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Abstract: A high efficiency hardware integration of neural
networks benefits from realizing nonlinearity, network
connectivity and learning fully in a physical substrate.
Multiple systems have recently implemented some or all of
these operations, yet the focus was placed on addressing
technological challenges. Fundamental questions
regarding learning in hardware neural networks remain
largely unexplored. Noise in particular is unavoidable in
such architectures, and here we experimentally and theo-
retically investigate its interaction with a learning algo-
rithm using an opto-electronic recurrent neural network.
We find that noise strongly modifies the system’s path
during convergence, and surprisingly fully decorrelates
the final readout weight matrices. This highlights the
importance of understanding architecture, noise and
learning algorithm as interacting players, and therefore
identifies the need for mathematical tools for noisy,
analogue system optimization.

Keywords: Boolean learning; neural networks; noise.

1 Introduction

In recent years, neural networks (NNs) take centre-stage in
advancing computation [1]. Optimized by training, such
learning machines provide key advantages for solving ab-
stract computational problems and already outperform
humans in numerous tasks previously deemed impossible
for classically (algorithmically) programmed computers
[1–3].

However, NNs are still mostly emulated by traditional
Turing/vonNeumanncomputers. Theabsence of computing
hardware supporting fully parallel NNs reduces energy ef-
ficiency and overall speed, and new paradigms addressing
these problems are desirable. The lack of a parallel network
substrate is a fundamental roadblock and is an active area of
research since decades, with current analogue hardware
either implementing the full network [4–6] or the neurons
[7–11]. An implementation of nonlinear neurons, fully-par-
allel information transduction and learning on a substrate
levelpromisesa revolution, andphotonicNNs [12, 13] remain
a highly promising avenue [4, 5].

Noise is an inseparable companion of analogue hard-
ware [14], yet the fundamental aspects of optimizing a
noisy NN [15–17] have so far hardly been explored – neither
in experiments [18, 19] nor in theory [14]. Here, we inves-
tigate the interactions between noise, learning rules and
the topology of an error landscape for the first time. We
experimentally implement a NN with 961 electro-optical
neurons via a spatial-light modulator (SLM) [17], use
diffraction [4, 5, 10, 20] to physically realize the network’s
internal connections and a digital micro-mirror device
(DMD) for programmable Boolean readout weights [17].
The particular NN task consists in one-step-ahead predic-
tion of the chaotic Mackey–Glass times series. Learning
exclusively modifies the readout connections [21] via an
evolutionary Boolean algorithm based on the error
gradient only, and optimization is using either fully
random (Markovian) or structured (greedy) exploration.

The statistics of the experimentally obtained learning
trajectories prove that noise and exploration strategy
strongly interact. Noise induces a kind of random forcing
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upon the descent algorithm, which strongly modifies the
system’s path during its convergence towards a local
minimum. We find that noise decorrelates the final weight
configurations: starting from identical weight configura-
tions and exploring the error landscape’s dimensions in
identical sequences always leads to clearly differentiated
local minima. Quite astonishingly, all minima are spaced
at an almost constant distance from each other, which for
the generally non-trivial error landscape topologies is un-
usual at the least. Noise therefore appears to arrange
minimizers in periodic positions, much like competitive
Brownian walkers with non-local interactions [22]. These
fundamental effects highlight the importance of consid-
ering hardware architecture, noise and learning algorithm
as intimately linked.

2 Neural network hardware

A recurrent NN inspired by reservoir computing, illus-
trated in Figure 1a, was our experimentally realized NN
test bench. Figure 1b schematically depicts the experi-
ment. An optical plane wave E0 illuminates the SLM’s
pixels, and the reflected field is filtered by a polarizing
beam splitter (PBS). The SLM combined with the PBS
creates a cos(·) non-linearity and the SLM’s pixels phys-
ically encode the NNs state. A quarter wave plate located
between the PBS and themirror directs the signal towards
a camera, and a double pass through the diffractive

optical element (DOE) establishes the recurrent connec-
tions W DOE [10, 17, 20]. Camera state x̂cami (n) at integer
time n

x̂cami (n) � α
∣∣∣∣∣∣∣∣∣∑
N

j
WDOE

i, j Ej(n)
∣∣∣∣∣∣∣∣
2

is combined with external input information u (n+1) and
sent to the SLM, creating the network’s state according to

x̂i(n + 1) � α|E0
i |2

cos2[β ⋅ xcami (n) + γW inj
i u(n + 1) + θi]. (1)

Here, N = 961 is the recurrent layer’s number of nodes,
β = 0.8 the feedback gain, γ = 0.4 the input injection gain
and α a normalization parameter. The optical electric
field and the nonlinearity’s bias offset for node i are E0

i

and θi, respectively. Input information u(n+1) is injected
into the system according to random connections W inj.

The polarization reflected by the PBS is imaged onto
the DMD, whosemirrors are programmed to fixed angles of
±12° from normal incidence. A photodiode only detects
optical signals reflected of mirrors with −12°, thus imple-

menting a Boolean readout weight matrix WDMD
i�1…N(k). The

RC’s output is

yout(k, n + 1)∝∣∣∣∣∣∣∣∣∑N
i W

DMD
i (k)(E0

i − Ei(n + 1))
∣∣∣∣∣∣∣∣
2

∝
∣∣∣∣∣∣∣∣∑N

i W
DMD
i (k)x̃i(n + 1)

∣∣∣∣∣∣∣∣
2

.

(2)

Here, k is the learning epoch and x̃i is the optical field of
node i arriving at the detector. As in reservoir computing,
we restrict learning to the optimization of the readout
weights. Finally, the absence of negative weights is
partially mitigated by distributing the offset phases θi|i�1⋯N

randomly between θ0+δθi and θ0+Δθ+δθi, where δθi is a
random Gaussian distribution [17]. Internal WDOE and
readout WDMD(k) connections are, however, realized in
passive and fully parallel photonic hardware.

As the network is constructed of physical neurons it
harbours noise, which can either be additive or multipli-
cative, as well as correlated or uncorrelated [14]. The main
sources of noise in our experiment are the SLM and the
camera, in relation to which the illumination laser and
output detector can be considered as noiseless, and so are
the internal coupling and readout matrices implemented
by the DOE and DMD, respectively. All relevant noise
sources are therefore reservoir-internal, and our following
discussion is by no means limited to systems where the
readout layer is implement physically. More details about
the theoretical treatment and propagation of noise in NNs

Figure 1: (a) Schematic illustration of a recurrent neural network.
(b) Photonic implementation of a spatio-temporal neural network
with 961 nodes. An optical plane wave illuminates the spatial light
modulator (SLM), the neural network states are encoded by the SLM
pixels. These are imaged on the camera, passing through a
polarizing beam splitter (PBS) and the diffractive optical element
(DOE) creating the coupling between network states. The
information detected by the camera is used to drive the SLM. The
network’s output weights are realized via a digital micro-mirrors
device (DMD) which creates Boolean readout weight matrix W DMD.
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as well as the individual noise sources and their respective
amplitudes and statistics can be found in [14].

3 Boolean evolutionary learning

Most current learning techniques require complete
knowledge of the internal network’s state [21], all connec-
tion weights and potentially all gradients [1]. In a hardware
network this demands probing (and most probably exter-
nally storing) the value of each node and connection,
which necessitates auxiliary circuitry of a complexity
potentially exceeding the actual neural network. This
jeopardizes precisely the benefits one targets when map-
ping a neural network onto hardware.We therefore employ
learning that only tracks the computation error’s evolution,
and hence imposes no constraint on the type of neurons,
and more broadly, on hidden layers as a whole. Such an
implementation’s complexity does not depend on, and
hence does not limit the NN’s size, which is crucial
considering the importance of scalability for computing.

Here, we optimize the DMD’s configuration simply by
measuring the impact of output mirrors’ modifications
onto computing error ϵ(k). The objective is to modify
W DMD(k) during k = 1, 2, … K learning epochs such that
output yout(n + 1) best approximates target τ(n + 1). Our
Boolean learning algorithm can be divided into three
conceptual sections:

3.1 Mutation

Wselect(k) � rand(N) ⋅Wbias(k), (3)

l(k) � max(Wselect(k)), (4)

WDMD
l(k) (k + 1) � ¬(WDMD

l(k) (k)), (5)

Wbias(k + 1) � 1/N +Wbias(k),Wbias
l(k) � 0. (6)

We create a vector with N random elements, inde-
pendently and identically distributed between 0 and 1
(rand (N )). Wbias offers the possibility to modifying the

otherwise stochastic Wselect(k) ϵℝN in Eq. (3), whose
largest entry’s position, l(k), determines the Boolean

readout weight WDMD
l(k) (k) to be mutated via a logical

inversion operator (¬(⋅)), see Eqs. (4) and (5).
A fully stochastic Markovian descent is obtained with

W bias = 1 and excluding Eq. (6). However, here we also
investigate exploration which makes mutating a particular
connection in near succession unlikely. There, W bias is
randomly initialized at k = 1, and at each epoch Eq. (6)

increases the bias of all connections by 1/N, while the
currently modified connection’s bias is set to zero. On
average, the probability of again probing a particular
weight reaches unity only after N learning epochs have
passed, and we therefore refer to this biased exploration as
greedy learning.

According to these instructions, our algorithm only
probes, hence potentially mutates one mirror at a time. We
have considered updating more than one mirror at each k,
yet simplified numerical simulations indicate that
convergence was significantly faster for updating only one
weight at a time.

3.2 Error and reward signals

ϵ(k) � 1
T
∑
n�1

T (τ(n + 1) − ỹout(k, n + 1))2, (7)

r(k) � { 1 if  Δϵ(k) < 0
0 if  Δϵ(k) ≥ 0

(8)

ϵmin(k) � (1 − r(k))ϵ(k − 1) + r(k)ϵ(k), (9)

kmin � (1 − r(k))kmin + r(k)k. (10)

Mean square error ϵ(k) is obtained from a sequence of
T data points according to Eq. (7), and comparison to the
previous error assigns a reward r(k) = 1 only if a modifica-
tion Δϵ(k) � ϵ(k) − ϵ(k − 1) was beneficial, see Eq. (8). In

that case, the minimum error ϵmin
k and the best learning

epoch kmin are updated following Eqs. (9) and (10). From
the system’s output yout(k, n + 1)we subtract the mean and
normalize by its standard deviation, creating output

ỹout(k, n + 1) which is used in Eq. (7).

3.3 Descent action

WDMD
l(k), k � r(k)WDMD

l(k) (k) + (1 − r(k))WDMD
l(k) (k − 1) . (11)

Based on reward r(k), the DMD’s current configuration
either accepts or rejects the previous modification, Eq. (11).
For a noise-less system, reward r(k) is therefore simply
based on the gradient found at position l(k).Wewill refer to
this hypothetical gradient of a noise-less system as the
systematic gradient.

4 Results

While such Boolean learning has been applied to a wide
range of computational problems, recurrent neural

L. Andreoli et al.: Boolean learning under noise-perturbations 4141



networks have a particular relevance for dynamical signal
processing, and we therefore explore one-step-ahead pre-
diction of the chaotic Mackey–Glass sequence with a Lya-
punov exponent of ∼3·10−3. This particular input is a
commonly employed benchmark test and our results are
therefore directly comparable to other works such as
Mackey-Glass prediction based on a semiconductor laser
delay reservoir with weights optimized and applied in an
offline procedure [23], as well as the seminal work on RC
[21] – where however the time step was twice as large.

The chaotic sequence acting as input information
u(n+1) has zero mean and is normalized to its standard
deviation, making error ϵ(k) the normalized mean square
error. Its first two hundred points are used as training
signal u(n+1), of which we however removed the first 30
time steps due to their transient nature. The result is a
training signal with T= 200− 30 = 170 data points forwhich
the target is τ(n + 1) � u(n + 2). Finally, the testing error is
determined with an independent set of 9000 data-points
unused in the training sequence. Based on mutation of the
readout weights, our concept explores an error landscape
with height ϵ(k) and position W DMD(k), and reward r(k)
drives the configuration from W DMD(1) to a local minima at
W DMD(kmin). There our system will remain trapped due to an
exploration step size of 1. We will refer to one complete
learning process for k:1→kmin as a minimizer.

Understanding why generalization is possible for a
training set size (T = 170) not orders of magnitude larger
than the number of to be optimized weights (N = 961) is an
interesting question. Recent results on deep neural net-
works, triggered by the insightful analysis from Ref. [24],
show that overparametrisation may not preclude general-
ization. See Ref. [25] for an account to this phenomenon
using random matrix theory, starting from simple linear
models and generalizing to kernel estimation. In our
setting we, however, might additionally postulate that we
work below the overparametrization barrier due to the
Boolean entries of W DMD(k), which brings substantial ri-
gidity into play. The price one pays is making the problem
harder from a computational optimization viewpoint [26].

Typically, the main metric for evaluating learning are

speed of convergence kmin and final inference error ϵmin.
However, in analogue neural hardware, reproducibility as
well as robustness to noise and parameter drifts also play
an essential role. We start by collecting statistical infor-
mation and measure 20 (14) curves for the greedy
(Markovian) exploration. All measurements started at an
identical position W DMD(1) and we therefore focus on the
algorithm’s exploration of the error-landscape. Results are
shown in Figure 2, with individual learning curves as grey

lines and their average as red crosses. Panel (a) shows data
for the greedy, panel (b) for Markovian exploration.

4.1 Average and local features of
convergence and minima

On average, the error landscape topology excellently fol-
lows an exponential decay for both exploration strategies,
see fit (blue line) to the average error (red crosses) in
Figure 2. Comparing individual trajectories, however, re-
veals strong inter-trial differences significantly exceeding
the noise level. This diversity corresponds to the error
landscape’s topological richness probed by the different
random descents, and trajectories range from rather
smooth descents to paths including steep drops. No cor-
relation between the starting ϵ(1) and best performance

ϵmin was found, and for the many different minimizers our
system never got stuck in a local minima with bad perfor-
mance. The different impact of a greedy or Markovian
exploration sequence can be seen when comparing
Figure 2a,b, respectively. Greedy exploration arrives at a

minimum error of ϵmin � (14.2 ± 2.9) ⋅ 10−3 after
kmin = 973.6 ± 63.7 learning epochs, while Markovian
exploration arrives at a slightly lower error

ϵmin � (13.4 ± 1.9) ⋅ 10−3 at the expense of a prolonged
learning effort kmin = 1856.5 ± 175.1. Crucially, the system’s
testing error (green line in Figure 2) excellently matches its
training error, hence ruling out over fitting. Noteworthy,
convergence for both cases scales linear with network size

Figure 2: Learning performance, with individual (averaged)
trajectories shown by grey data (red crosses). The green line is the
testing error, and the blue is an exponential fit. Panel (a) and (b)
were obtained with greedy andMarkovian exploration, respectively.
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N [27], yet greediness approximately halves kmin compared
to Markovian decent.

Nevertheless, despite the small deviations of ϵmin,wefind
that optimal DMD configurations of individual learning trials
have negligible correlation between each other. All mini-
mizers therefore arrive at different local minima, and we
encounter a surprising regularity in their geometric arrange-
ment inside the high dimensional error landscape. The sep-
aration between two Boolean readout configurations WDMD,a

(ka) and WDMD,b (kb) is determined by Hamming distance

H(ka, kb) � ∑
i

∣∣∣∣∣∣∣∣WDMD, a
i (ka) −WDMD,b

i (kb)
∣∣∣∣∣∣∣∣. For the 20 mini-

mizers we obtain 20 (20−1)/2 = 190 distances between their
respective minima, and their statistical distribution obtained
for greedy exploration is shown in Figure 3. The red line is a
Gaussian fit centred at H = 419 and with a half width at 1/e of
14. Data shows a very specific and unusual error landscape
topology: local minima appear not to be irregularly distrib-
uted, nor located in aparticular region. Instead, thenegligible
correlations between the minimas’ locations, and the sys-
tematic and narrow distribution of inter-minima distances
shown in Figure 3 reveals their almost uniform distribution
across the error landscape. Again, we find that Markovian
exploration results in an identical behaviour.

5 Noise sensitivity

To further investigate this phenomena, we reduce the
number of uncertainties during learning.Wemeasure three

minimizer paths starting at the same WDMD
1 . One of the

three minimizers acts as a master and defines mutation
sequence l(k), k ∈ [1… K], which the other twominimizers
follow as slaves. Crucially, all three compute their own
rewards r(k) and hence independently evaluate mutating
the same weight. Keeping the potentially systematic error

of a slow experimental parameter drift in mind, the three
systems are evaluated at each learning epoch k before
advancing to k + 1. A single minimizer takes ∼20 h, and
sequential evaluation would amplify susceptibility to slow
experimental parameter drifts which take place on the
scale of hours in our experiment.

Results are shown in Figure 4a. The blue, green and red
lines correspond to the different errors ϵ(k), plotted on a
semi-logarithmic scale for the master and two slaves,
respectively. The different data have a high degree of

Figure 3: Probability distribution of the Hamming distances at k=N,
obtained from the different greedy learning curves displayed in
Figure 2a. Red curve is a Gaussian fit which is centred at 419 and has
a standard deviation of 29.

Figure 4: (a) Three minimizers starting from identical position are
measured in parallel. The red and green (slaves) optimization paths
test the dimension l(k) determined by the blue minimizer (master),
reward of eachmutation are evaluated and applied individually. The
lines show the individual errors on a logarithmic scale, crosses
depict the Hamming distance’s evolution between the three
minimizers. (b) Hamming distance evolution with learning epoch k
normalized by the network’s Size N. Random mutation (blue line)
leads to a smooth saturation function behaviour, while biased
(greedy) mutation (red dashed line) results in linear intervals of
length N. (c) The same characteristics are found for two minimizers
starting already separated by a distance (1)≠0, and the behaviour is
therefore generally true for Boolean learning in noisy hardware.
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similarity with an average correlation of 99.4%, yet locally
one can identify some significant differences. We
computed the temporal evolution of the Hamming dis-
tances H(k) of the two slaves to their master (red and green
crosses) and between the two slaves (grey crosses); all
three grow linearly at essentially the same rate. Without
noise, each minimizer’s reward r(k) would be identical and
they would consequently all follow the same trajectories
W DMD(k) and arrive at the same minima W DMD(kmin).

To understand this behaviour, we therefore have to
consider the impact of noise and learning upon the sys-
tem’s error ϵ(k). The response of error ϵ(k) to a modifica-
tion in the system’s output Δyout(k) is

Δϵ(k) � ϵ̇(k) ⋅ Δyout(k), (12)

and Δyout(k) is the mean modification of output yout(k,n+1)
within a certain window, which during training contains T
sample points. Some general considerations regarding our
system are in order. The amplitudes of all network nodes x̃i
are Gaussian-distributed due to the SLM’s illumination by a
collimated Gaussian beam. Randomly changing one
readout weight therefore results in Δyout(k) according to a
normalized Gaussian distribution with a width of
Δyout, learn(k) � σl(k). We have carefully characterized the
noise of all elements in our opto-electronic NN, and their
accumulated impact upon yout(k) is excellently approxi-
mated by Gaussian white noise with a width of
Δyout,noise(k) � σn(k) [14]. Readout weights W DMD remain
approximately evenly distributed between zeros and ones
for all k. Learning does only modify readout connections
and therefore neither modifies x̃i nor the system’s noise,
making both independent of learning. We can therefore
assume that modifications to yout induced by learning and
noise remain constant for all k, hence σl(k) � σl and
σn(k) � σn.

The fact that according to Eq. (12) noise (σn) and
learning (σl) both modify the system’s error according to
the same relationship is of general importance. Conver-
gence during learning is characterized by ϵ(k) and ϵ̇(k),
and both depend on the particular computational tasks.
Yet, the ratio between the error’s susceptibility towards σn

and σl remains constant as both scale with the same con-
stant ϵ̇(k). This in turn imposes the same constant relative
susceptibility of reward r(k) towards σ n and σ l, meaning
that neither ϵ̇(k) nor ϵ(k) modify the interplay between
noise and learning upon the system’s weights. The
following discussion, results and observation are fully
general and independent of task and learning algorithm
– as long as these do not change amplitudes σ n and σ l.
Noise and weight modifications are therefore independent

players, whose action upon learning is somehow compet-
itive.

The objective ofmodifying a readout weight is to probe
the error landscape’s systematic gradient. However, this
action is contaminated by noise which can potentially
exceed the systematic gradient in the opposite direction.
The consequence is a change in the sign of Δϵ(k), in which
case reward r (k) is inverted. How likely such amodification
takes place depends on the relative amplitudes of σn and σl,
and C is the constant probability of such a modification
occurring. The analytical derivation of C is possible, yet
beyond the scope of this manuscript.

Probability C is the driving force behind the growing
separation between two identical minimizers, and two
situations are relevant. The first situation occurs when r(k)
for one minimizer is inverted by noise while the other
preserves its systematic value, which has a probability of
C(1−C)+(1−C)C = 2C(1−C). The other situation is if both
minimizers have an identical reward r(k), which can either
be the consequence of both retaining their systematic
result, or for both being inverted by noise, with a combined
probability of C(1−C)2+C2 = 1−2C(1−C). The first situation
leads to H(k + 1) ≠ H(k), the second to H(k + 1) = H(k), and
the Hamming distance’s rate equation is

ΔH(k + 1) � ρid(k)2C(1 − C)
−ρop(k)2C(1 − C). (13)

Here, ρid(k) and ρop(k) are the probability of finding both
minimizers’ weights l(k) to be identical or opposite,
respectively. Using ρid(k) � 1 − ρop(k), we arrive at

H(k + 1) � H(k) + C̃(1 − 2ρop(k)), (14)

ΔH(k + 1) � C̃(1 − 2ρop(k)), (15)

where C̃ � 2C(1 − C).
The Hamming distance’s evolution is therefore gov-

erned by noise quantified through constant C̃, and by how

the learning algorithm picks weight WDMD
l(k) (k) from a pop-

ulationwith a certain ρop(k), and neither error nor gradient
play a role.

For fully random mutation, the probability of a weight
to be selected is identical at every k, and hence the Ham-
ming distance at the previous epoch k determines the
probability of two weights being opposite in their config-
uration: ρop(k) � H(k)/N. For greedy learning, the bias
term in Eq. (3) causes mutations hardly ever to repeat the
same weight during an interval specified by
k � k ’ + aN , k ’ ∈[1,N], with non-negative integer a. The
probability of both minimizers to be configured opposite
for all k’ and a specific a is therefore their Hamming
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distance at the end of the previous interval:
ρop(k) � H(aN)/N, which results in constant slopes ΔH(a)
for each k’.

Figure 4b shows the evolution of Hamming distance
H(k/N), and since all minimizers start at the same position
WDMD(1) we always have H(1) = 0. Greedy mutations in the
experiment (analytics) are the red line (black dashed line),
while random mutations in the experiment (analytics) are
the blue line (black solid line). For both scenarios, greedy
and random descent, the experimental data is the average
obtained from 20minimizers.We then changed the starting
conditions and realized two parallel minimizers which
started with a separationH(1) > 0, see Figure 4c. In general,
the evolution according to Eq. (15) perfectly reproduces
results of the highly different experimental learning sce-
narios. In particularly for the averaged data, where we al-
ways arrive atH(k)|k→∞ � N/2, regardless of the algorithm.

Different minimizers therefore always arrive at final
readout configurationswhich share no common feature. This
suggests a closer look into the role and relevance of
individual weights: how many induce a systematic contri-
bution to convergence at all, and if their gradients depend on
the sequence of previous mutations. We optimized readout
weights via two minimizers starting at different random
positions WDMD,a(1) and WDMD,b(1), which arrived at

two distinct local minima Ma � WDMD, a(kmin, a) and

Mb � WDMD,b(k min,b). Once there, we determined the list of
m weights where Mb differs from Ma. The list is randomly
arranged in sequence l ∈ [l(1), l(2),…, l(m − 1), l(m)] ac-
cording to which we invert the corresponding weights

WDMD, a
l(k) (k) and WDMD,b

l(k) (k) for k ∈ [1,m]. Importantly, this

mutation is always kept and no optimization based on
reward r (k) is taking place. Starting fromMa (Mb), this results
in a random path Pa :Ma →Mb (Pb :Mb →Ma). As the
weights addressed in sequence l(k) are the ones in an
opposite configuration forMaandMb,PaandPb connect both
minima along inverted trajectories, see Figure 5a. We probe
error ϵ(k) along Pa and Pb and determine error gradients

ϵ̇a(k) � ϵa(k) − ϵa(kmin, a) and ϵ̇b(k) � ϵb(k) − ϵb(kmin,b).
Results are shown in Figure 5b in the (ϵ̇a, ϵ̇b)-plane, and for
this experiment we obtained m = 430 different dimensions
between Ma and Mb. Only ≈11% of the 430 gradients
consistently remained below our system’s noise floor ϵ̇σn,
indicated by the grey circle.

Weights insensitive (sensitive) to preceding optimiza-
tions correspond to linearly independent (linearly depen-
dent) NN dimensions. Linearly independent NN
dimensions must always induce the same gradient,
regardless of the preceding optimization path, and they
therefore have to be located on the red diagonal line in

Figure 5b. The Figure’s green area indicates the linearly
independent criteria when considering the impact of noise
σn, and we find ≈30% of 430 dimensions fall into this
category. However, this is only a necessary criterion; a
sufficient criteria requires allocating dimensions inside
this area for all potential configurations of the remaining
m−1 dimensions, which for the 2429 possibilities is prohibi-
tive to prove experimentally. The NN dimensions whose
weight configuration depends on the previously optimized
weights lie outside the grey and green areas. This is a
sufficient criteria for linear dependent NN dimension, and
we find ≈59% of 430 to be contained inside this set. There
appears to be no concentration of potentially linearly in-
dependent dimensions towards the red diagonal line, and
hence we conclude that these also mostly belong to the set
of linear dependent dimensions.

6 Discussion

Our experimental findings and analytical descriptions are
the first of their kind and stimulate a fundamental dis-
cussion. Equation (12) is of interesting consequence for
noisy hardware NNs comprising linear readout weights. It
links the susceptibility of Δϵ(k) to NN noise to the system’s
location inside the error landscape ϵ(k). Experimentallywe

obtained noise induced variations ϵ̇(150)σn � 4.4 ⋅ 10−3

and ϵ̇(961)σn � 0.6 ⋅ 10−3. Our learning curves excellently

agree with exponential convergence ϵ(k) � ϵ(0)e−αk, for
which ϵ̇(k)∝ ϵ(k). Error and gradient therefore evolve in a
linearly proportional manner, and ϵ(150)/ϵ(961) � 9.8 in
close agreement with the noise sensitivity’s evolution

Figure 5: (a) Two inverted paths are probed between two local
minima. (b) Error gradient for all readout weights encountered along
path one and two as x and y axis, respectively. The red diagonal
corresponds to linear independent weights, and the uncertainty
induced by noise is indicated by the green area. Within, weights are
potentially linear independent. Outside the green area weights are
linearly dependent, and for data inside the grey circle of diameter σ
no classification is possible.
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ϵ̇(150)σn/ϵ̇(961)σn ≈ 7.3 confirms this fundamental rela-
tionship.

We would like to also propose alternative noise-miti-
gation approaches which are a derivative of our findings.
Simply suppressing noise on a hardware level is potentially
expensive, and topological requirements can limit miti-
gation based on connectivity statistics [14]. One might
therefore curb the impact of noise by modified learning
strategies. Noise will first of all limit the absolute perfor-
mance, but also cause this performance to fluctuate, which
is an effect one could address for example by amending an
optimization’s cost function by the gradients encountered
in the proximity of a neighborhood. According to Eq. (12)
the local gradients ϵ̇, or ϵ̇|WDMD(k) probed during learning

also determine the system’s performance fluctuation.
Making them part of the optimization and not only the
absolute error would therefore stabilize the system’s per-
formance. The influence of the noise on the performance of
the algorithm can be mitigated using aggregated infor-
mation along the trajectory in the spirit of recent work
about variance reduction in stochastic gradient schemes
and its extensions to non-convex zeroth-order optimiza-
tion; see e.g. [28].

Equation (15) shows that for C > 0 the Hamming dis-
tance between readout weights of two systems will always
tend towards complete decorrelation as H(k)|k→∞ � N/2.
Even for 100% identical networks one will therefore never
obtain similar readout configurations [29]. This finding can
most likely be extended to the non-Boolean case and to the
weights between layers of analogue deep NNs. The field of
learning implemented in physical and hence noisy sub-
strates is only in its infancy [5, 16, 17], and confirmation of
our findings in other hardware systems would prove the
generality of our result. Finally, the human brain is a very
noisy network indeed [30], which suggests that our find-
ings may also have interesting implications for the field of
theoretical neuroscience.

We have shown that the large majority of our NN’s
dimensions are most likely linear dependent. What this
means in pratical terms is that each modification of a
weight has to be interpreted in the context of all previous
modifications. Each configuration WDMD(k) therefore en-
codes the history of modifications to the reward due to
noise during the previous learning epoch.

One direct consequence for applications is that one
cannot simply transfer or swap weight configurations be-
tween optimized analogue neural networks, even for
potentially available identical twin networks. The reason is
that optimized configurations are not only the consequence
of error landscape, system properties and noise, but also of

the precise history of noise during an exploration path. Even
almost perfectly reproducible hardware networks will
therefore always have to be individually trained for optimal
performance; simply uploading a configuration will poten-
tially not work. A ‘school’ in which each neural network
learns individually might therefore be required. Finally, our
findingsopenanew fieldwhere such twin-minimizers could
be considered for probing and interrogating unknown
hardware neural networks. The average divergences shown
in Figure 4b agree exceptionally well with our model, and
based on such data one can therefore make accurate in-
ferences about the noise properties of a hardware NN and
about its error landscape exploration strategy.

7 Conclusions

In our work we have investigated the intricate interactions
between different learning concepts and the noise inher-
ently present in analogue neural networks. We experi-
mentally showed that trajectories of individual minimizers
(i.e. learning trajectories) strongly diverge, and were able
to analytically link this divergence to a constant ration
between output error and noise susceptibility. Our
analytical description only assumes a linear multiplication
between a NN’s state and its readout weights, and hence
should be generally applicable to this wide class of
analogue hardware NNs.
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