a class of cryptographic
algorithms that has three simple arithmetic operations: namely modular addition, bitwise rotation
and exclusive-OR. In both industry and academia, the ARX cipher has been gaining a lot of interest
and attention in the last few years. By using combined linear (XOR, bit shift, bit rotation) and
non-linear (modular addition) operations and iterating them for many rounds, ARX algorithms have
become more resistant against differential and linear cryptanalysis. In this proposal, we aim at adding
a dynamic substitution layer that increases the security of the cipher, yet keeps it ultra-weight. The
proposed cipher avoids using a static diffusion operation such as the MixColumn transformation of
AES [37] or the key-dependent integer/binary diffusion operations of [38,39], since such operations
consume a high percentage of the execution time [39,40]. Moreover, Speck-R is realized in CTR mode,
thus it can be processed in parallel, whether for encryption or decryption. CTR mode decreases the
latency and enables a fast execution time.

– Flexibility: As the original Speck, it operates at the block-level, which can have a flexible number of
bits exactly as the original cipher. This chosen block size can be set according to the user’s require-
ments and the network abilities. The proposed approach is set according to the devices’ characteristics,
while taking into account the block size used in lightweight ciphers.

– Simple hardware and software implementations: As stated earlier, ARX ciphers are easy to implement
and are highly recommended for small, limited devices, especially those dedicated to the IoT. This
makes the corresponding hardware and software implementations simple and efficient.
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– Low error propagation: In this proposal, each block is treated once at a time. The block is split into
two parts, semi-blocks, thus, any error occurring in a block, will only affect the block itself. It will not
affect the whole blocks in the image and the error will not propagate across the whole image/data.
Speck-R is designed to be in the CTR mode, thus avoiding any chaining process that itself propagates
any error across the system. Thus, low error propagation is guaranteed.

– Large key space: Since the original Speck has different versions using different key sizes, the key can
range between 64 and 256 bits. Therefore, adapting the same criteria of Speck, Speck-R is resilient
against brute-force attacks according to [41].

These enhancements added to the cipher reduce the delay of the encryption and decryption processes
and simplify their corresponding hardware implementations. Every primitive in this proposal has its own
impact on the security and efficiency of the proposed cipher scheme.

Security Performance:

– Key dependent approach: Speck-R is based on key-dependent substitution primitive that ensures the
simplicity of key scheduling in addition to the required cryptographic properties.

– Dynamic key approach: Speck has already proven to be a secure cipher that possesses a secure key.
A dynamic substitution layer is added to the cipher and it changes according to the number of
iterations the cipher undergoes. The substitution layer is set to be dynamic, which means that it is
built according to a previously chosen key. In contrast to the existing cipher solutions, the proposed
approach is based on a dynamic key, which is variable and changes in a pseudo-random manner for
each new session. The periodic interval of a session depends on the application or on user requirements.
For example, a new session can be established for each new input image. Therefore, the cryptanalysis
process against the proposed cipher is very challenging because of the unpredictability of the cipher
primitive as it changes according to the dynamic key. Changing the key each time results in a different
substitution layer that will change itself with the number of iterations. Adding a dynamic layer did
not only result in having a more secure cipher, but it also reduced the number of iterations from 26
to 7 which is the main goal behind this proposal.

– Speck original security: Until 2018, there were no published "attacks" on full-round Speck but only
on the reduced-round variety. These kinds of attacks aim at finding the maximum number of rounds
that will make Speck susceptible to theoretical attacks. According to Speck’s designers, the cipher
is designed to be resilient against standard chosen-plaintext and chosen-ciphertext attacks as well as
related-key attacks. Let us take the total number of rounds that have been attacked, as a percentage
of the total number of rounds. As for 2018, there are no published works that attack more than
70-75% of the number of rounds through Speck. More than 70 papers have been published, the best
are 19 of 27 rounds for Speck 64/128. (70.3%) [33]. According to Speck’s original designers, they
made a trade-off between the desired level of security and the efficiency of the cipher, thus, it can
be said that Speck-R has the same properties as Speck. Based on the analysis done, stepping to
appropriately balance efficiency and security has been reached. It can also be noted that the number
of rounds considered in the Speck were based upon making it robust against differential attacks. They
set the number of rounds to leave a security margin similar to AES-128’s at approximately 30% [42].

Accordingly, Speck-R is meant to be a good lightweight and a flexible cipher candidate based on
Speck. This is justified since the trade-off between system performance and the security level is reduced
in addition to its simple hardware and software implementations.

3 Deeper into Speck

Speck and Simon were proposed by NIST in 2013 after seeing that traditional cryptography was no
longer well-suited for the emerging reality. Speck and Simon are both block ciphers proposed to address
the challenges in the constrained devices. They were first proposed by a group of researchers in 2013 [43]
and many crypto-analysts have since then been trying to prove that these new algorithms tend to be
secure. Their results confirmed that Simon and Speck are both secure. The major issue is that most of
the proposed lightweight ciphers lack the main criterion which is flexibility. This is typically what Speck
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and Simon aimed at. In fact, heterogeneous networks connect nowadays millions of small devices, thus,
the main aim is to ensure that the cipher will work properly and efficiently anywhere and on any device.
After all, we do not know what sort of new devices will exist in 2030. However, regardless of what the
device is capable of doing, it will surely support simple operations based on AND, OR, and XOR. These
operations are performed efficiently on small devices like FPGAs, since they help any proposed cipher
to improve its performance. For example, PRESENT [26] which succeeded on ASIC did not perform
well on constrained devices. Additionally, most of the proposed ciphers had fixed block size and key
size. Additional flexibility is needed here, therefore Speck and Simon proposed using different sizes of
blocks and keys. In this work, Speck was chosen over Simon, since it is more efficient in terms of software
efficiency than the latter. Speck uses modular addition for its non-linearity, which is stronger in terms of
cryptography than the Simon’s AND operation and is better suited in software implementation. In Speck,
Feistel structure was generalized containing five different block sizes of 32, 48, 64, 96 and 128 which can
be further divided into ten variants along with size key used. However, the flexibility and simple design
ended up with algorithms that have exceptional performance on high-end platforms as well. Speck has
the highest throughput on 64-bit processors of any block cipher implemented in software.

Fig. 1: A representation for the general round of Speck cipher.

The round function consists of XOR, modulo addition and rotation operations. Below, a general round
function of Speck is demonstrated in Figure 1 where Li and Ri are the left and right half intermediate
values respectively of the input for the ith iteration. Ki is the n bit key used in the ith round, >>> α and
<<< β denote circular right and left shift by α or β bits,

⊕
is the XOR operation and � is the modulo

addition. The outputs for the ith round are Li+1 and Ri+1 and the round function can be described as
follows:

Li+1 = ((Li >>> α)�R))⊕ ki and Ri+1 = (Ri <<< β)⊕ Li+1.
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3.1 The different versions of Speck

In this subsection, the five different variants of the Speck family are represented. The rotation parameters
(α, β) for Speck are either (7,2) or (8,3). In fact, Speck is usually denoted by Speck2n/mn where 2n is
the block size and n ∈ 16, 24, 32, 48, 64 and mn resembles the size of the key used where m ∈ belongs
to 2, 3, 4 depending on the desired security. Concerning the key schedule for the Speck family, the key
used is 2, 3 or 4 words. The key schedule expands the initial m-word master key (lm−2,..., l0, k0) into ith
number of rounds (k0, k1,..., kith), then two sequences are generated of words ki and li according to the
following algorithm:

li+m−1 = ((ki � (li >>> α))⊕ i and ki+1 = (ki <<< β)⊕ li+m−1.

In Table 2, the different versions are represented. It can be clearly seen that the round function of
Speck can have different key sizes and blocks and the number of rounds depends on the key used. In this
work, the version of Speck64/96 that operates in CTR mode with 26 rounds was chosen. In Figure 2 a
detailed scheme of the round function with the key schedule is represented.

Block size (bits) Key size (bits) α β Number of Rounds
32 64 7 2 22
48 72 8 3 22
48 96 8 3 23
64 96 8 3 26
64 128 8 3 27
96 96 8 3 28
96 144 8 3 29
128 128 8 3 32
128 192 8 3 33
128 256 8 3 34

Table 2: Different parameters of the Speck family.

4 The Proposed Speck-R

In this section, the proposed cipher algorithm is presented. First, the concepts that are used in this
algorithm are explained, then, the updates added to the original cipher are presented. Lastly, some
details about the core of the ciphering layers used are added.

4.1 Key derivation Speck-R:

As can be seen, Speck lacks any substitution operation according to what its authors wanted, to keep
the algorithm as simple as possible. However, in our opinion, when iterating for 22 rounds or more (in
our case 26 rounds), this can be reduced to minimize the execution time. The aim is to optimize the
number of rounds used in the cipher as much as possible.

The proposition falls within the symmetric key schemes where both communicating parties (sender,
receiver) share the same key. The main advantage behind this is the low complexity compared to the
public key schemes. Parameters that are needed in Speck-R are: a Nonce N , a Dynamic key DK and
the Key K. All the notations used are shown in Table 3 and the initialization phase is demonstrated in
Figure 3. These steps are sufficient to preserve high sensitivity since a little change will lead to completely
different parameters and substitution tables.

– Initialization Function: It is a function used to generate the seed that will be used later on in the
pseudo-random generators. It can be any function the user defines, a hash function (like SHA-512),
or a key stream cipher. A hash function will be useful here, to avoid any collisions, but it will be
expensive in terms of time. In this work, a pseudo random generator that is simple but yet known to
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Fig. 2: The original Speck64/96 cipher.

be efficient is used, which is Splitmix64. It is a split-table pseudo-random number generator that is
based on object-oriented arithmetical and logical operators [44].

– Nonce: Denoted by N , which is needed in any counter mode cipher. A pseudo-random generator is
used to generate this Nonce from a seed. It is important to generate a new Nonce for each input
image. N can be sent to the receiver encrypted using the shared public key of the other entity if the
asymmetric approach is used. Another way for sharing N is to have a good synchronization between
the sender and the receiver where each entity derives separately with no need for transmission and
starting from the same seed. In Speck-R, Nonce has a length of 64 bits (8 bytes). The 64 bits are
split into parts with 32 bits, where the first 32 bits represent N[0] and the second 32 bits represent
N[1]. After the generation of the Nonce, N[1] will remain the same, whereas N[0] will be incremented
by 1 after every iteration (i.e. from one block to another).

– Key: Denoted as K, which will be used as the main key to extract the round function keys, just as
Speck. A pseudo-random generator is used to generate K. The same key schedule as in Speck is used,
that is, the key generated which is 96 bits will be expanded. In every round of Speck-R a unique key
will be used which is derived from K. However, in the original version of Speck, there were 26 round
different keys, while in the proposed version there are only 7 round keys, each of 32 bits, denoted by
Kr.

– Dynamic Key: Denoted as DK is also generated by using a pseudo-random generator. It has a length
of 256 bytes, which will be later on used to generate three different substitution boxes that are used
in the encryption process.
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Fig. 3: Keys and parameters required in the proposed Speck-R.

Fig. 4: A high level scheme for the Sboxes generation.

– Substitution Boxes: Denoted as Sbox1, Sbox2, Sbox3. The cryptographic strength of three Sboxes
will be explained more clearly in Section 5. However, to generate these three Sboxes RC4 will be used.
RC4 is not used here in the context of a stream cipher, that mixes the plain text with the output
key stream. It is iterated according to the DK previously produced to generate three robust Sboxes.
RC4 is used since it is well known for its simple hardware and software implementation. Key Setup
Algorithm (KSA) which is the initialization phase of RC4 is used specifically to generate the three
dynamic Sboxes. This is demonstrated in Figure 4, and the algorithm is shown in Algorithm1.
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Algorithm 1 KSA for RC4
procedure Rc4_KSA(K = {k1, k2, . . . , kL}, L)

for i← 0 to 255 do
S [i]← i

end for
j ← 0
for i← 0 to 255 do

j ← (j + S[i] + k[j mod L]) mod 256
swap(S[i], S[j])

end for
return S

end procedure

Table 3: Summary of the notations used.

Notation Definition

Seed Seed used as an input for an initialization function
SD Seed used as an input for the pseudo-random generators
N Nonce 64 bits
N [0] or NR First 32 bits of N
N [1] or NL Second 32 bits of N
K Key of 96 bits used in Key schedule of Speck-R
Kr The key used in every round
DK Dynamic key of 256 bytes used to build Sbox1, Sbox2, Sbox3
Sbox1 The first produced dynamic substitution table
Sbox2 The second produced dynamic substitution table
Sbox3 The third produced dynamic substitution table
Seqi The plain block at index i
XL The encrypted NL

YR The encrypted NR

n Number of bytes in the block
nb Number of blocks present in the plain message
M Number of columns of an image
N Number of rows of an image
P Number of plane (in gray-scale P=1)

4.2 Encryption Process

In general, Speck can operate in different encryption modes i.e. ECB, CTR, CBC, PCBC, CFB and OFB.
The proposed Speck-R operates in CTR mode, however, it can be executed in other modes. Speck-R
can be used for the encryption of any kind of data whether texts or images etc.. In the case of image
encryption, the image is of sizeM×N×P whereM is the columns number, N is the rows number and P
is the plane number (for grey-scale is equal to 1). Image is stored using Pixmap that stores and displays
a graphical image as a rectangular array of pixel color values [45]. The general encryption process in the
CTR mode is displayed in Figure 5. As can be seen, Speck-R takes one block Nonce of 64 bits, and this
Nonce is split into two blocks of 32 bits. The result of the encrypted 32 bits N[0] and N[1] after passing
through Speck-R will be xored with 32 bits block of the input. The encryption continues to cover all
the blocks in the original plain-text/image. Let n represent the number of bytes chosen in the block,
according to each version of Speck, then the total number of blocks nb will be equal to

nb = d (M ×N × P )
n

e (1)

where the index of blocks i, will lie between i ∈ {0, 1, ..., nb}.
In the rest of this work, the size of the chosen block is 64 bits, and the key is chosen to be 96 bits.

In Figure 6 a closer view on the round of Speck-R is represented. The proposed encryption algorithm
can be divided into three major operations which are, (1) Encrypting the Nonce, (2) Passing across
the substitution layer, and (3) Xoring the plain text with the resulted substituted value. The following
operations are explained below.
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1. Encrypting the Nonce: After the generation of N , it will be divided into two smaller blocks, N [0] and
N [1] that are denoted by NR and NL. Each block will undergo the same round function of Speck
that is represented by the following equations:

XL = ((NL >>> 8)�NR))⊕Kr (2)

YR = (NR <<< 3)⊕XL. (3)
As can be seen, this step is just an ordinary Speck round, where Kr, is the key to be used for every
round and Kr ∈ { K1, K2, K3, K4, K5, K6, K7 }. This key is generated by using the key expansion
method used in Speck.
After the encryption of NL and NR, Speck-R swaps the two outputs XL and YR. That is to say that
XL will take the place of YR and vice versa. This will increase the randomness in the encrypted nonce
and will lower the probability of any sequential relation with the next block, if it exists. N [1] will
remain constant throughout all the blocks, however, N [0] will be incremented by 1 from one block to
another. That is to change the Nonce value from one block to another, which adds more immunity
to the cipher. Many ciphers in CTR mode use a static Nonce whereas it is not the case in Speck-R.

2. Substitution Layer:
The main component of Speck-R is the added substitution dynamic layer. As explained earlier, the
DK will be used to generate three different substitution boxes (Sbox1, Sbox2, Sbox3), by using the
Key scheduling Algorithm (KSA) for RC4. In fact, a substitution table is a non-linear component
added to the cipher to reach the confusion property. Let us then use a dynamic substitution layer
that is built upon a dynamic key that changes for every input. At the beginning of the encryption,
two counters are initialized, it1 = 0 and it2 = 0. The counters will be incremented in every round
by one element. When it1 reaches 2000, then the substitution table Sbox1 will be replaced by the
resultant of the substitution operation of Sbox1 by Sbox2. In other words, by using Sbox2, Sbox1
will undergo a substitution operation. This can be represented as Sbox1 = Sbox2[Sbox1]. Then, it1
is set back to 0. If the number of blocks was very large, and it2 reaches a value of 2000 × 2000,
then, Sbox2, will be subjected to a substitution operation, using Sbox3. This will be represented as
Sbox2 = Sbox3[Sbox2]. The following steps are explained in Algorithm 2. The main aim of adding
this layer is to decrease the round number of Speck from 26 to 7 in Speck-R.

3. Xor the plain-text: As in any CTR cipher, the ciphered final result, is the plain text xored with the
encrypted Nonces/counters. After passing through the substitution layer, the plain text/image will
be divided into blocks each of 64 bits. Then, the first and second 32 bits, Seqi,L and Seqi,R, will be
xored with the substituted values of YR and XL, respectively. This is represented by the following
equation:

Outi,L = Seqi,L ⊕ Sbox1 [YR]; (4)

Outi,R = Seqi,R ⊕ Sbox1 [XL]; (5)
Finally, to get the whole result, all the blocks are concatenated, and aligned using the Pixmap.
The encryption is simple, efficient, dynamic and easy to be implemented. As a conclusion, this is a
simple cipher that reaches the confusion and diffusion properties with just 7 rounds via a dynamic
key dependent substitution layer. The efficiency and robustness are demonstrated in the following
sections. The whole encryption algorithm can be summarized in Algorithm 3.

Fig. 5: The general scheme of the proposed cipher Speck-R.
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Fig. 6: The proposed encryption round of the cipher Speck-R.

Algorithm 2 Dynamic Substitution Layer
procedure Substitution({Sbox1 , Sbox2 , Sbox3})

for i← 0 to nb do
Encrypt(Block [i])
it1 ← it1 + 1
it2 ← it2 + 1
if it1 =2000 then

Sbox1 ← Sbox2 [Sbox1]
it1 ← 0
if it2 =2000× 2000 then

Sbox2 ← Sbox3 [Sbox2]
it2 ← 0

end if
end if

end for
end procedure

4.3 Decryption Process

In a similar way to the encryption process, the decryption process needs 7 rounds. The ciphered scheme
will be xored with encrypted Nonces. There is no need to use an inverse substitution layer, since the
same substitution tables will be used. The decryption process is exactly the same as the encryption which
gives a great advantage to the scheme in terms of software/hardware implementation. No complicated re-
evaluation for the inverse substitution tables is needed here. The decryption process is shown in Figure 7.
In the next sections, the robustness of Speck-R will be proved and extensive tests are executed.
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Algorithm 3 Encryption Process of Speck-R
procedure Speck-R_Encryption(Seq)

N ← PRNG (seed)
K ← PRNG (seed)
Kr ← Key Expansion
DK ← PRNG (seed)
Seq [nb]← plaintext
Sbox1, Sbox2, Sbox3 ← RC4−KSA Initialization Algorithm
for i← 0 to nb do

XL = ((NL >>> 8) �NR))⊕Kr

YR = (NR <<< 3)⊕XL

Swap(XL, YR)
NL ← NL

NR ← NR ++
Outi,L ← Sbox1 [YR]⊕ Seq[i],L
Outi,R ← Sbox1 [XL]⊕ Seq[i],R
Update Sbox1 ← Substitution (Sbox1, Sbox2, Sbox3) Algorithm

end for
end procedure

Fig. 7: The proposed decryption round of the cipher Speck-R.

5 Cryptographic Strength of Cipher Layers

In this section, we evaluate the performance of the proposed dynamic layer. In general, the substitution
operation is used to ensure the confusion property and to introduce non-linearity in any cipher scheme.
The proposed cipher needs three substitution tables: Sbox1, Sbox2, and Sbox3. Mainly, Sbox1 is used
directly onto data encrypted/decrypted, while the other two Sboxes are used to manipulate the first
Sbox. Sbox2 is used to change Sbox1 after a predefined number of iterations and Sbox3 is used to alter
Sbox2 after another predefined number of iterations. As mentioned before, the initialization phase of
RC4-KSA, is used to generate the dynamic substitution layer [46]. It is described in Algorithm 1, where
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the dynamic input key DK with length L bytes is introduced to produce the three substitution tables. In
the work presented, the first 32 bytes are taken as input to produce Sbox1, the second 32 bytes produce
Sbox2 and the third 32 bytes of DK results in Sbox3. The size of the produced substitution tables is 256
elements, which is 32 bytes. However, to demonstrate a strong substitution layer, based on information
theory analysis [47,48,49], four main properties have to be insured which are (a) Linear Probability
approximation Boolean Function (LPF), (b) Differential Probability approximation Function (DPF), (c)
Strict Avalanche Criterion (SAC) and (d) output Bits Independence Criterion (BIC).

5.1 Linear Probability Approximation Boolean Function (LPF)

LPF was first introduced in [48], in the proposition of a linear cryptanalysis for DES block cipher. The
basic idea behind it, is to find a linear relation or approximation that relates some bits of the plain-text
with its corresponding ciphered ones. Finding a linear relation between the plaintext and the ciphertext
will make the key exposed and easier to be extracted.

This means that the substitution layer’s immunity is directly related to the uniformity of the LPF.
The lower the value of the LPF is, the higher the complexity of linear attacks and vice versa. As an
example, AES cipher has an LPF of 2−6 = 0.015625.
In the proposed cipher, LPF was tested to prove that a low probability exists [48]. To reach a better
resistance against linear attacks, LPF should be very low. In order to evaluate the required number of
necessary iterations to reach the lowest LPF value, LPF values versus the number of iterations were
tested. For each iteration, the computed number corresponds to the mean of 1000 tested sub-matrices.
Results showed that after 4 iteration, LPF stabilizes and reaches its minimum which is 2−4.8 = 0.035897.
Consequently, it can be said that the substitution layer becomes immune against linear attacks after 4
iterations.

5.2 Differential Probability Approximation Function (DPF)

Differential Probability is one of the important properties of any substitution layer to obtain the nonlinear
transformation, and hence to resist differential cryptanalysis attacks [47]. In fact, this criterion studies
the effect of a slight change in plaintext pairs on the corresponding ciphertext pairs. The cryptanalyst
in this attack tries to leverage the high probability of occurrence that appears in the difference of two
plaintexts. The substitution layer must have differential uniformity.

In this work, DPF was calculated versus different number of iterations. For each iteration, the com-
puted number corresponds to the mean of 1000 tested sub-matrices. Results showed that to provide a
better resistance against differential attacks, minimum 4 iterations are needed so that the average of
DPF converges to the minimum possible value 2−4.5 = 0.044194.

5.3 Strict Avalanche Criterion (SAC)

Webster and Tavares were the first to present SAC when they generalized the avalanche effect [49]. Re-
ferring to Shannon, an efficient cipher must ensure confusion and diffusion properties. That is to say, a
cipher system function is satisfying SAC whenever a single input bit is complemented, the output bit
should be changed at least with a probability of half.

In this work, we targeted 1000 sub-matrices to check if the substitution level reaches the SAC criterion
or not. The result obtained is that after 4 iterations, the produced Sboxes become closer to the ideal
value. Thus, it can be stated that after 4 iterations the cipher will be sensitive to any bit toggling and
therefore, the avalanche effect is ensured in the level of substitution.

5.4 Output Bit Independence Criterion (BIC)

This criterion measures the level of dependence of the output bits, after they undergo the substitution
process defined by [50,49]. According to this criterion, the inversion of an input bit p modifies output
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bits q and r without any dependence on each other. An S-box that makes the output bits independent
from each other strengthens the security.

To prove that Speck-R meets the BIC criterion, 1000 different sub-matrix were used and after four
iterations, the BIC becomes very close to the desired value 0.5. This literally means that the two output
bits j and k for each substituted bytes, will change independently if a single bit i is changed. Hence,
under this value, the proposed substitution layer becomes immune against chosen plaintext/ciphertext
attacks.

All the evaluated criteria show that four iterations are needed to reach the desired cryptographic
strength. All the previous calculated values are presented in Table 4, where a comparison with the AES
substitution table is made. The results showed that the proposed substitution layer possesses sufficient
cryptographic performances and the obtained results of LPF, DPF, SAC and BIC are very close to the
standardized solutions. The cryptographic security of the scheme relies on the property of using a new
dynamic efficient substitution layer.

Test Speck-R AES
LPF 2−4.8 2−6

DPF 2−4.5 2−6

SAC 0.5 0.4998
BIC 0.51 0.4998

Table 4: A comparison analysis of the substitution layer of Speck-R and AES.

5.5 Validation by the Sbox Evaluation Tool

Parameters tested AES [37] PRESENT [26] Klein [51] RC4-KSA
Input size M 8 4 8 8
Output size N 8 4 8 8
S-box Balanced Balanced Balanced balanced Balanced
Correlations immunity 0 3 0 0
Algebraic immunity 4 0 0 4
Transparency order 7.860 4 0.486 7.797
Robustness to differential cryptanalysis 0.984 0.984 0.004 0.953
SNR (DPA) (F) 9.600 0.250 0.133 8.73

Table 5: A comparison between SET execution samples: AES, PRESENT, KLEIN, RC4-KSA.

Robustness evaluation of Sbox is not limited to those four criteria. In fact, there exist different tools
to evaluate the robustness of the cryptographic substitution tables. The evaluation of substitution tables
has been quite a difficult issue for researchers since the public available tools are few. Some of these tools
are: (1) Boolfun package in R that works under Unix and the package named boolfun can be loaded
for functionality related to cryptography [52,53,54]. (2) Boolean functions in Sage [55] is another tool
to evaluate the S-box. It is a free and open source mathematics software, that is mainly used to evaluate
cryptographic properties of Boolean functions, mainly related to linear and differential properties. (3)
The third tool is actually a module for S-box in Sage, which only has the possibility of calculating
the difference distribution table and the linear approximation matrix, in terms of cryptographic prop-
erties. (4) VBF (Vector Boolean Functions) library, which is not available on-line to use freely,
is presented by Alverez-Cubero and Zufiria to analyze vectorial Boolean functions from cryptographic
perspective that possibly could calculate various properties of S-boxes [56]. Finally, (5) SET (Sbox Eval-
uation Tool), which is available freely online http://sidesproject.wordpress.com/, proposed in 2016 and
takes almost all the necessary criteria to evaluate the substitution table.
In this paper, the security of the Sbox used was tested by self-generated code to test the previously
explained four criteria (LPF, DPF, SAC and BIC). Then, the robustness of the non-linear layer was also
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validated by using the newest tool available, SET-tool. In Table 5, a few examples for Sboxes are given
of AES, PRESENT, KLEIN, and the proposed dynamic RC4-KSA. M and N represent the input and
output variables of Sboxes. A subset of tests of the available properties is shown, which were executed
on a machine with Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 16 GB RAM, and Linux Debian 9
(stretch).
The chosen subset of tests are listed below, where any curious reader can have the following references
to dig deeper into these tests:

Balancedness: [57,58] A Boolean function is balanced if its output is equally distributed, its weight
is equal to 2n−1. This can be translated as Wf (0) = 0 for the Walsh spectrum. In the executed test, the
four Sboxes are balanced and satisfy this property.

Correlation Immunity: [59,58] A function f is said to be correlation immune of order t, denoted
by CI(t), if the output of the function is statistically independent of the combination of any t of its
inputs. In the executed tests, the correlation immunity was 0 in AES, KLEIN and RC4-KSA, whereas
for PRESENT, it was 3 which is not the desired value.

Algebraic immunity: [58,60] High nonlinearity is a necessary condition to resist algebraic attack
and the value of algebraic immunity should not be low according to the study made in [61]. Boolean
functions used in crypto-systems must have high non-linearity to prevent linear attacks [62]. In the results
obtained, AES and RC4-KSA have the same algebraic immunity, 4, where as for KLEIN and PRESENT,
it is 0.

Transparency Order (TO) : [63] Transparency order (TO) is the only one currently available to
evaluate the inability of an S-Box to thwart the DPA attack. It has been proven that the smaller the
TO of an S-Box, the higher its resistance would be against the DPA attacks. The value obtained for
RC4-KSA (7.797) is close to the TO of AES (7.860), however, it seems that KLEIN and PRESENT have
a better TO, 0.486 and 4, respectively.

Robustness to differential cryptanalysis: [47,64] An n-iput s-output Sbox is namely as S(n× s)
where s > bn/2c. It is at least 1− 2−t, robust against differential cryptanalysis, where t is a parameter
satisfying the condition that [(s−bn/2c) ≥ t ≥ 3]. An Sbox attains its maximum robustness when 1−2−t

is minimum. In fact, to say that the following Sbox (n × s) is robust against differential analysis, the
result obtained must be close to the above boundaries of the following (1− 1/2n)(1− 2−s+1). For AES
8 × 8: the upper boundary is: (1 − 1/28)(1 − 2−8+1) = 0.988, which is very close to the value obtained
0.984, then, AES is robust against differential analysis. For PRESENT, it is the same. While for KLEIN,
the upper boundary is 0, the value obtained is close to 0. For RC4-KSA, the Sbox used is 8 × 8, thus,
the value obtained (0.953) is very close to the desired value (0.988).

DPA (Differential Power Analysis) Signal-to-noise ration SNR: In [65], authors showed
that the DPA signal-to-noise ratio increases when the resistance of the substitution box against linear
cryptanalysis increases. Mainly, secret key algorithms consist in the repetition of several rounds, and are
thus threatened by the differential power analysis (DPA). The obtained SNR are 9.6 and 8.73 which are
considered good to face the differential attacks, whereas the SNR for PRESENT and KLEIN are very
low, 0.25 and 0.133 respectively.

The obtained results were sufficient to indicate that the proposed construction technique of key-
dependent substitution produces a robust and efficient substitution table (Sbox). Furthermore, Sbox1,
Sbox2 and Sbox3 make the proposed cipher algorithm immune against differential and linear attacks,
since they are changed in a pseudo-random manner.

6 Randomness Test Validation

Randomness plays a major role in proving whether a cryptographic algorithm is secure or not. However,
some tools which are usually used to prove the randomness of pseudo-random generators are not used to
prove the randomness of the output by the cipher. Therefore, we propose using TestU01 and Practrand

16



to validate the level of randomness desired in the ciphered output of any proposed cipher. In fact, using
TestU01 and Practrand will save us time to run all the implemented tests within these tools. Based on
the proposal in [66], a randomness test can be applied to show whether the cipher possess the required
level of randomness or not by using both tools TestU01 [67] and Practrand [68]. To prove that Speck-R
acts well under these tools and possess a high level of randomness in the ciphered image, both Speck and
Speck-R are implemented and their codes are adapted to both of these tools. Using the "testingRNG" [69]
project released by Daniel Lemire which basically aims at testing popular random-number generators,
randomness tests were conducted. According to [66], the cipher should succeed for at least 4 Terabytes
of data, changing one bit in the key or the nonce from one block to another only. If the test succeeds,
then, we can say that this cipher possess the required level of randomness. P − value is one of the
tests that is done in both tools and which is basically one of the important statistical tests. First, the
seed used is generated using the "Splitmix" [44] pseudo-random generator that generates 64 bits. Then,
considering the worst case scenario which is setting the plaintext to zeroes, and the nonce is changed by
incrementing it by 1 after each iteration. This can be summarized as fixing the main key, round keys,
plaintext, except for the nonce which is incremented by 1 from one block to another. In this strategy, and
if the randomness tests are passed, it can be said that this cipher possesses a high level of randomness
even after changing only one bit in the nonce. The codes were implemented in C language, and for 16
TB of data for Practrand. The C codes for the Algorithms for both Speck and Speck-R are provided in
the Algorithms 4 and 5.

Algorithm 4 Algorithm to test the randomness in Speck using TestU01 and Practrand.
procedure Speck(newSeed)

seed← newSeed
plaintext← zeros
nonce← PseudoRandomGenerator(seed)
EncKey ← PseudoRandomGenerator(seed)
for i← 0 to size(plaintext) do

newnonce← nonce++
speck6496(ciphertext, plaintext, newnonce, EncKey)

end for
end procedure

Algorithm 5 Algorithm to test the randomness in Speck-R using TestU01 and Practrand.
procedure Speck(newSeed)

seed← newSeed
plaintext← zeros
DK ← PseudoRandomGenerator(seed)
Sbox1, Sbox2, Sbox3 ← RC4−KSA(DK,Sbox, 64)
nonce← PseudoRandomGenerator(seed)
EncKey ← PseudoRandomGenerator(seed)
for i← 0 to size(plaintext) do

newnonce← nonce++
speck −R6496(ciphertext, plaintext, newnonce, EncKey)

end for
end procedure

After running the C codes in Practrand and TestU01, both of the ciphers, Speck and Speck-R suc-
ceeded the tests and no failure has been noted. Therefore, these tools showed that the proposed cipher
possesses a high level of randomness, with a lower number of rounds and a high security level. In the
following section, excessive tests are exerted to prove that Speck-R is also useful to be used for ciphering
images which hold many intrinsic properties.

7 Security Analysis

In this section, a security analysis is performed to validate the robustness of the proposed dynamic
Speck-R. In fact, these tests show that Speck-R can also be used to encrypt images that possess different
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intrinsic features and their data are highly correlated. These tests show its immunity against different
confidentiality attacks such as statistical, differential, and brute force attacks [70]. To prove that Speck-R
is efficient to encrypt images, several tests were conducted.

7.1 Statistical Analysis

A cipher scheme requires specific random properties in order to efficiently resist statistical attacks [71].
To prove the effectiveness of the proposed model, several statistical security tests were carried out to
validate the uniformity and the independence properties. These tests are (1) Uniformity Analysis, (2)
Entropy test, and the (3) Correlation test.

7.1.1 Uniformity Analysis
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Fig. 8: (a) Original Lenna, (b) PDF of original Lenna with size 512×512×3, (c) Encrypted Lenna using
Speck-R, (d) PDF of encrypted Lenna.

To show the Uniformity of the ciphered image, two parameters were used: (a) Probability Density
Function (PDF) analysis, and the (b) Chi-square test. First, the encrypted image should possess certain
random properties to resist the common statistical attacks. The most commonly used property is the
PDF of the encrypted image that should be uniform. This requires each symbol to have a probability
close to 1

n , where n is the number of symbols. This value means that there is significantly no clue to
employ any statistical attack. The PDF of the original plain-image and its corresponding cipher-image
are both shown in Figure 8. It is clear that the PDF of the ciphered Speck-R image is close to 0.0039
( 1
256 ). Additionally, in order to compute the level of uniformity of each encrypted image, the Chi-square

test is applied according to equation 6:

χ2
test =

k∑
i=1

(oi − ei)2

ei
(6)

k represents the number of gray levels (here we work in grey scale images, then k=256), and oi and
ei are the observed and expected occurrence frequencies of each gray level. This test aims at comparing
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Fig. 9: The Chi-Square test for the encrypted Lenna image using 100 different dynamic keys.

the observed data with what we expect according to a specific hypothesis. Therefore, null hypothesis
are formulated which are then rejected or retained with the help of statistical tests. The "significant
level" is the probability value below which the null hypothesis is rejected, it can also be called the alpha
level. According to [72], it is conventional to consider the null hypothesis false if the probability value
is less than 0.05. In fact, having a significance level of 0.05 makes researchers 95% confident that the
results represent a non-chance finding [73]. In addition, with a significance level of 0.05 and 256 number
of intervals, the chi-square reaches a maximal value of 293 [74]. So, all values lower than this value are
acceptable and indicate the uniformity distribution of the histogram. This criterion is verified, by testing
the chi-square for the Lenna image under 100 different dynamic keys. It can be said that the redundancy
of the plain image is hidden and does not provide any clue to apply statistical attacks. In Figure 9, it can
be seen that mean of the chi-square value for 100 iterations mean chi-square value for 100 iterations of
encrypted Lena image is approximately equal to 258.9815 ≤ 293, which confirms the uniformity property
of the encrypted image under the proposed algorithm.

7.1.2 Entropy Test

The information entropy of an image, M , is a parameter that measures the level of uncertainty in a
random variable [75], and it is defined using the following equation:

H(m) = −
n∑

i=1

p(mi) log2
1

p(mi)
(7)

H(m) = −
h2∑
i=1

1

h2
log2

1

h2
= log2(h

2) (8)

where p(mi) represents the occurrence probability of the symbol mi and n is the total number of states
of the information source. Note that the entropy is expressed in bits. The proposed entropy test measures
the entropy at the sub-matrix level, where each sub-matrix has a size equal to h2 bytes. This permits to
quantify the uniformity at the sub-matrix level and not on the whole image. Each block can be considered
as a truly random source with uniform distribution if it has an entropy equal or close to log2(h

2). It
is shown that the encrypted blocks always have an entropy close to the desired value 6 (log2(8 × 8) =
log2(2

6) = 6) in case h = 8. According to this, the proposed cipher ensures the uniformity and eliminates
the redundancy between adjacent pixels.
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Fig. 10: The Entropy analysis for the sub-matrices of encrypted Lena image under the use of Speck-R
with a random dynamic key for h = 8.

The Entropy analysis of original and encrypted Lena images under the use of a random dynamic
key for h = 8 is shown in Fig. 10. The results indicate that the encrypted sub-matrices always have an
entropy close to the desired value 6. This result proves that the proposed cipher ensures uniformity and
eliminates any redundancy between adjacent sub-matrices.

7.1.3 Test correlation between original and cipher images

The high linear correlation among original image pixels must be removed to resist statistical attacks.
Removing spatial redundancy will certainly result in an efficient cipher scheme [76,77]. Having a corre-
lation coefficient close to zero means that the cipher scheme exhibits a high degree of randomness. The
correlation test is performed by taking randomly N = 4, 066 pairs of adjacent pixels from the known
Lenna plain image and their corresponding cipher image. The correlation is done in horizontal, vertical
and diagonal directions. The correlation coefficient rxy is calculated using the following equations:

rxy =
cov(x, y)√
D(x)×D(y)

(9)

where

Ex =
1

N
×

N∑
i=1

xi

Dx =
1

N
×

N∑
i=1

(xi − E(x))2

cov(x, y) =
1

N
×

N∑
i=1

(xi − E(x))(yi − E(y))

Obviously, the correlation between adjacent pixels in the plain image is high and its corresponding
correlation coefficient is close to 1. Whereas, the correlation in the ciphered imaged is close to 0. Fig. 11
shows the correlation between adjacent pixels in the different directions for a random secret key for the
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original and ciphered Lenna image, which clearly shows that the proposed scheme drastically reduces
the spatial redundancy.
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Fig. 11: Correlation in adjacent pixels in original Lenna: (a) horizontally, (c) vertically and (e) diagonally
and the correlation in adjacent pixels in ciphered Lenna: (b) horizontally, (d) vertically and (f) diagonally.

Moreover, for 16 iterations, the mean of the correlation in its three directions was calculated and it is
clearly shown that the scattering effect of Speck-R removes any spatial correlation in the ciphered image.
In Figure 12, it is clear that the mean is always close to zero which validates our proposal and renders
this cipher immune against statistical attacks.

7.2 Visual Degradation

The degradation of the original image must be verified, in a way that the visual content of the ciphered
image is not recognized. For this aspect, two parameters are well known to measure the visual quality
of encryption and these are the Peak Signal-to-Noise Ratio (PSNR) [78] and the Structural Similarity
Index (SSIM) [79].

PSNR is derived from the Mean Squared Error (MSE), which represents the cumulative squared
error between an original and encrypted image. A low PSNR value demonstrates that a high difference
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Fig. 12: The mean of the correlation of the encrypted Lenna after 16 iterations.

between the original and the cipher image exists.
SSIM index [80] is defined after the Human Visual System (HVS), which has evolved, so that we can
extract the structural information from the scene. Thus, the perceived quality of the image by the human
eye is highly dependent on the loss of structural information in the image. The SSIM value lies in the
interval [0, 1]. A value of 0 means that there is no correlation between the original and the cipher image,
while a value close to 1 means that both images are approximately the same.

In this context, PSNR and SSIM were measured between the original and the encrypted Lena image
for 1, 000 dynamic keys and presented in Figure 13. As shown, the mean PSNR value is 8.62 dB. This low
value confirms that the proposed encryption technique provides a high difference between the original
and the encrypted images. Also, the SSIM value did not exceed 0.011, which means that a high and
adequate visual distortion is achieved using the proposed encryption process.
As a conclusion, the proposed cipher scheme has a sufficient visual degradation where no useful infor-
mation or any clear pattern about the original image is revealed from the encrypted image.

7.2.1 Difference Between plain And Cipher Image

Another criterion to measure the visual degradation is to measure the difference between original and
encrypted images at the bit level. This value must reach a value very close to the ideal one (50%). In
Figure 14, the difference between the original and cipher Lenna images for 1000 random dynamic keys
is shown. The results show that the percentage difference is always close to 50%. Hence, the proposed
cipher satisfies the independence criteria.

8 Performance Analysis

In this section, the performance of the proposed Speck-R is studied. In fact, the whole objective of
this work is to increase the performance of the original Speck cipher, taking into account the high level
of security. Looking forward to be implemented in IoT devices and small sensors, Speck-R undergoes
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Fig. 13: PSNR and SSIM variation between the original and the encrypted Lena image versus 1, 000
dynamic keys.

100 200 300 400 500 600 700 800 900 1000

49.92

49.94

49.96

49.98

50

50.02

50.04

50.06

50.08

Fig. 14: Percentage difference between plain and ciphered Lena for 1000 random dynamic keys.

different tests to prove its high performance in limited constrained devices. Two different aspects are
studied, (1) error propagation and (2) the execution time required to fulfill the encryption process.

8.1 Propagation of errors

In this proposal, the choice was made to work with Speck-R in CTR mode (counter mode), since it
does not suffer from error propagation and the image will be resilient to different kinds of noises in the
transmitting channel. This criterion should be as low as possible, which means that the error should
not propagate to the whole transmitted image. Mainly, channel interferences and noises in transmission
are the main causes of any errors. A bit error means toggling the ’0’ bit into ’1’ and vice versa. In the
proposed cipher, if the block is affected it will only affect the bit in the exact position of the ciphered
image. It will not propagate to the neighboring blocks, and this is the cost of not insuring the avalanche
effect in the whole image. In Figure 16, we show the encrypted image of Lenna in Figure 15 after toggling
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the Least Significant Byte (LSB) in half of the blocks in the ciphered image, then we decrypted it in
Figure 17. The results show that the decrypted image is disturbed, but it is well recognizable. This shows
that the error is not propagated in the image, which validates that the error is limited to its own block.

Fig. 15: Lenna 512× 512× 3
Fig. 16: Encrypted Lenna after
toggling.

Fig. 17: Dycrypted toggled
Lenna.

8.2 Execution time

To validate that Speck-R is efficient for small limited devices, we tested the execution time on three
different IoT devices: ATmega323p, Teensy 3.6 and DOIT ESP32. Below, Table 6 lists some of the
specifications of these three IoT chips. Figures 18, 19 and 20 represent the three microchips used.

Device ATmega328P Teensy 3.6 DOIT ESP32
Flash Memory Size (KB) 32 256 4,096

Operating Voltage Range (V) 1.8 to 5.5 3.3V 3.3
Clock Speed (Mhz) 16 180 80

Processor 8 bit 32 bit 32 bit

Table 6: Specifications of ATmega323P,Teensy 3.6, and DOIT ESP32

Fig. 18: ATmega328P
Fig. 19: TEENSY 3.6

Fig. 20: DOIT ESP32

Both algorithm, Speck and Speck-R were implemented on these three IoT microchips. The results
are shown in Figures 21, 22 and 23. In fact, Figure 21 represents the time result in µsec of Speck and
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Speck-R when implemented on ATmega328P. It seems that Speck-R performs better on this limited 8-bit
micro controller chip. The encryption process is done for 16, 32, 64, 128, 256 and 512 bytes. For 16 bytes
of data, the execution time for Speck is 940 µsec, while for Speck-R it is 304 µsec, which means that it
took Speck-R less than half the time for Speck to encrypt 16 bytes. Then for 512 bytes, the execution
times for Speck and Speck-R are 29668 µsec and 9840 µsec, respectively. It is clear that the time required
for the encryption increases proportionally to the size of data. According to equation 10, the percent-
age of enhancement in the execution time is 66.8% when implementing both algorithms on ATmega328P.

Enhancementexecutiontime% = 100× (1− TimeSpeck−R

TimeSpeck
) (10)

Fig. 21: Execution time (µsec) versus the size of data (bytes) encrypted of Speck and Speck-R when
implemented on ATmega328p.

Then, both algorithms are implemented on the next IoT device, Teensy 3.6. An enhancement is
recorded in the case of Speck-R. When encrypting 16 bytes, both execution times were the same 2µsec,
but as the data get larger, reaching 65536 bytes, the execution time of Speck-R is 5728 µsec, while for
Speck 7015 µsec. The percentage of the enhancement is 18.34% when using Teensy 3.6.

Fig. 22: Execution time (µsec) versus the size of data (bytes) encrypted of Speck and Speck-R when
implemented on Teensy 3.6.
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The last microchip used is the DOIT ESP32. This chip which includes WiFi and Bluetooth, is widely
used by researchers. Starting by 16 bytes of data to encrypt, Speck took 9 µsec while Speck-R took 2
µsec. Then, reaching the maximum number of bytes, 4096 bytes, Speck-R with 328 µsec also possessed
a higher performance comparing it to Speck having 597 µsec. In fact, the enhancement starts from 77%
to reach a static 45% as the number of bytes increases.

Fig. 23: Execution time (µsec) versus the size of data (bytes) encrypted of Speck and Speck-R when
implemented on DOIT ESP32.

As a conclusion, not only does Speck-R possess the security level necessary, but it also has a better
execution time on these IoT chips which are limited in memory and in computational ability. Having
simple operations such as Xor, shift, rotation and a simple Sbox, nominates this cipher to be a good
proposal for today’s security challenges.

9 Discussion and Crypt-analysis

"Fully secure systems do not exist today and they will not exist in the future.” — AdiShamir.
After all, researchers aim at enhancing as much as they can the level of security and strengthening the
ciphers against well-known and new attacks. But, how can we know that the cipher is resilient against
different kinds of attacks? First, the two main properties in this cipher are preserved namely are con-
fusion and diffusion. Confusion is preserved by using the proposed dynamic Sboxes and the diffusion is
reached by using Xor, and shifting by α and β parameters.
Different statistical tests were performed and they proved that the proposed cipher satisfies the unifor-
mity and independence properties. Hence, a high randomness level is achieved in a dynamic manner,
which makes the proposed cipher immune against statistical attacks.
Using a dynamic key for every image proves that the cipher exhibits a high level of immunity against
key-related attacks. Especially as the cryptographic parameters change as the dynamic key changes.
Even if a cryptanalyst has a complete knowledge of the used primitives for a plain image, he/she will
fail to extract information about the future plain images from the future cipher images, since they lack
the dynamic key that is changed for every input image.
Also, the proposed cipher is immune to brute force attack since Speck itself can be used for different
keys, starting from 64 reaching 256 bits. We chose to work on 96 bits, but this proposal can work on any
other Speck version.
To sum up, dynamicity of the proposal and using different layers of Sbox adds more randomness and
makes the proposed cipher scheme immune against the current and future powerful attacks such as cho-
sen/known plain/cipher text attacks. In conclusion, the security level of the proposed cipher scheme is
confirmed.
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10 Conclusion

In this paper, a new Speck version was proposed which is called Speck-R. Speck-R comes to serve mostly
the limited devices which are characterized by limited abilities and restricted power. Speck has been
one of the most successful proposals in the domain of lightweight cryptography. In Speck-R, a dynamic
confusion layer of substitution based on a dynamic key is added. The Sboxes are built using a dynamic
key and then changed according to the number of iterations. Adding dynamicity to the proposal adds
immunity against different powerful attacks. In fact this is the difference between the static versions of
the previous proposals for a reduced Speck and the proposed Speck-R. We chose the CTR-mode, 64
bits block, and 96 bits key Speck version. The main contribution of this work is to reduce the number
of rounds of Speck from 26 to 7 while maintaining a high level of security. Decreasing the number of
rounds will result in a decrease in execution times. Extensive tests validated the proposal and supported
it. Moreover, it can be noted that at least 18.34% to 77% enhancement compared to Speck in terms of
execution times on three different limited chips is obtained. As for the future work, we look forward to
enhancing the Simon cipher in terms of execution times. Adding dynamicity to Simon must be tested
and proved to be efficient as well. In this track, we will propose two enhanced ciphers targeting software
and hardware, based on Simon and Speck together.
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