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This paper deals with the structure-preserving discretization and control of a 2D vibro-acoustic tube using
the port-Hamiltonian framework. A discretization scheme is proposed and a set of precise basis functions
are given in order to obtain a structure-preserving finite dimensional port- Hamiltonian approximation of
the 2D vibro-acoustic system. Using the closed-loop structural invariants of the approximated system
an energy-Casimir controller is derived. The performance of the proposed discretization scheme and the
controller is shown by means of numerical simulations.
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1. Introduction

Based on the energy and a structured representation of the power flows and dissipation in the system, the
port-Hamiltonian framework is particularly suited to describe the complex behavior of multi-physical
systems [Duindam et al., 2009]. The port-Hamiltonian approach has been generalized to infinite-
dimensional systems described by partial differential equations (PDEs) in [van der Schaft and Maschke,
2002, Le Gorrec et al., 2005]. From an application point of view, reduction of vibrations has drawn at-
tention in both academic and industrial areas. Modeling and control of the vibro-acoustic systems have
been investigated for different applications [Gardonio, 2002, Durand et al., 2008] in the last few years.
The key point in these systems is the wave propagation process which can be modeled in a straight-
forward manner with the port-Hamiltonian framework. In [Trenchant et al., 2015], a port-Hamiltonian
formulation of the 2D wave propagation has been proposed for a vibro-acoustic system on a rectangular
spatial domain.

With the aim of simulating the system in a physically consistent way and furthermore the control de-
sign and implementation purpose, the numerical discretization scheme should preserve the Hamiltonian
structure and the passivity of the original infinite dimensional system on the derived finite dimensional
approximation. Research on structure-preserving discretization of port-Hamiltonian systems has drawn
the attention of researchers in the last years and several methods, such as the ones based on mixed finite
elements [Golo et al., 2004, Baaiu et al., 2009], pseudo-spectral [Moulla et al., 2011, Trang Vu et al.,
2017], and finite volume have been proposed in [Kotyczka, 2016]. Recently an approach based on dis-
crete exterior geometry has been proposed in [Seslija et al., 2012]. The general idea of these methods
is to discretize the energy and co-energy variables using distinct low-order basis functions such that the
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equations are exactly satisfied in these finite dimensional spaces.
In the 2D case, the authors in [Trenchant et al., 2017a, Trenchant et al., 2018a,b] have proposed to

adopt the finite difference method to discretize the 2D port-Hamiltonian system on staggered grids. The
finite volume method is employed to discretize 2D linear and non linear port-Hamiltonian systems in
[Serhani et al., 2018]. The generalization of the discrete exterior geometry approach to the 2D case has
been done in [Kotyczka and Maschke, 2017] on n-complexes. The mixed Galerkin discretization applied
on the weak formulation of 1D and 2D port-Hamiltonian systems has been proposed in[Kotyczka et al.,
2018]. The partitioned finite element method has been introduced in [Cardoso-Ribeiro et al., 2018] and
also applied on the 2D plate models in [Brugnoli et al., 2019a,b].

A preliminary study of the structure-preserving discretization of a 2D vibro-acoustic system using
a mixed finite element method has been proposed in [Wu et al., 2015]. In the present paper, we pro-
pose an discretized finite dimensional model with a precise choice of basis functions that satisfy the
compatibility conditions associated with the discretization. Furthermore, an explicit finite dimensional
input-output system is derived when considering the physical input and boundary conditions of 2D actu-
ated vibro-acoustic system. In order to reduce/attenuate the wave propagation, an energy based control
method based on closed-loop structural invariants similar to the on proposed in [Trenchant et al., 2017b]
is investigated. By using this method, we can shape the energy function in the closed loop system to the
desired one with a specific conservative boundary interconnection.

This paper is structured as follows. The infinite dimensional port-Hamiltonian system is recalled
in Section 2 and then applied on the 2-D vibro-acoustic system which is obtained from the 3-D model
with a geometry reduction [Trang Vu et al., 2019]. Section 3 presents the passivity and structure-
preserving discretization of the 2-D vibro-acoustic system with a specific choice of the basis functions
and furthermore, the control oriented explicit finite dimensional port-Hamiltonian system is derived. In
Section 4, an energy based control is designed using the discretized model using the energy-Casimir
method. The numerical simulation results are shown in Section 5 to illustrate the effectiveness of the
proposed discretization scheme and passive controller. At last, we conclude this paper by Section 6 and
then give some interest perspectives.

2. Port-Hamiltonian formulation of a 2-D vibro-acoustic tube

2.1 Infinite dimensional port-Hamiltonian system

The infinite dimensional port-Hamiltonian representation for the system of two conservation laws with
canonical interdomain coupling, written in terms of exterior differential calculus on a n-dimensional
spatial domain Z can be decomposed in structure, dynamics and constitutive equation [van der Schaft
and Maschke, 2002].

[
f p

f q

]
=

[
0 (−1)r d
d 0

][
ep

eq

]
Structure (1)[

f p

f q

]
=

[
− ∂α p

∂ t
− ∂αq

∂ t

]
Dynamics (2)[

ep

eq

]
=

[
δα pH
δαqH

]
Constitutive Equations. (3)

The state space X is defined as X := Ω np (Z )×Ω nq (Z ) with np +nq = n+1, r = npnq +1 and Ω np

is the space of np forms. An element of the space X is denoted by x =
[
α p αq]T with state variables
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α p ∈ Ω np (Z ) and αq ∈ Ω nq (Z ). The flow variables f p = −∂tα
p ∈ Ω np (Z )1 and f q = −∂tα

q ∈
Ω nq (Z ) define the vector of flows f =

[
f p f q]T ∈F := Ω np (Z )×Ω nq (Z ). The effort variable

ep = δα pH ∈Ω n−np (Z ) and eq = δαqH ∈Ω n−nq (Z ) define the vector of efforts e=
[
ep eq]T ∈ E :=

Ω n−np (Z )×Ω n−nq (Z ). Flows and efforts represent dual, power-conjugated variables. The exterior
derivative d : Ω n−1 (Z ) 7→ Ω n (Z ) represents the different differential operators from vector calculus.
δα pH and δαqH are the variational derivatives of the energy or Hamiltonian functional H =

∫
Z H with

the Hamiltonian density H : Ω np (Z )×Ω nq (Z )×Z 7→ Ω n (Z ). The boundary variables of the PH
formulation (1) are defined by[

f B

eB

]
=

[
1 0
0 −(−1)n−nq

][
ep |∂Z

eq |∂Z

]
Boundary Variable (4)

with ∂Z the n− 1 dimensional boundary of the spatial domain Z . The space of all admissible flows
and efforts satisfying (1), (4) represents a Stokes-Dirac structure [van der Schaft and Maschke, 2002],
with respect to the natural pairing∫

Z
eq∧ f q +

∫
Z

ep∧ f p +
∫

∂Z
eB∧ f B. (5)

2.2 The 2D vibro-acoustic tube description and its port-Hamiltonian formulation

We consider a cylindrical tube as in [David et al., 2010], in which an acoustic wave evolves without en-
ergy loss as shown in Fig. 1. The source of the acoustic wave is the pressure produced by a loudspeaker
on the left side of the tube. An anechoic chamber avoids reflections of the wave at the other side of the
tube. The control surface is composed of a set of microphone-loudspeakers that are used to attenuate the
wave propagation. The control or attenuation of the acoustic wave is carried out through the motion of
the membrane of the loudspeakers which act on the velocity of the wave at the boundary of the acoustic
domain. The measurement is the pressure at the right side of the tube.

Source

Control surface

0 1 2 M-2 M-1

FIG. 1. Cylindrical vibro-acoustic tube and its control component

We first consider an axial symmetry for this system as in Fig. 2 [Trang Vu et al., 2019, Wu et al.,
2015]. This allows to reduce the system from 3D coordinates (x,y,φ) to 2D coordinates (x,r) where
x ∈ [0,L], r ∈ [0,R], L, R are the length and radius of the tube respectively, in a power preserving way
by a simple change of variables (explicited later).

1Denote the operator ∂

∂ t by ∂t and ∂

∂x by ∂x for the sake of simplification.
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3D coordinates
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Axis symmetry

fΦ

fθ
x

FIG. 2. Reduction from 3D to 2D model by axisymmetry

The 2D infinite dimensional vibro-acoustic system is written as port-Hamiltonian system: Z is a
2-dimensional smooth manifold with 1-dimensional smooth boundary ∂Z , i.e. n= 2. The state space X
is defined as X := Ω 2(Z )×Ω 1(Z ) with np = 2 and nq = 1. The state vector, element of X is denoted
by x = [θ ,Γ ]T with θ the kinetic momentum (1-form) , and Γ the volumetric expansion (2-form). The
spaces F , E are defined as F :=Ω 2(Z )×Ω 1(Z ), and E :=Ω 0(Z )×Ω 1(Z ). The elements f x ∈F ,
ex ∈ E are given as f x =−[θ̇ ,Γ̇ ]T and ex = [v,P]T where v is the velocity (1-form) and P is the pressure
(0-form). The flow variable f θ (1-form) of the 2D model is obtained by flow f Φ (2-form) of the 3D
model with f θ = 2πr f Φ as in Figure 2. This means the 2D variable f θ is the projection of the flow
variable f Φ over a circle of given radius from a point based on the axial symmetry.

The total energy is given by:

H =
1
2

∫
Z

θ ∧ ∗θ
ρ0

+Γ ∧ ∗Γ
χs

(6)

with ∗ the Hodge star operator which converts any k-form w on a n-dimensional spatial domain Z to an
(n− k)-form ∗w. Here ρ0 is the air mass density, χs is the adiabatic compressibility coefficient.

The port-Hamiltonian representation of the vibro-acoustic system defined on a 2D spatial domain2

Z := (x,y) = z⊂ R2 is:[
f θ

f Γ

]
=

[
0 −d
d 0

][
ev

ep

]
Structure (7)[

f θ

f Γ

]
=

[
−θ̇

−Γ̇

]
Dynamics (8)[

ev

ep

]
=

[
δθ H
δΓ H

]
Constitutive Equations, H being defined by (6) (9)[

f B

eB

]
=

[
1 0
0 1

][
ev |∂Z

ep |∂Z

]
Boundary Variables (10)

2Since the 2D system of coordinates is now rectangular, we use (x,y) instead of (x,r) to denote the spatial domain.
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3. Discretization of the 2D vibro-acoustic system

In this section, we propose a structure-preserving mixed finite elements discretization method, to derive
a finite dimensional approximation of (7) and (10).

3.1 Approximation of the Dirac structure

Taking the spatial domain geometry of the system into account, we use square grid elements instead of
triangular ones found in the literature [Golo et al., 2004]. The square grid element Zabcd is defined by
four vertices a, b, c, d. The edges of the square are defined by ab, bc, cd, da and the facet by abcd.

We approximate the flow and effort variables on the square grids by using the space dependent basis
forms. The objective is to separate flow and effort variables f (t,z) and e(t,z) to only time dependent
flow and effort approximations in the grid fZabcd (t), eZabcd (t) and the space basis function wZabcd (z).
For the sake of simplification, we omit (t) and (z) for the approximated variables and basis functions
respectively.

The flow variables defined in (8) are approximated by:

f θ (t,z) = f θ
abwθ

ab + f θ
bcwθ

bc + f θ
cdwθ

cd + f θ
dawθ

da (11)

f Γ (t,z) = f Γ
abcdwΓ

abcd (12)

where the 1-forms wθ
l , l ∈ {ab,bc,cd,da}, and the 2-form wΓ

abcd satisfy the following conditions3

∫
l′

wθ
l =

{
0 i f l

′ 6= l,
1 i f l

′
= l,

∫
Zabcd

wΓ
abcd = 1 (13)

The effort variables defined in (9), the velocity (1-form) ev and the pressure (0-form) ep, are approxi-
mated by:

ev(t,z) = ev
abwv

ab + ev
bcwv

bc + ev
cdwv

cd + ev
dawv

da (14)

ep(t,z) = ep
awp

a + ep
bwp

b + ep
c wp

c + ep
dwp

d (15)

where the one-forms wv
l , l ∈{ab,bc,cd,da}, and the zero-form wp

m, m∈{a,b,c,d}, satisfy the following
conditions4: ∫

l′
wv

l =

{
0 i f l

′ 6= l,
1 i f l

′
= l,

wp
m′
(m) =

{
0 m

′ 6= m
1 m

′
= m

(16)

The structure of the vibro-acoustic system (7) can be approximated by substituting the flows approxi-
mations (11), (12) and the efforts approximations (14), (15) into (7):

f θ
abwθ

ab + f θ
bcwθ

bc + f θ
cdwθ

cd + f θ
dawθ

da = -d
(
ep

awp
a + ep

bwp
b + ep

c wp
c + ep

dwp
d

)
(17)

f Γ
abcdwΓ

abcd = d(ev
abwv

ab + ev
bcwv

bc + ev
cdwv

cd + ev
dawv

da) (18)

In order to satisfy (17) and (18), we deduce the compatibility conditions between the two forms and
one forms, and between the one forms and the zero-forms [Golo et al., 2004]. Supposing ep

b = ep
c =

3These condition state that the flow variable f Γ (t,z) coincides with f Γ on the rectangular surface abcd and f θ (t,z) coincides
with f θ

l on the edge l ∈ {ab,bc,cd,cd}.
4These condition state thatthat the effort variable pressure ep(t,z) coincides with ep on the node m∈ {a,b,c,d} and the velocity

ev(t,z) coincides with ev on the edge l ∈ ab,bc,cd,cd.
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ep
d = 0, (17) is satisfied if and only if dwp

a(z) = γabwθ
ab(z)+ γbcwθ

bc(z)+ γcdwθ
cd(z)+ γdawθ

da(z). Thus,∫
ab dwp

a(z) =
∫

ab(γabwθ
ab(z)+ γbcwθ

bc(z)+ γcdwθ
cd(z)+ γdawθ

da(z)). Integrating along ab, bc,cd and da
gives γab =−1, γbc = 0, γcd = 0 and γda = 1. Similarly, we get the following conditions:

dwp
a = wθ

da−wθ
ab; dwp

b = wθ
ab−wθ

bc;

dwp
c = wθ

dc−wθ
cd ; dwp

d = wθ
cd−wθ

da; ;
dwv

i = wΓ
abcd i ∈ {ab,bc,cd,da}.

(19)

The finite dimensional Dirac structure of the square grid (Fig. 3) can be find in the Appendix 1. To
write the dynamic equation of the 2D vibro-acoustic system with finite dimensional Dirac structure, we
have to define the basis functions wabcd , wl with l ∈ {ab,bc,cd,da} and wm with m ∈ {a,b,c,d} such
that the parameters α , β and γ of the Dirac structure are explicit. In order to get an explicit system, in
[Wu et al., 2015], simplified parameters α , β and γ which do not satisfy the basis function conditions
(13), (16) and the compatibility conditions (19) are used. In this paper, we will select these parameters
such that these conditions are satisfied.

Consider the square grid shown in Fig. 3. The position of every vertices is defined as a : (x1,y1),
b : (x2,y1), c : (x2,y2) and d : (x1,y2). Consider as two forms weight function:

FIG. 3. An discretized square grid

wabcd =
1

(x2− x1)(y2− y1)
dx∧dy (20)

which satisfies (13). The one-form basis functions wl with l ∈ {ab,bc,cd,da} and the zero-form basis
functions wm with m ∈ {a,b,c,d} are defined as

wab =
(y2−y)

(x2−x1)(y2−y1)
dx; wbc =

(x−x1)
(x2−x1)(y2−y1)

dy;

wcd = (y1−y)
(x2−x1)(y2−y1)

dx wda =
(x−x2)

(x2−x1)(y2−y1)
dy.

(21)

wa =
(x2−x)
(x2−x1)

(y2−y)
(y2−y1)

; wb =
(x−x1)
(x2−x1)

(y2−y)
(y2−y1)

;

wc =
(x−x1)
(x2−x1)

(y−y1)
(y2−y1)

; wd = (x2−x)
(x2−x1)

(y−y1)
(y2−y1)

,
(22)

and satisfy (16). After some computation, one can check the compatibility conditions (19) are satisfied.
With the above basis functions, one can write the finite dimensional Dirac structure of a square grid
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as follow:

1
4 0 0 0 1

2 0 0 1
2

1
4 0 0 0 1

2
1
2 0 0

1
4 0 0 0 0 1

2
1
2 0

1
4 0 0 0 0 0 1

2
1
2

0 − 1
4 − 1

4 − 1
2 0 0 0 0

0 − 1
4

1
4 0 0 0 0 0

0 1
4

1
4

1
2 0 0 0 0

0 1
4 − 1

4 0 0 0 0 0





f Γ
abcd
f θ
ab

f θ
cd

f θ
da

f B
ab

f B
bc

f B
cd

f B
da


+



0 1 0 −1 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1





eΓ
abcd
eθ

ab
eθ

cd
eθ

da
eB

ab
−eB

bc
−eB

cd
eB

da


= 0.

(23)
The variables f B

l and eB
l with l ∈ {ab,bc,cd,da} stand for the boundary velocities and pressure

at the boundary (four edges {ab,bc,cd,da}) of the discretized square grid. The variable f Γ
abcd is the

approximation of the variable f Γ over the square grid abcd. The variable eΓ
abcd is the power conjugate

variable of f Γ
abcd which is obtained by the approximation of the zero form variables ep

m (m ∈ {a,b,c,d})
such that the potential power over the square grid is

∫
Z ep(t,z)∧ f Γ (t,z) = f Γ

abcd ∧ eΓ
abcd . From the

power preserving point of view, the port variables ( f θ
ab,e

θ
ab), ( f θ

cd ,e
θ
cd), ( f θ

da,e
θ
da) are defined from the

approximation of the discretized one form variables f θ
l and ev

l with l ∈ {ab,bc,cd,da}such that the
kinetic power over the discretized square grid are

∫
Z ev(t,z)∧ f θ (t,z) = f θ

abeθ
ab+ f θ

cdeθ
cd + f θ

daeθ
da. Please

find more details in Appendix 1.

3.2 Discretization of 2D vibro-acoustic system

In the previous subsection, we discussed the approximation of the Dirac structure over a square grid.
In this section, we derive from this elementary model the explicit port-Hamiltonian formulation of the
2-D vibro-acoustic tube. To this end, we consider that the over all 2D vibro-acoustic tube is discretized
in N×M elements with N rows overn the vertical direction and M rows over the horizontal direction.
The interconnection is proceeded in two steps as shown in Fig. 4. First, the N elements (0 to N− 1)
are vertically interconnected and then all the M vertical elements are interconnected horizontally (like
element j to j + 1 with j ∈ {0,1, · · · ,M− 1}) as shown in Fig. 4. We present the explicit input-
output representation of each square and then the complete system with the vertical and horizontal
interconnections.

3.3 Explicit input-output representation by interconnection

The first step consists in interconnecting vertically the element 0 to N−1 of each single column. How-
ever, we have to notice that the boundary conditions of the bottom element 0 is different from the ones of
elements 1 to N−1. That is because the physical input of the vibro-acoustic tube is the pressure on the
left side and the control variables on the top boundary of the tube is the velocity due to the control mem-
brane interconnected to the tube. The output measurement of the tube is the pressure on the right side.
From the above input-output consideration, the inputs of each element are the pressure on the left and
bottom sides and the velocity on the right and top sides. However, from the axis symmetry assumption,
the boundary condition on the bottom of the tube is the velocity v = 0 which should be considered as
the input. This boundary condition and the input-output consideration present a causality contradiction.
In order to deal with this causality, a different input-output configuration shall be considered on element
0.
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FIG. 4. Interconnection relation of vibro-acoustic tube

With the above boundary conditions, we first consider the inputs and outputs of the explicit repre-
sentation for the square grid of elements 1 to N−1 as follows:

u1

u2

u3

u4

=


eB

ab

f B
bc

f B
cd

eB
da

=


pab

vbc

vcd

pda

 ,


y1

y2

y3

y4

=


f B
ab

−eB
bc

−eB
cd

f B
da

=


vab

pbc

pcd

vda

 . (24)

Taking into account the above input-output variables and the Dirac structure of the square grid (23) with
the following dynamics: 

−ẋ1

−ẋ2

−ẋ3

−ẋ4

=


f1

f2

f3

f4

=


f Γ
abcd

f θ
ab

f θ
cd

f θ
da

 ,


e1

e2

e3

e4

=


eΓ

abcd

eθ
ab

eθ
cd

eθ
da

 , (25)

with the energy variables x = [x1,x2,x3,x4]
T , the explicit port-Hamiltonian representation for the ele-

ments 1 to N−1 can be written as:

ẋ1

ẋ2

ẋ4

 =

 0 −4 4
4 0 0
−4 0 0


e1

e2

e4

+
 0 2 2 0
−4 0 0 0
2 0 0 2




u1

u2

u3

u4




y1

y2

y3

y4

 =


0 −4 2
2 0 0
2 0 0
0 0 2


e1

e2

e4

+


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




u1

u2

u3

u4


(26)
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One can notice that the above system does not have dynamic equations in ẋ3 and e3. This is because e2,
e3 and e4 are projected velocity variables chosen in order to get a finite dimensional Dirac structure .
This choice of variables leads to a singular system with Differential Algebraic equations (DAE) . Hence,
in order to avoid the DAE representation of the explicit system, we omit the variable e3. The variables
e2 and e4 can be seen as the velocity variables on the horizontal direction x and the vertical direction y,
respectively. The constitutive relations (See the details of the computation in the Appendix 2) are:

e1

e2

e4

=


Sin

1
χs

0 0

0 1
3 S2in

1
ρ0

−S1in
1

6ρ0

0 −S1in
1

6ρ0
S1in

1
ρ0


︸ ︷︷ ︸

Q

x1

x2

x4

 (27)

The Hamiltonian function of each element is defined as H = 1
2 xT Qx. For the purpose of simplicity, we

take the notation
[
x1 x2 x3

]T and
[
e1 e2 e3

]T instead of
[
x1 x2 x4

]T and
[
e1 e2 e4

]T .
Now we consider the explicit representation of the bottom system 0 from the kernel representation

of the Dirac structure (23) with the following choice of inputs and outputs:


u1

u2

u3

u4

=


f B
ab

f B
bc

f B
cd

eB
da

=


vab

vbc

vcd

pda

 ,


y1

y2

y3

y4

=


eB

ab

−eB
bc

−eB
cd

f B
da

=


pab

pbc

pcd

vda

 (28)

One can notice that the difference in inputs and outputs between the bottom element and the other
elements are u1 and y1. In the same manner, the explicit formulation for the element 0 is given by:



ẋ1

ẋ2

ẋ3

 =

 0 −4 4
4 0 0
−4 0 0


e1

e2

e3

+
2 2 2 0

0 0 0 −4
0 0 0 1




u1

u2

u3

u4




y1

y2

y3

y4

 =


2 0 0
2 0 0
2 0 0
0 −4 1


e1

e2

e3

+


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0




u1

u2

u3

u4


(29)

In order to get vertical interconnection of all elements, the following interconnection relation is
considered:

ui
3 = yi+1

1

ui+1
1 = −yi

3
with i = 0, . . . ,N−2. (30)
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Thus the vertically interconnected explicit system:

 ẋ1

ẋ2

ẋ3

 =

 0 T 1
N T 2

N

−T 1T
N 0 0

−T 2T
N 0 0


 e1

e2

e3

+
 B1

N B2
N B3

N 0
0 0 0 T 1

N

0 0 0 B2
N




u1

u2

u3

u4




y1

y2

y3

y4

 =


B1T

N 0 0
B2T

N 0 0
B3T

N 0 0
0 T 1T

N B2T
N


 e1

e2

e3

+


0 0 D1 0
0 0 0 IN

−DT
1 0 0 0

0 −IN 0 0




u1

u2

u3

u4


(31)

where 0 represents zero matrices of appropriate dimension and the state variables are xi =
[
x1

i ,x
2
i , . . . ,x

N−1
i

]T
with i ∈ {1,2,3}. The matrices are defined as

T 1
N = diag [4,4, · · · ,4] ∈ RN×N , (32)

T 2
N =



−4 0 0 · · · 0

4 −4 0
. . .

...

−4 4 −4
. . . 0

...
. . . . . . . . . 0

(−1)N 4 · · · −4 4 −4


∈ RN×N (33)

B1
N =


−2
2
...

(−1)N 2

 , B2
N = diag [−2,−2, · · · ,−2] ∈ RN×N , (34)

B3
N =


(−1)N−1 2

...
−2
2

 ,D1 =


−1
0
...
0

 ∈ RN . (35)

The inputs and outputs of each vertically interconnected explicit system are defined as follows: the
pressure inputs and velocity outputs at the left side and the top of the tube, the velocity inputs and the
pressure measurement at the right side and the bottom of the tube,

u1 = u0
1 = v0

ab; y1 = y0
1 = p0

ab; (36)

u2 =


v0

bc

v1
bc
...

vN−1
bc

 ; y2 =


p0

bc

p1
bc
...

pN−1
bc

 ; (37)



Structure-preserving discretization and control of a 2D vibro-acoustic tube 11 of 22

u3 = uN−1
3 = vN−1

cd ; y3 = yN−1
3 = pN−1

cd ; (38)

The left side of each vertically interconnected system has the pressure as input which corresponds to the
physical input and its power conjugate output is the corresponding velocity:

u4 =


p0

da

p1
da
...

pN−1
da

 ; y4 =


v0

da

v1
da
...

vN−1
da

 . (39)

Now we discuss the horizontal interconnection of each obtained vertical element (31). The input on
the left side of each vertical element is the pressure while it is the output on the right side. Thus, the
interconnection relation between each vertical element (31) is given as:

u j
2 = y j+1

4

u j+1
4 = −y j

2

with j = 0, . . . ,M−2. (40)

With the above relations, we obtain the interconnected system:

 ˙̃x1

˙̃x2

˙̃x3

 = J

 ẽ1

ẽ2

ẽ3

+B


u1

u2

u3

u4




y1

y2

y3

y4

 = BT

 ẽ1

ẽ2

ẽ3

+D


u1

u2

u3

u4


(41)

where the state variable are x̃i =
[
x0

i ,x
1, . . . ,xM−1

i

]T
with i ∈ {1,2,3}. The constitutive relation of the

discretized system can be written as:

ẽ =

S1 0 0
0 S2 S4
0 ST

4 S3

x = Q̃x (42)

with S1 = diag
[
Sin

1
χs

]
, S2 = diag

[
1
3 S2in

1
ρ0

]
, S3 = diag

[
S1in

1
ρ0

]
, and S4 = diag

[
−S1in

1
6ρ0

]
.

The inputs are the velocity at the bottom {ab}, the right side {bc} and the top {cd} of the tube,
respectively, u1 =

[
v0

ab,v
1
ab, . . . ,v

M−1
ab

]T
, u2 =

[
v0

bc,v
1
bc, . . . ,v

N−1
bc

]T
, u3 =

[
v0

cd ,v
1
cd , . . . ,v

M−1
cd

]T
, and the

pressure on the right side {da} of the tube, u4 =
[
p0

da, p1
da, . . . , pN−1

da

]T
. The outputs are the power

conjugate variables of the inputs, i.e., the pressure on the top, the bottom and the right side, the velocity
on the left side of the vibro-acoustic tube. The interconnection matrix, input matrix and the feedforward
matrix are given by:

J =

 0 T̃1M T̃2M
−T̃ T

1M 0 0
−T̃ T

2M 0 0

 ; (43)
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B =

B̃1
M B̃2

M B̃3
M 0

0 0 0 T 1B
M

0 0 0 −B̄2
M

 ; (44)

D =


0 0 0 0
0 0 0 (−1)M−1 IN×N
0 0 0 0
0 (−1)M IN×N 0 0

 (45)

with 0 zero matrices of appropriate dimension and the sub-matrices are given by:

T̃1M =


T1N 0 · · · 0

−B2
NT T

1N T1N
. . .

...
...

. . . . . . 0
(−1)M−1 B2

NT T
1N · · · −B2

NT T
1N T1N

 ;

T̃2M =


T2N 0 · · · 0

−B2
NB2T

N T2N
. . .

...
...

. . . . . . 0
(−1)M−1 B2

NB2T
N · · · −B2

NB2T
N T2N

 ;

T 1B
M =


(−1)M−1 T 1

N
...
−T 1

N
T 1

N

 ; B̄1
M = diag

[
B1

N
]

;

B̃2
M =


(−1)M−1 B2

N
...
−B2

N
B2

N

 ; B̃3
M = diag

[
B3

N
]
.

4. Control by interconnection

In this section, we consider a control based on the discretised model (41) by using energy shaping
through Casimir invariants. We consider that the vibro-acoustic tube is actuated all over its length by
a distributed set of actuators and sensors. In this example we consider a possible large set of actua-
tors/sensors(small enough) in order to consider quasi continuous actuation. From the axis-symmetry
assumption, the control surface acts only on the top {bc} of the 2D vibro-acoustic system.

The control surface is composed of a set of microphone-loudspeakers that are used to attenuate the
wave pressure in the tube or to change the wave properties in a desired manner.

We propose to derive a control law which attenuates the wave pressure controlling the membrane
of the loudspeakers. To this end we employ the well known control by interconnection approach, in
which the existence of closed-loop invariants are used to design a controller which assigns the closed-
loop Hamiltonian function. A detailed survey on this approach can be found in [van der Schaft, 2000].
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Consider the following port-Hamiltonian controller:{
ξ̇ = (Jc(ξ )−R(ξ )) ∂Hc

∂ξ
(ξ )+gc(ξ )uc

yc = gT
c (ξ )

∂Hc
∂ξ

(ξ )
(46)

with state variable ξ ∈ RM , Hamiltonian function Hc(ξ ) and structure matrices Jc(ξ ) = −Jc(ξ )
T and

Rc(ξ ) = Rc(ξ )
T > 0. The controller and the system are interconnected at the top (cd boundary) of the

tube with the membrane, i.e. the wave propagation is controlled by the velocity injected by membrane
and the pressure of the wave on the same boundary can be seen as the reaction force to the controller.
Hence the power preserving interconnection of the controller and the system are:

u3 = −yc

uc = y3
(47)

Thus, the coupling system of wave propagation (41) and the controller (46) via the above interconnection
law (47) is still passive and can be written as:[

ẋ
ξ̇

]
=

([
J −B̃3

MgT
c (ξ )

gc(ξ )B̃3T
M Jc(ξ )

]
−
[

0 0
0 Rc(ζ )

])[ ∂Hd
∂x (x)

∂Hd
∂ξ

(ξ )

]

where Hd(x̃,ξ ) = H(x̃) + Hc(ξ ) is the energy of the closed-loop system with the open loop vibro-
acoustic energy H(x̃) = 1

2 x̃T Q̃x̃ .
In order to shape the closed-loop energy function, we need to relate the state of the controller ξ to

the state of the system x. We define the Casimir functions as follows

C(x,ξ ) = F(x)−ξ . (48)

These Casimirs functions are invariant quantities along the closed-loop system trajectories independent
from the energy function Hd , i.e.,

Ċ(x,ξ ) =
[

∂ T F
∂x −I

][ J −B̃3
MgT

c
gcB̃3T

M Jc−Rc

][ ∂Hd
∂x (x)

∂Hd
∂ξ

(ξ )

]
= 0 (49)

which implies the following matching equations:

∂ T F
∂x

(x)J
∂F
∂x

(x) = Jc(ξ ) (50)

Rc = 0 (51)
∂ T F
∂x

(x)J = gcB̃3T
M (52)

Notice that the system (41) does not have dissipation, hence the dissipation obstacle [Ortega et al., 2001]
is not occurring. Developing the matching equations (52) we obtain:

∂ T F
∂x1

T̃1M =
∂ T F
∂x1

T̃2M = 0 (53)

∂ T F
∂x2

T̃ T
1M +

∂ T F
∂x3

T̃ T
2M = gcB̃3T

M (54)
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From the equations (53), we can see the function F(x) does not depend on the variables x1. Taking
gc = I and the matrices defined in (41), a possible solution of the matching condition is:

F(x) =
1
2

B̃3
MT̃−1

1M x2 +
1
2

B̃3
MT̃−1

2M x3 (55)

A simple choice for the Casimir function is C(x,ξ ) = C(x0,ξ0) = 0 which implies the the following
relation between the system and the controller states:

ξ = F(x) =
1
2

B̃3
MT̃−1

1M x2 +
1
2

B̃3
MT̃−1

2M x3 (56)

The state of the controller is related to x2 , x3, hence the energy can be shaped in these coordinates. To
this end define the Hamiltonian of the controller as

Hc(ξ ) = 2Kξ
2 (57)

This Hamiltonian allows to shape the energy Hd around the zero equilibrium position with K > 0 a
control design parameter. Following the matching equations (50) and (51), the matrices Jc = Rc = 0 and
gc = I. Then the controller is:

ξ̇ = uc

yc =
∂Hc
∂ξ

(58)

Using this controller, we can shape the energy in the y direction through the local actuation.
Considering (56), the Hamiltonian of the controller can be written as :

Hc(x2,x2) =
1
2

xT
2 Sc2x2 +

1
2

xT
3 Sc3x3 +xT

2 Sc4x3 (59)

where Sc2 = T̃−T
1M B̃3T

M KB̃3
MT̃−1

1M , Sc3 = T̃−T
2M B̃3T

M KB̃3
MT̃−2

1M , Sc4 = T̃−T
1M B̃3T

M KB̃3
MT̃−1

2M .
From (58), (56) and (47), the control law can be written as:

u =−yc =−2KB̃3
MT̃−1

1M x2−2KB̃3
MT̃−1

2M x3 (60)

with closed loop Hamiltonian

Hd =
1
2

xT
1 S1x1 +

1
2

xT
2 S̄2x2 +

1
2

xT
3 S̄3x3 +xT

2 Sc4x3 (61)

with S̄2 = S2 +Sc2, S̄3 = S3 +Sc3. Furthermore, by adding a negative output feedback to the boundary
feedback we introduce dissipation into the closed-loop system and guarantee the closed-loop asymptotic
stability [Macchelli et al., 2017]:

u∗ = u−αys (62)

with the dissipation feedback coefficient α > 0.

5. Numerical simulations

In order to illustrate the numerical effectiveness of the proposed discretization scheme and the simple
control strategy, we simulate the 2D wave propagation in the vibro-acoustic tube with the numerical
parameters given in Table 1 [David et al., 2010].
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Table 1. The parameters of the experimental tube

L Length 1.84 m
R Radius 0.05 m
ρ Air density 0.8163 kg/m3

χs Compressibility coefficient 1.4161×105 Pa−1

We apply the previously proposed discretization scheme using 5 vertical elements i.e., N = 5 and
250 horizontal elements i.e., M = 250. Hence, the overall system has M×N = 1250 elements and 3750
state variables x̃ ∈ R3750. The input is the wave pressure on the left side of the tube generated by the
loudspeaker in sinusoidal form u = sin(100 ∗ t). In Fig. 5, we show the open loop response of the
pressure on the complete spatial domain after 5 second.

FIG. 5. Open loop pressure response over the 2D domain at 0.5 s

In Fig. 6, the closed-loop response with the passive controller proposed in the last section is shown.
To illustrate the effectiveness of the proposed control, we consider the first section of the tube (first
100th elements) is not actuated and that the control action stars from the element 100 to the end. The
pressure over the spatial domain at 5 second is shown in Fig. 6. We observe that until the 100th element,
the wave is not attenuated. However, starting from element 101 the pressure is attenuated significantly
because of the controller. The 2D simulation result confirms the preliminary results proposed in the 1D
scenario in [Trenchant et al., 2017b].

6. Conclusion

A geometric structure-preserving discretization for a 2D vibro-acoustic system under the port-Hamiltonian
form is addressed in this paper. With a precise choice of a set of basis functions, a finite-dimensional
Dirac structure is derived using a mixed finite-elements method and an explicit input-output system
representation of the vibro-acoustic tube is achieved. The advantage is that, in the finite dimensional
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FIG. 6. Closed-loop pressure response over the 2D domain at 0.5 s

approximation of the vibro-acoustic system, the passivity and the Hamiltonian structure is preserved
which is useful for control design. Furthermore, a passive controller via interconnection energy shaping
and damping injection is implemented on the obtained finite dimensional approximation. The numer-
ical result shows the effectiveness of the proposed discretization scheme and the passive controller. In
this paper, we consider a local energy shaping control through the vertical direction, the ongoing work
is to design the controller to account for the horizontal structure of the vibro-acoustic tube. The other
ongoing work is on the implementation of the proposed controller on real experimental set-up.
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Appendix 1: Finite dimensional Dirac structure approximation of a square grid

In this section, we deduce the finite dimensional Dirac structure for a square grid. Substituting compat-
ibility conditions (19) into equations (17) and (18) and integrating over Zabcd , the relations between the
approximated flow and effort variables are given by:

f θ
ab = ep

a − ep
b , f θ

bc = ep
b − ep

c ,

f θ
cd = ep

c − ep
c , f θ

da = ep
d − ep

a .
(63)

f Γ
abcd = ev

ab + ev
bc + ev

cd + ev
da (64)

The objective here is to get a finite dimensional system with port-Hamiltonian structure which guar-
antees the energy balance. To do so, we compute the net power over a square grid abcd Pnet

abcd =
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Pθ
abcd +PΓ

abcd +PB
abcd composed of the kinetic power, the potential power and the power through the

boundary.
The potential power over a square grid is computed by using the approximated variables and com-

patibility conditions as:

PΓ
abcd =

∫
Zabcd

ep(t,z)∧ f Γ (t,z) = f Γ
abcdeΓ

abcd (65)

where eΓ
abcd = αaep

a +αbep
b +αcep

c +αdep
d and

αm :=
∫

Zabcd

wp
m∧wΓ

abcd , m ∈ {a,b,c,d}. (66)

The kinetic power Pθ
abcd in the domain can be computed as

Pθ
abcd =

∫
Zabcd

ev(t,z)∧ f θ (t,z) = f θ
abeθ

ab + f θ
cdeθ

cd + f θ
daeθ

da (67)

with the ports
(

f θ
ab,e

θ
ab

)
,
(

f θ
cd ,e

θ
cd

)
and

(
f θ
da,e

θ
da

)
identified by

eθ
ab = (αb−βb,ab)ev

ab +(αb−βb,bc)ev
bc

+(αb−βb,cd)ev
cd(t)+(αb−βb,da)ev

da
eθ

cd = (βc,ab−αc)ev
ab +(βc,bc−αc)ev

bc

+(βc,cd−αc)ev
cd +(βc,da−αc)ev

da

eθ
da = (βc,ab +βd,ab−αc−αd)ev

ab

+(βc,bc +βd,bc−αc−αd)ev
bc

+(βc,cd +βd,cd−αc−αd)ev
cd

+(βc,da +βd,da−αc−αd)ev
da

with αm defined as (66) and

βm,l =
∫

∂Zabcd

wp
m∧wv

l ,
m ∈ {a,b,c,d}
l ∈ {ab,bc,cd,da}

. (68)

The power corresponding to the boundary can be computed as follows

PB
abcd =

∫
∂Zabcd

eB(t,z)∧ f B(t,z)

= eB
ab f B

ab + eB
bc f B

bc + eB
cd f B

cd + eB
da f B

da
(69)

by identifying the ports on the boundary as
(

f B
ab,e

B
ab

)
,
(

f B
bc,e

B
bc

)
,
(

f B
cd ,e

B
cd

)
and

(
f B
da,e

B
da

)
, where

eB
ab = βa,abep

a +βb,abep
b +βc,abep

c +βd,abep
d

eB
bc = βa,bcep

a +βb,bcep
b +βc,bcep

c +βd,bcep
d

eB
cd = βa,cdep

a +βb,cdep
b +βc,cdep

c +βd,cdep
d

eB
da = βa,daep

a +βb,daep
b +βc,daep

c +βd,daep
d

with βm,l =
∫

∂Zabcd
wv

m∧wp
l , m ∈ {a,b,c,d} and l ∈ {ab,bc,cd,da}.
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Using the net power relations (67), (65) and (69), we can write the finite dimensional Dirac structure
over each square grid with its image representation [Duindam et al., 2009] as follows

Dabcd =

{
( fabcd ,eabcd)

∣∣∣∣ fabcd = E∗abcdλabcd
eabcd = F∗abcdλabcd

,λabcd ∈ R8
}

(70)

where

fabcd =
[

f Γ
abcd , f θ

ab, f θ
cd , f θ

da, f B
ab, f B

bc, f B
cd , f B

da

]T
∈ R8,

eabcd =
[
eΓ

abcd ,e
θ
ab,e

θ
cd ,e

θ
da,e

B
ab,−eB

bc,−eB
cd ,e

B
da

]T
∈ R8,

λabcd =
[
ep

a ,e
p
b ,e

p
c ,e

p
d ,e

v
ab,e

v
bc,e

v
cd ,e

v
da
]T ∈ R8

and the matrices Eabcd and Fabcd are define by

E∗abcd =



0 0 0 0 1 1 1 1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
−1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(71)

F∗abcd =



αa αb αc αd 0 0 0 0
0 0 0 0 γb,ab γb,bc γb,cd γb,da
0 0 0 0 −γc,ab −γc,bc −γc,cd −γc,da
0 0 0 0 γab γbc γcd γda

βa,ab βb,ab βc,ab βd,ab 0 0 0 0
βa,bc βb,bc βc,bc βd,bc 0 0 0 0
βa,cd βb,cd βc,cd βd,cd 0 0 0 0
βa,da βb,da βc,da βd,da 0 0 0 0


(72)

with γm,l =αm−βm,l , γl = βl−αcd , αcd =αc+αd , βl = βc,l+βd,l , m∈{a,b,c,d}, and l ∈{ab,bc,cd,da}.
Using the basis function (20)-(22), the parameters α and β can be computed as follows:

αa,abcd =
∫

zabcd
wa∧wabcd

=
∫ y2

y1

∫ x2
x1

(x2−x)
(x2−x1)

(y2−y)
(y2−y1)

1
(x2−x1)(y2−y1)

dx∧dy

= 1
4 .

(73)

By doing the same computation, one can find αa,abcd = αb,abcd = αc,abcd = αd,abcd = 1
4 and

βa,ab =
∫

∂ zabcd
wa∧wab

=
∫ x2

x1

(x2−x)
(x2−x1)

(y2−y)
(y2−y1)

(y2−y)
(x2−x1)(y2−y1)

dx
∣∣∣
y=y1

= 1
2 .

(74)
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In the same way:
βa,ab =

1
2 , βb,ab =

1
2 , βc,ab = 0, βd,ab = 0,

βa,bc = 0, βb,bc =
1
2 , βc,bc =

1
2 , βd,bc = 0,

βa,cd = 0, βb,cd = 0, βc,cd = 1
2 , βd,cd = 1

2 ,

βa,da =
1
2 , βb,da = 0, βc,da = 0, βd,da =

1
2 .

(75)

Furthermore, the following parameters can be computed:

αcd = αc,abcd +αd,abcd = 1
2

βab = βc,ab +βd,ab = 0

βbc = βc,bc +βd,bc =
1
2

βcd = βc,cd +βd,cd = 1

βda = βc,da +βd,da =
1
2

(76)

Using the above coefficients, one can get the finite dimensional Dirac structure approximation of the
square grid (23).

Appendix 2: Constitutive equations approximation

To construct the explicit finite dimensional approximation of the port-Hamiltonian system on the square
grid, we should also derive the approximation of the constitutive relations (9). Now let consider the
approximation of the energy variables as:

Γ (t,z) = ΓabcdwΓ
abcd (77)

θ(t,z) = θabwθ
ab +θbcwθ

bc +θcdwθ
cd +θdawθ

da (78)

In order to derive the constitutive equations of the finite dimensional approximation, we compute the
energy over a square grid with the approximated energy variables. First, we consider the potential
energy over the square Zabcd as

HΓ
abcd = 1

2
∫
Zabcd

Γ (z, t)∧∗Γ (z,t)
ρ0

=
Γ 2

abcd
2
∫
Zabcd

wΓ
abcd∧∗w

Γ
abcd

χs
=

Γ 2
abcd
2χ

(79)

with χ−1 =
∫
Zabcd

wΓ
abcd∧∗w

Γ
abcd

χs
. Then using the basis function (20), one can get:

χ−1 =
∫
Zabcd

wΓ
abcd∧∗w

Γ
abcd

χs

= 1
χs

∫ y2
y1

∫ x2
x1

[
1

(x2−x1)(y2−y1)

]2
dx∧dy

= 1
χs

1
(x2−x1)(y2−y1)

= 1
χs

1
Rin f Lin f

(80)

where Lin = x2− x1 and Rin = y2− y1 are the length and the width of the square grid respectively.
Before deriving the kinetic energy over the square Zabcd , we rewrite the kinetic momentum by using

the compatibility conditions (19) as:

θ(t,z) = θabdwp
b −θcddwp

c −θda(dwp
c +dwp

d). (81)
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These finite dimensional energy variables has been chosen with respect to the effort variables over the
square from the net power balance (67). Using the energy variables defined above, the kinetic energy is
expressed as:

Hθ
abcd = 1

2
∫
Zabcd

θ(z, t)∧∗ θ(z,t)
ρ0

= 1
2

[
θ 2

ab
ρ1

+
θ 2

cd
ρ2

+
θ 2

da
ρ3
− 2θabθcd

ρ4
− 2θabθda

ρ5
+ 2θcdθda

ρ6

] (82)

with ρ
−1
1 =

∫
Zabcd

dwp
b∧∗dwp

b
ρ0

, ρ
−1
2 =

∫
Zabcd

dwp
c∧∗dwp

c
ρ0

, ρ
−1
3 =

∫
Zabcd

(dwp
c+dwp

d )∧∗(dwp
c+dwp

d )

ρ0
,

ρ
−1
4 =

∫
Zabcd

dwp
b∧∗dwp

c+dwp
c∧∗dwp

b
2ρ0

, ρ
−1
5 =

∫
Zabcd

dwp
b∧∗(dwp

c+dwp
d )+(dwp

c+dwp
d )∧∗dwp

b
2ρ0

,

ρ
−1
6 =

∫
Zabcd

dwp
c∧∗(dwp

c+dwp
d )+(dwp

c+dwp
d )∧∗dwp

c
2ρ0

.
Using the chosen basis functions (22), we can compute the above parameters:

ρ
−1
1 =

1
3ρ0

[
y2− y1

x2− x1
+

x2− x1

y2− y1

]
=

1
3ρ0

[
Rin

Lin
+

Lin

Rin

]
,

ρ
−1
2 =

1
3ρ0

[
y2− y1

x2− x1
+

x2− x1

y2− y1

]
=

1
3ρ0

[
Rin

Lin
+

Lin

Rin

]
,

ρ
−1
3 =

1
ρ0

x2− x1

y2− y1
=

1
ρ0

Lin

Rin
,

ρ
−1
4 =

1
3ρ0

[
y2− y1

x2− x1
+

x2− x1

y2− y1

]
=

1
3ρ0

[
Rin

Lin
+

Lin

Rin

]
,

ρ
−1
5 =

1
6ρ0

x2− x1

y2− y1
=

1
6ρ0

Lin

Rin
,

ρ
−1
6 =

1
2ρ0

x2− x1

y2− y1
=

1
2ρ0

Lin

Rin
. (83)

The finite dimensional approximation of the constitutive relations can be written as
eΓ

abcd
eθ

ab
eθ

cd
eθ

da

= Qabcd


Γabcd
θab
θcd
θda

 (84)

with

Qabcd =


Sin

1
χs

0 0 0
0 1

3 S2in
1

ρ0
− 1

3 S2in
1

ρ0
−S1in

1
6ρ0

0 − 1
3 S2in

1
ρ0

1
3 S2in

1
ρ0

S1in
1

2ρ0

0 −S1in
1

6ρ0
S1in

1
2ρ0

S1in
1

ρ0

 . (85)

and Sin =
1

LinRin
, S1in =

Rin
Lin

and S2in =
Rin
Lin

+ Lin
Rin

.


