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The liaison between photonics and computing is a pillar of modern optics and subject of cutting-edge research for more
than half a century. As in many scientific disciplines, high-performance computational methods have become essential
for describing, designing, interpreting and ultimately predicting an optical system’s behaviour, and today the wide
availability of high-performance photonic components is testimony of how computing has boosted the field of photonics.
At the same time, photonic architectures offer fascinating possibilities for carrying out computations scaling beyond
today’s computing hardware. This establishes an almost uniquely reciprocal relationship between photonics and
computing.

The interest in photonics for computing and computing for photonics is currently exploding despite decades of research
activities. As the performance of standard digital computers is levelling out, new concepts such as neural networks (NNs) or
combinatorial optimization in the form of Ising and XYmachines lead the way to new frontiers in information processing and
are already being explored with profound commercial relevance. These evolving concepts differ significantly from conven-
tional computing paradigms, and the quest for new, better suited types of computing hardware is accelerating with photonics
offering outstanding opportunities. Simultaneously, high-performance off-the-shelf computers can now model and design
increasingly complex photonic devices and systems in great detail and accuracy. These developments have created unique
conditions: photonics is a promising technology for the next generation of computing hardware, and at the same time, the
recent progress of digital computers has enabled design, modelling and development of a new class of photonic devices and
systems with unprecedented complexities.

Many demonstrations of computing schemes based on photonic systems have by nowachieved seminal statuswithin
the optics community: this includes computational Fourier optics [1], the optical Hopfield network [2], NNs [3], digital
photonic computing architectures [4], aswell as the emulation andminimization of Ising andXYHamiltonians [5]. For the
most part, powerful computational concepts require nonlinearities, and the inverse design of such systems [6, 7] has
significantly advanced thanks to adjoint methods [8]. This special issue on “photonics for computing and computing for
photonics” provides a snapshot of the growing reciprocal relationship between photonics and computing through review
and research articles.

Abdollahramezani et al. [9] review the potential of meta-optics for analogue optical computing, while Stark et al. [10]
andFerreira deLimaet al. [11] provide overviews of thefield ofNNs by, respectively, focussing onpotential opportunities for
integrating photonic NNs and a primer on silicon neuromorphic processors. Mengu et al. [12] report misalignment resilient
diffractive optical networks, Dinc et al. [13] demonstrate computer generated optical volume elements fabricated by additive
manufacturing, while Ahmed et al. [14] discuss integrated photonic Fourier transformations for optical convolutions
towards efficient and high-speed NNs. Romeira et al. [15] investigate nano light-emitting diodes (nano-LEDs) for energy-
efficient and gigahertz-speed spike-based subwavelength neuromorphic photonic computing, Estébanez et al. [16] accel-
erate photonic computing by bandwidth enhancement of a time-delay reservoir, while Andreoli et al. [17] report their
findings for Boolean learning under noise perturbations in hardwareNNs. Gershenzon et al. [18] establish an exactmapping
between a laser network’s loss rate and the classical XY Hamiltonian by laser loss control, Miri et al. [19] extend the field by
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optical Potts machines using networks of three-photon down-conversion oscillators, while Kalinin et al. [20] introduce new
concepts for polaritonic XY-Ising Machines enabling long range coupling. Parto et al. [21] discuss nanolaser-based optical
spin emulators, while Pierangeli et al. [22] introduce noise-enhanced spatial-photonic Ising machines. Finally, Christensen
et al. [23] use predictive and generative machine learning models for photonic crystals.

In conclusion, this special issue provides introductions, reviews and current research articles covering the diverse
interactions between photonics and computing with a focus on photonic NNs, photonic XY and Ising machines and the
utilization of NNs for the design of photonic components. We hope that this collection of articles serves as inspiration for
students and young aswell as established researchers.Wewould like to thank theNanophotonics Publishing editor Dennis
Couwenberg and publishing assistant Tara Dorrian for their constant support and technical assistance.
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