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Abstract

Cork is a natural amorphous material with near-zero Poisson’s ratio that is ubiquitously used for sealing glass
bottles. It is an anisotropic, transversally isotropic, composite that can hardly be scaled down. Here, we
propose a new class of isotropic and reusable cork-like metamaterial that is designed from a hybrid truss-
lattice material to show an isotropic Poisson’s ratio close to zero. Optimization is conducted using a multi-
objective genetic algorithm, assisted by an elliptical basis function neural network, and coupled with finite
element simulations. The optimal micro-structured metamaterial, fabricated by two-photon lithography with
a lattice constant of 300 wm, has an almost isotropic Poisson’s ratio smaller than 0.08 in all directions. It can

recover 96.6% of its original shape after a compressional test exceeding 20% strain.
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1. Introduction

Poisson’s ratio v is defined as the negative ratio
of transverse to longitudinal strain [1]. For a stable,
isotropic and linear elastic material, Poisson’s ratio
is bound to remain between —1 [2, 3], corresponding
to ’dilational’ or auxetic materials, and 0.5, a limit
defining the “incompressible’ solid set by a positive
energy requirement [4, 5]. In nature, most conven-
tional isotropic materials have a positive Poisson’s
ratio. Rubber, as well as most liquids, exhibits a
Poisson’s ratio of nearly 0.5. Rigid metals and poly-
mers as a rule have a poisson’s ratio ranging between
0.2 and 0.45 [2, 6]. For other soft metals and poly-
mers, Poisson’s ratio is usually between 0.33 and
0.5. By contrast, only a few natural materials such
as bone have negative Poisson’s ratio [7].
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Recent advances in topological structural de-
sign have enabled the enlargement of the family
of isotropic auxetics [8]. Carta et al. utilized
threefold symmetry of the arrangement of voids to
design a two-dimensional porous isotropic auxetic
solid [9]. By embedding random re-entrant in-
clusions into a matrix, Hou et al. developed 2D
composite structures with isotropic negative Pois-
son’s ratio [10]. Combining the symmetry of a cu-
bic lattice and that of additional diagonal elements,
Cabras et al. presented a class of pin-jointed aux-
etic three-dimensional isotropic lattice material [11].
Furthermore, by adopting finite small connections,
Biickmann et al. designed, fabricated and character-
ized a three-dimensional auxetic isotropic metamate-
rial reaching an ultimate Poisson’s ratio of —0.8 [8].
Lately, Frenzel et al. used auxetics combined with
chirality to observe acoustical activity [12, 13].

Isotropic structural materials with positive Pois-
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son’s ratio are generally designed for bearing dif-
ferent types of mechanical loads [14-17] or absorb-
ing energy [18]. The most popular way to opti-
mise isotropy is to combine different structures in or-
der to increase the number of equivalent directions
and thus, via geometry increase, isotropy [15, 19—
22]. Gurtner et al. proposed the first optimal
and isotropic three-dimensional truss-lattice struc-
ture [15]. Tancogne et al. further formulated ana-
lytical conditions on the lattice topology to achieve
elastic isotropy [19] and studied the effect of bend-
ing ratio to axial stiffness of the micro-strut on struc-
tural isotropy [20]. Bonatti et al. recently reported a
family of elastically-isotropic shell-lattice materials
whose Young’s modulus is always higher than that
of optimal isotropic truss-lattices and approaches the
Hashin—Shtrikman bound at high relative densities
[18]. Berger et al. presented a class of cubic-
octet hybrid closed foams achieving the Hashin—
Shtrikman upper bounds on isotropic elastic stiffness
[16]. Tancogne et al. identified a class of low-density
plate-lattice metamaterial showing optimal isotropic
stiffness and nearly isotropic yield strength [17].
Cork, a conventional natural material, is emblem-
atic among near-zero Poisson’s ratio materials [23—
25]. It shows very little lateral expansion when com-
pressed and is widely used to seal bottles, especially
for wine. As a composite, it is almost transversally
isotropic and its Poisson’s ratio is indeed a sym-

metric tensor. Independent Poisson’s ratio constants
v1p = 0.097, vz = 0.064, and v,; = 0.26 have been
reported for cork [24]. Polymeric foams may have
been the earliest case for lightweight isotropic mate-
rial with a Poisson’s ratio smaller than 0.1 in mod-
ulus [6, 26]. Their fabrication technique, however,
differs significantly from current 3D printing tech-
nologies. With the new additive manufacturing tech-
niques it is extremely difficult to program and print
random structures such as foams and periodic mo-
tifs are hence preferred [27-36]. Recently, some ef-
forts were made to design isotropic zero Poisson’s
ratio materials. Based on truss or thin frame beam
theory, Sigmund presented a three dimensional opti-
mal structure with zero Poisson’s ratio [37]. Starting
from a different structure, Guth et al. proposed an-
other kind of 3D pin-jointed structure [38]. How-
ever, those well-designed isotropic structures have
not been validated experimentally thus far. More-
over, subject to limitations of numerical algorithms,
the effect of the nodal overlapping volume was not
considered, which we find seriously influences me-
chanical properties, including isotropy and Poisson’s
ratio.

In this paper, we aim at designing an isotropic
near-zero Poisson’s ratio material based on a peri-
odic microstructure with cubic symmetry, that can be
scaled easily and fabricated additively. We base our
design on the hybrid truss lattice structure of Fig. 1
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Figure 1: Principle of the truss lattice material with near-zero Poisson’s ratio. (a) Artistic illustration of a truss lattice bottle stopper
and (b) corresponding representive unit cell with geometrical parameters indicated.
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that was first presented by Sigmund [37]. The unit
cell follows simple cubic symmetry. Isotropy and
near-zero Poisson’s ratio are set as goals of a multi-
objective optimization procedure where the radii of
the struts are the optimized parameters. Optimization
results in an almost isotropic design with Poisson’s
ratio less than 0.08 in all directions. Samples are
printed using two-photon polymerization at a lattice
constant of 300 um in two different crystallographic
directions, [100] and [110]. Uniaxial compression
tests confirm the isotropic near-zero Poisson’s ratio
but also the recovery of the material after enduring
strains up to 20%. Such a mechanical behavior thus
makes it potentially attractive for product protection
and goods packaging. When suffering from impact
loading, limiting stress can pass through the protec-
tion toward the product. The layer-by-layer buck-
ling failure mode will further enhance this protection
ability. Moreover, the recovery ability can save space
for packaging which is important in aerospace appli-
cations.

2. Evaluation of isotropy and Poisson’s ratio

The constitutive law of linear elasticity of three-
dimensional composites relates the stress tensor o to
the strain tensor € via an effective order-4 symmetric
stiffness tensor C as

o=C:g¢, (1)

where C;jiy = Ciij = Cjiy. For lattice materials with
simple-cubic symmetry [8, 39], the effective stiffness
tensor has only three independent elements and can
be rewritten in Voigt notation [40],

[Cii Cp Cn 0 0 O]
Cqy Cnn O 0 0
Chn O 0 0
C = 2
Cw 0 of @
sym Cu O
Cu4]

Using the Christofell equation for elastic waves
[41, 42], the independent stiffness elements can be
expressed using the effective mass density and phase
velocities in selected directions of propagation. The
effective mass density p is defined as the product of

volume filling fraction f by the mass density py of
the constituent material [43]. Only three phase ve-
locities v are required to identify all three indepen-
dent stiffness constants. We consider the three bulk
waves in direction [110]. One is a pure-shear wave
S1 polarized along direction [001], the other two are
quasi-longitudinal L and quasi-shear S2 waves with
mixed polarization in the (x,y) plane. For propaga-
tion in direction [110], the Christofell equation leads
to [8, 44]

C44 = pVél, (3)
Ci2 = PV = PV3 — PVaa. 4)
Ci1 = pVi — pva, + pva,. (5)

For propagation along direction [100], Eq. (3) would
be unchanged whereas Eq. (5) would give Cy; = pvi.
Isotropy requires velocity to be independent of the
direction of propagation and hence implies

vs) = vsp along direction [110]. (6)

Reciprocally, if Eq. (6) holds then there are only two
independent stiffness constants instead of three and
the stiffness tensor is isotropic. As a whole, Eq. (6)
is a necessary and sufficient condition for isotropy.
Poisson’s ratio for compression along the principal
axes can be expressed as [45, 46]

yo_ G
Ci+Cp

Hence, we can estimate Poisson’s ratio in direction
[110] using the following formula

(7)

2 _ 2 2
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where velocities are measured along direction [110].
If isotropy is simultaneouly achieved, formula (8) is
valid for all directions of propagation.

In practice, velocities are obtained numerically us-
ing a finite element model of the unit cell in Fig. 1(b)
subjected to Bloch periodic boundary conditions. A
small wavenumber k = 71/(100L) is considered along
direction [110] and eigenfrequencies are obtained.
The three lowest eigenfrequencies, when divided by
k, give velocities vgy, vs> and vy ; they are readily clas-
sified as longitudinal or shear by comparing the po-
larization of the eigenfunctions.



We note another useful expression for the Pois-
son’s ratio for cubic symmetry that is valid for an
arbitrary compression direction [8, 47, 48].

Arpp + B(ryy — 2)

U0 = 18 C+ D2y + ra)] ©)
with
=g (10
V44 = St s (11)
A = 2[53 + 4 cos(20) + 7 cos(40)
+ 8 cos(4¢) sin*(0)], (12)
B =—11+4cos(20) + 7 cos(46)
+ 8 cos(4¢) sin*(0), (13)
C = 8cos*(0) + 6sin*(0)
+ 2 cos(4¢) sin*(0), (14)
D = 2[sin*(20) + sin*(0) + sin*(2¢)], (15)

where (6, ¢) are the azimuthal and polar angles in
spherical coordinates. The compliance tensor S is
the inverse of the stiffness tensor C.
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3. Optimization of the structure

3.1. Optimization strategy

The cubic-symmetry truss lattice structure of
Fig. 1 was selected for optimization. The corre-
sponding representative unit cell model contains 64
struts of four different types. The unit cell length
L being fixed to 300 wm, there are four geometri-
cal parameters, (ry, 5, 3, 14), available for optimiza-
tion. The ranges of the design parameters were fixed
as 14um < r; < 16pum, 4um < r, < 6um,
4um < r3 < 6um, and 2um < ry < 4um. Note
that we adopt a geometry type similar to Sigmund’s
[37], but with completely different geometrical pa-
rameters. The ranges of the parameters are selected
to satisfy the requirement of elastic buckling and the
limitations of the 3D printer (Direct Laser Writing by
Nanoscribe). Compared with the structure originally
proposed by Sigmund, we consider larger values for
r1 but smaller values for r,, r3, and r4.

Fig. 2 illustrates the detailed flowchart for opti-
mization. The optimization problem aims at simulta-
neously imposing the isotropy condition (6) and min-
imizing Poisson’s ratio (8). The objective functions
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Figure 2: Detailed flowchart for optimization assisted by an elliptical basis function neural network and coupled with finite element

simulations.
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Figure 3: Comparison of velocities predicted by EBFNN with
velocities obtained by FEM.

to be minimized are thus selected as

Iso(ry,ry,13,14) = |vs) — Vsal, (16)
2 2 2
VLT Vs1 T Vs
u(ry, 1y, 13, 14) = 22—2 . (17)
O —vsy)

Eigenfrequency study, performed by a commercial
finite element software package (COMSOL Multi-
physics), was adopted to calculate the required ve-
locities. To ensure convergence of simulations, the
truss lattice structures were modeled with several
hundred of thousands of linear tetrahedral finite ele-
ments (type C3D10M). For the thinnest strut, there
exist at least 10 elements around the circumferen-
tial direction. Bloch-periodic boundary conditions
were imposed onto the representive unit cell shown
in Fig.1. The constituent material chosen is as-
sumed isotropic and linearly elastic with Young’s
modulus Ey = 2 GPa, vy = 0.4, and mass density
Po = 1000 kg - m=.

The parameter space was sampled in order to re-
duce the computational burden during optimization.
Toward this end, a surrogate model was created from
a finite number of parameter space samples. One
hundred sample points were first generated accord-
ing to optimal Latin-hypercube design (OLD). This
method was used to distribute sample points so that
they are well spread over the design region without
replicated coordinate values, often symmetric, and

Table 1: Accuracy measures of the EBFNN surrogate models.

Velocity RMSE  R?

Vsi 0.01546 0.99534
Vs 0.0403  0.96955
v 0.00591 0.99934

nearly optimal [49]. The generated sample points
are listed in Table S1 of the Supplemental Material.
A surrogate model was then generated and optimiza-
tion was performed on the reduced parameter space,
as described next.

3.2. Surrogate models

The elliptical basis function neural network
(EBENN) technique has proven effective in approx-
imating a continuous function of n variables in very
complex cases [50-52]. A detailed introduction to
EBF is given in Ref. [53]. From the parameter space
samples, a EBFNN was constructed to generate ap-
proximate surrogate models of the three velocities
Vs1, Vs and v;.

The coefficient of determination (R?) and the root
mean square error (RMSE) are used to evaluate the
reliability of the surrogate models. These estimators
are defined as

n

zg:(yi_'j%)z

i=1

R=1-——0o, (18)
Z(Yi - y)?
i=1
1 & R
RMSE = ;;(m — 2. (19)

In these expressions, n is the number of samples, y;
are the actual values of objective function at the sam-
ple points, y; are the values predicted by the objective
function, and y is the mean value of objective func-
tion over all sample points. All sample points defined
by OLD are used for cross-validation error analysis.
The closer R? is to 1 and RMSE is to 0, the more
accurate the model. For all surrogate models, R? is
larger than 0.969 and RMSE is smaller than 4%, as
listed in Table 1. These values indicate that the sur-
rogate models have high credibility. Fig. 3 compares



Table 2: Optimization results. Geometrical parameters, angular velocities in the [110) direction, and minimal and maximal values
of Poisson’s ratio v for all compression directions are given for the initial and selected optimized designs.

structure ry(um) o (um)  r3(um)  rg (Um) v (UM/S) Vo (UM/S)  vp (UMY/S)  Upin  Unax

Initial 14.444  4.040 5.111 3.677 207.483 283.900 383.421 0.112 0.239
Optimum 1 15.000 4.500 5.100 2.400 218.590 219.256 323.220 0.076 0.077
Optimum 2 15.960 4.707 4.303 2.485 211.481 211.703 314.556 0.086 0.087
Optimum 3 15.535 4.121 4.909 2.222 198.819 201.040 293.675 0.067 0.073
Optimum 4 15.000 4.300 4.850 2.350 211.037 213.036 313.001 0.075 0.080

the velocities predicted by the surrogate models with
the actual velocities, for all sample points. It can also
be observed that the prediction error remains small
in all cases. Of course, the usefulness of the surro-
gate models is to produce smooth estimates of the
velocities for any continuous value of the quadruplet

(r1,r2, 13, 14).

3.3. Optimization

Non-dominated sorting genetic algorithm (NSGA-
IT) [54] is used to find solutions to the optimization
problem. Fig. 2 displays the optimization flowchart
we follow. The current population of individuals
contains two parts, the elite and the offspring points.
In our case, its size is 12. As nondominated points,
elites, that constitute not more than 50% of the popu-
lation, are always inherited from the previous gener-
ation. In contrast, the offspring points are used for se-
lection, crossover and mutation to generate the next
generation. The probability of crossover and muta-
tion are 0.9 and 0.1, respectively. Once the popu-
lation is generated, a fitness evaluation is adopted
to decide where design points go. Population up-
date is continued until the maximum iteration num-
ber of 2000 is attained. To account for possible er-
rors caused by the surrogate models, not only the
optimum solution but also some local minima were
extracted. By comparing simulations and optimiza-
tion results, we picked up the four optimum designs
listed in Table 2. Velocities and Poisson’s ratios are
estimated by conducting finite element simulations
again after optimization.

Fig. 4 plots Poisson’s ratio in spherical coordi-
nates for both the initial and the optimum structure
1. The original structure proposed by Sigmund was
indeed rather anisotropic, with the Poisson’s ratio ob-
tained by FEM varying between 0.112 and 0.239 de-

pending on the direction. This may be attributed to
the fact that the complex geometry of the nodes was
not considered in the numerical algorithms used. In
this case, actually, traditional truss or beam theories
are not applicable. The mechanical properties ob-
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Figure 4: Three dimensional polar plot of the Poisson’s ratio
following by Eq. (9) for (a) the initial structure and (b) the
optimal isotropic structure 1.



Figure 5: Unit cell models of the isotropic truss lattice material for (a) the [100] direction and (b) the [110] direction. Electron
micrographs are shown for (c) the [100] fabricated sample with 4 X 4 x 4 unit cells and (d) the [110] fabricated sample with 4 x4 x 3

unit cells.

tained by such methods differ significantly from the
FEM result. Moreover, the minimum Poisson’s ratio
was larger than the upper bound for cork, 0.1. Af-
ter optimization, an almost isotropic value v = 0.08
is obtained for the four selected designs. The re-
sponse of the optimum structure is clearly much
more isotropic than cork.

4. Experiment

All experimental samples are made from the "IP-
Dip’ resin using the commercially available laser
lithography system Photonic Professional GT (Nano-
scribe GmbH, Germany). A drop of a negative-tone
photoresist is placed on top of a fused silica substrate
(25 x 25 x 0.7 mm?®) and polymerized using a fem-
tosecond pulsed laser with vacuum wavelength 4 =
780 nm. The laser beam is focused by using a dip-
in X63 objective lens with 1.4 numerical aperture. A
Galvanometric scan speed of 10 m/s was used for
the whole fabrication process. After polymerization

is achieved, the sample is developed in PGMEA (1-
methoxy-2-propanol actetate) for 20 minutes to re-
move the unexposed photoresist.

Two different crystallographic directions are con-
sidered, [100] and [110]. Fig. 5 shows the unit cell
models and the corresponding additively manufac-
tured samples. The [100] sample, which is com-
posed of 4x4x4 unit cells, is constructed by stack-
ing the corresponding unit cell in the three princi-
pal directions. Noting that the Poisson’s ratio of lat-
tice materials is mainly affected by the aspect ratio
of micro-struts rather than by other geometrical pa-
rameters [8], we adopted the aspect ratios obtained
from optimization and scaled the unit cell length pro-
portionaly. The detailed geometrical parameters are:
L=125um, r, = 63 um, rn, = 1.9 um, r; = 2.1
pwm, and r4 = 1 um.

The [110] sample is generated by cutting out a
[100] structure 2 x 2 X 1 along the vertical direction.
The horizontal basis vectors are then along directions
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global strain, for (a) the [100] sample and (b) the [110] sample. (c) Poisson’s ratio of the samples is plotted as a function of the
number of experimental loop loads. Values for the FEM simulation, cork, metals and polymers are shown for comparison.

[110] and [110]. It should be noted that the geomet-
rical features of the [110] unit cell can be described
by that of the corresponding [100] unit cell. Here,
geometical parameters are L = 150 pm, r; = 7.6
um, r, = 2.3 um, r3 = 2.5 um, and r, = 1.2 pum.
The [110] sample contains 4 X 3 X 4 unit cells. The
external dimensions are 848.4 um X 636.3 um X
450 pm.

As shown in Fig. S1 of the supporting material,
the samples are placed between a fixed glass sub-
strate and a flat loading device. The loading device

is driven by a stepping motor with an attached force
sensor. Position is directly read from the linear stage.
The position is only used to monitor the fatigue of
the material. The true strain is obtained via image
cross correlation. To test the recovery ability of the
samples, repeated compressive experiments are car-
ried out at a speed of 0.001 mm/s, during which the
applied displacement increases with loop number. A
digital camera equiped with a 20X objective lens fac-
ing the sample is used to monitor the deformation of
the lateral faces and hence to measure Poisson’s ra-



tio. Digital image correlation [55] is used to track
and analyze the displacement with sub-pixel resolu-
tion. To reduce the influence of boundaries, Pois-
son’s ratio is calculated from the average local strain
and the average transverse strain measured from 4
reference circles at the central row of unit cells as
depicted in Fig. 7. Fig. S2 details the measurement
of coordinates. Green stars and red stars stand re-
spectively for undeformed and deformation coordi-
nates. At the initial position, green stars overlap with
red stars. Table S2 lists representative data obtained
from DIC for samples 100 and 110, where x and y
stand for the original coordinates, and x" and y” are
coordinates after deformation. The actual Poisson’s
ratio is calculated from the following expression,

(X —x] + x5 —x5) — (X2 — X1 + X4 — X3)

D1 =ys+y2 =) =0 =Y+ =Y,
(20)

U=

Global strain is determined by measuring the dis-
tance between the reference lines.

Fig. 6(c) presents the measured Poisson’s ra-
tio of the [100] sample and the [110] sample. For
both samples, experimental data are in fair agree-
ment with simulation results of Table 2. The mea-
surements are generally found to be smaller than
the computed value. The contrast between sam-
ples shows that the proposed structure has a more
isotropic response than cork and a much lower Pois-
son’s ratio than other nature and man-made isotropic
materials such as metals and Polymers. Moreover,
the number of loop loading has a limited impact on
the value of the Poisson’s ratio. Even though some
micro-struts break at large applied strain, the mea-
sured initial Poisson’s ratio always fluctuates around
the designed value of 0.076. For both configurations,
the largest and the smallest Poisson’s ratio measured
in our cyclic experiments were about 0.08 and 0.025,
respectively.

Fig. 7 summarizes the results of eleven cyclic
compression experiments. A large vertical defor-
mation together with a very small horizontal defor-
mation are observed under compression, indicating
that the structural materials have a nearly zero global
Poisson’s ratio. For both samples, the maximum ap-
plied strain increases almost linearly with the loop

number. During the first and the last loop, the max-
imum strains of the [100] sample are 2% and 20%,
respectively. As long as the applied strain remains
smaller than 7%, the sample can recover completely
after unloading (see Supporting movies 1 and 2).
This property may be attributed to elastic buckling of
the slender members in the micro-lattice. When the
applied strain is increased above 7%, however, the
recovery ability of sample weakens slightly. With a
maximum applied strain of 20%, the sample can still
recover almost 96.6% of its original height (see Sup-
porting movie 4). In principle, the samples should
possess even better recovery ability and should with-
stand larger strains. However, the slender micro-
struts are very sensitive to flaws and imperfections.
Hence the deformation of the sample may not be ho-
mogeneous and failure may start within any layer in
the fashion of brittle break of the micro-struts (see
Supporting movie 3). The compressive experiment
validates our hypothesis. A similar trend regarding
the recovery ability is found for the [110] sample (see
Supporting movie 5). At large strain, brittle break of
micro-struts is also the dominating failure mode of
the tested sample (see Supporting movies 6 and 7).
The only difference is that the recovery ability is fur-
ther weakening. The [110] sample seems to be even
more sensitive to flaws than the [100] sample. With
a maximum applied strain of 16%, the [110] sample
can almost recover 98.5% of its original height.

Compared with the original structure proposed by
Sigmund, for which Poisson’s ratio varies between
0.118 and 0.213, our structure is more isotropic. It
would for instance make our structure more suit-
able as a bottle stopper. Moreover, our structure
recovers 96.6% of its original shape after the 11th
compressional test exceeding 20% strain. This me-
chanical behavior is attractive for product protection
and goods packaging. When suffering from impact
loading, limited stress can pass through the protec-
tion toward the product. The layer-by-layer buckling
failure mode further enhances this protecting abil-
ity. Moreover, the recovery ability can save space
for packaging which is important in aerospace ap-
plications. Compared with other traditional meth-
ods, our optimization method is simple and accurate.
The optimization utilizing finite element simulation
opens avenues for the design of 3D structures with
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very complex geometrical features, taking into ac-
count connected nodes, imperfections and so on.

5. Conclusion

A new class of isotropic reusable cork-like meta-
material with near-zero Poisson’s ratio was designed
using a multi-objective genetic algorithm assisted by
an elliptical basis function neural network combined
with finite element simulations. We derived an ob-
jective function for simultaneously imposing elastic
isotropy and controlling the value of Poisson’s ratio.
The optimal structures were fabricated and tested un-
der repeated compression experiments. Results show
that the samples fabricated using two-photon lithog-
raphy have an almost isotropic near-zero Poisson’s
ratio. Furthermore, they can almost recover 96.6%
of their original shape after the eleventh compres-
sional test exceeding 20% strain. The number of loop
loadings has a limited impact on the value of Pois-
son’s ratio. Even though some micro-struts break at
large applied strain, the Poisson’s ratio still fluctuates
around the designed value.
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