
 1 

2D Functionalized Ultra-thin semi-insulating CaF2 layer on the Si(100) surface at 

low temperature (9K) for molecular electronic decoupling  

 

Eric Duverger1, Anne-Gaëlle Boyer2, Hélène Sauriat-Dorizon2, Philippe Sonnet3,4, Régis 

Stephan3,4, Marie-Christine Hanf3,4, Damien Riedel5* 

 

1Institut FEMTO-ST, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, F-

25030 Besançon, France. 
 

2Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS, Univ. Paris Sud, 

Université Paris-Saclay, F-91405 Orsay, France. 

3Institut de Science des Matériaux de Mulhouse, Université de Haute Alsace, CNRS, IS2M UMR 

7361, 68057 Mulhouse, France,  

4Université de Strasbourg, F-67000 Strasbourg, France. 

5Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris Sud, Université Paris-

Saclay, F-91405 Orsay, France. 

 

 

Corresponding author: damien.riedel@u-psud.fr 

 

Keywords: 2D materials, insulating layer, CaF2, Silicon, electronic decoupling 

 

Abstract: 

 
Our ability to precisely control the electronic coupling/decoupling of adsorbates from surfaces 

is an essential goal. It is not only important for fundamental studies in surface science, but 

also in several applied domains including for example miniaturized molecular electronic or 

for the development of various devices such as nanoscale bio-sensors or photovoltaic cells. 

Here, we provide atomic scale experimental and theoretical investigations of a semi-insulating 

layer grown on a silicon surface via its epitaxy with CaF2. We show that, following the 

formation of a wetting layer, the ensuing organized unit-cells are coupled to additional 

physisorbed CaF2 molecules, periodically located in their surroundings.  This configuration 

shapes the formation of ribbons of stripes that functionalize the semiconductor surface. The 

obtained assembly, having a monolayer thickness, reveals a surface gap energy of ~ 3.2 eV. 

The adsorption of iron-tetraphenylporphyrin molecules on the ribbons of stripes is used to 

estimate the electronic insulating properties of this structure via differential conductance 

measurements. Density functional theory (DFT) including several levels of complexity 

(annealing, DFT+U and non-local van der Waals functionals) are employed to reproduce our 

experimental observations. Our findings offer a unique and robust template that brings an 

alternative solution to electronic semi-insulating layer on metal surfaces such as NaCl. Hence, 

CaF2/Si(100) ribbon of stripes structures, which lengths can reach more than 100 nm, can be 

used as a versatile surface platform for various atomic scale study of molecular devices.          
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1. INTRODUCTION 

 

The growth control, as well as the properties of electronic insulating layers, on various materials 

surfaces is of key importance for many domains, not only including electronic devices1. This topic has 

thus been the object of a large amount of fundamental2 and applied investigations3. It is still impacting 

various research fields targeting both applied and fundamental physics in which flexible opto-electronic 

devices4,5,6, sensors7,8 or biological functions are still feeding new paradigms9,10.  

In many research fields, the growth of mesoscopic devices having relatively thick dielectric layers 

made for example of SiO2 on semiconductors or Al2O3 on metals surfaces (MS) often reach wideness 

of few nanometers. This renders their fabrication seldom repeatable at the atomic scale and may well 

also present conducting leaks11.  

At lower scale, the approach is different since current leakage can be exploited for specific tunnel 

transport in molecular scale devices12,13. In the context of molecular electronics, ultra-thin insulating 

layers made of a few atomic crystallographic scale coats have already been largely investigated. Several 

well-known materials such as NaCl 14  as well as Al2O3
15 , 16

 have demonstrated efficient electronic 

decoupling properties of single atoms or molecules on Cu, Au or Ag surfaces. However, on metal 

surfaces, few layers of dielectric material are necessary to reach electronic insulating properties with 

surface energy gaps reaching ~ 3 eV. Hence, at this scale, the scanning probes techniques allow 

investigating ways to tune their electrical insulating properties, in particular for the study of photonics 

or electronic devices17.  

Yet, on semiconductor surfaces, except for SiO2 dielectric, the growth control of ultrathin semi-

insulating layers remains barely studied and therefore faintly understood, especially at atomic scale 

thickness. This arises mainly because of the anisotropy of semiconductor surfaces reconstructions that 

may prevent a good 2D lattice matching with the electronic insulating material. Additional surface 

passivation techniques, e.g. with elements like hydrogen18 or via the use of molecular layers19 have also 

been explored but the obtained surface band gap energy is often reduced to 1-2 eV.    

As the development of active devices at smaller scales remains a quest in many domains including 
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molecular electronic20  or nanoscale magnetism21  for which a thorough control of the atomic scale 

environment is decisive, it is particularly vital to determine the atomic and electronic structures of a 

semi-insulating layer able to support a molecular or atomic assembly.  

To the best of our knowledge, ultrathin insulating layers using CaF2 is the sole alternative to reach 

efficient electronically insulating properties of semiconductor surfaces. It offers a clear alternative to 

NaCl layers on metal surfaces. Alkaline earth fluorides such as BaF2 or SrF2 have also been explored as 

candidates on silicon surfaces but with reduced insulating efficiencies22 . On Si(111) surfaces, the 

structure of the ultrathin CaF2 reconstruction has been often investigated and exhibits a relatively weak 

surface gap of ~1.7 eV23,24,25 and is still an attractive candidate for mesoscopic MISFET (Metal Insulator 

Semiconductor Field Transistors) structures26. At smaller scale, the epitaxial growth of CaF2 on Si(100) 

surfaces exhibits ultrathin insulating anisotropic reconstructions forming ribbons of stripes that offer 

additional functionalities for organizing adsorbates27.  While the electronic structure of the CaF2/Si(100) 

has been investigated with mesoscopic techniques28, it is of crucial importance for the understanding of 

their electronic structure  to investigate their atomic scale formation29. Yet, a detailed and complete 

description of the precise atomic and electronic structure of ultrathin CaF2 insulating ribbons of stripes 

on Si(100) is lacking, as well as the characterization of the interaction of this type of semi-insulating 

layer with molecular adsorbates. 

In this article, we investigate experimentally and theoretically the atomic scale structure of CaF2 

ribbons of stripes resulting of the growth of ~ 1.3 monolayer of CaF2 on the bare Si(100) surface.  The 

scanning tunneling microscope (STM) topographies and spectroscopic measurements obtained at 9 K 

provide a precise picture of the stripes structures. As well, it provides the relative positioning of the 

ribbons with respect to the silicon dimer rows and the ensuing wetting layer (WL) that is initially on the 

bare silicon. Our investigations also provide a complete characteristic of the electronic insulating 

properties via an estimation of the CaF2 layer surface gap energy. The surface gap is considered here as 

different from the bulk gap energy and defined as the energy difference between the upper part of the 

valence band and the lower part of the conduction band for the first atomic layers of the surface, as 

previously studied35.  In order to determine precisely the atomic structure of the stripes and confirm our 

experimental findings, we have used the density functional theory (DFT) with annealing procedure and 
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calculated STM images. Additionally, the DFT-Hubbard method is used to provide additional insights 

on its electronic structure and allows to estimate the surface energy gap with the projected density of 

state (PDOS) information. Finally, in order to estimate the quality of the electronic decoupling, we use 

STM analysis combined with van der Waals functionals within DFT method to describe the interactions 

of a single iron-tetraphenylporphyrin (FeTPP) molecule with a ribbon of CaF2 stripe. The ensemble of 

our results indicates that this two- dimensional electronic insulating material allows a strong electronic 

decoupling of organic or inorganic adsorbates.   

 

2. EXPERIMENTAL SECTION 

 

2.1. Synthesis and epitaxial preparation of the CaF2/Si(100) surfaces.  

 

 
The characterization of the ultrathin insulating layer is performed with a low temperature (9 K) 

PanScan STM head from CREATEC. The Si(100) samples (n-doped (As), ρ = 5cm) are cleaned in 

ultra-high vacuum using repetitive annealing cycles consisting of a rapid temperature increasing up to 

1100 °C followed by a slow temperature ramp down to 600 °C. The reconstructed Si(100) surface is 

then exposed to a flux of CaF2 molecules evaporated from an effusion cell, previously calibrated with a 

quartz balance, heated at 1065 °C, while the Si sample is kept at a  temperature of 720 °C. The CaF2 

exposure, lasts for 120 s for a total coverage of 1.3 monolayers. During the CaF2 exposure the pressure 

in the preparation chamber is kept below 2 x 10-10 torr. Following this procedure, the sample is cooled 

down to 12K and introduced in the STM chamber for analysis. Note that the phase diagram of the CaF2 

epitaxy on the Si(100)-2x1 is noticeably different than the one for the Si(111)-7x7 reconstruction, 

leading to significant variation of substrate growth temperatures25,28.    

 

2.2. Molecule adsorption and characterization 

 

 
Following the experimental characterization of the bare CaF2 ultrathin insulating layer, the sample is 

extracted from the STM and kept at low temperature (12 K) to be exposed to a flux of iron tetra-

phenylporphyrin (FeTPP) molecules via the heating of a PBN Knudsen cell at ~ 230°C. The fixed 

exposure time (2 s) leads to a coverage of ∼ 0.4 monolayer. Note that in the following, we will consider 
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that the chlorine apical ligand initially fixed on the Fe atom of the FeTPP molecule is removed due to 

the evaporation process.   

 

 

2.3. Theoretical methods and means.   

 
We have used the Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA)30,31 

package and combined simulated annealing optimization technique to find the ground state structure of 

the CaF2 stripes obtained on the Si(100) surface. The Perdew–Burke–Ernzerhof (PBE) Generalized 

Gradient Approximation (GGA) for the exchange-correlation density functional was employed to 

determine the total energies32,33. During the annealing simulations, the atoms motions follow the Verlet 

algorithm velocities with a time step of 1 fs34. The system is then raised at a high temperature (1000 K) 

and slowly cooled down to 4 K in about 20000 steps. The relaxation of the entire system (CaF2 molecules 

+ WL) is performed with a grid of 9 x 9 x 3 k-points giving a total of 135 k-points in the irreducible 

Brillouin Zone. Then, the following standard set of parameters are chosen such that the self-consistency 

mixing rate is fixed to 0.1, the maximum force tolerance is set to 0.02 eV.Å-1 and the mesh cut-off is 

adjusted at 400 Ry.  The calculations are performed without spin polarization and a basis set of localized 

atomic orbitals (double- plus polarization functions) with norm-conserving pseudopotentials are 

employed. The self-consistent cycles were stopped when the variations of the total energy per unit-cell 

and the band structure energy are both lower than 10-4 eV. The final optimized unit-cell (i.e., 23.20 x 

7.78 x 44.50 Å3) contains 156 atoms (i.e. 4 Ca, 120 Si, 24 H and 8 F) and 10 Si layers in order to take 

into account subsurface interactions.  For the calculations performed on the sole FeTPP molecule in the 

gas phase, we use the Gaussian V09 simulation package. The structure of the molecule is relaxed and 

the Kohn-Sham energies are computed with the HSE hybrid functional (HSEh1PBE). The C and H 

atoms are described with the 6-31G* basis set while the 6-311G* basis set is chosen for the Fe and H 

atoms.     

 

3. RESULTS  AND DISCUSSION 
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The epitaxy of the Si(100) surface by CaF2 molecules follows a Volmer-Weber (VW) growth law. 

The initial stage of the epitaxy in which the formation of a WL occurs, previously studied by our team, 

was investigated at a low CaF2 coverage (~ 0.3 monolayer)29. The WL formation implies that the silicon 

surface is periodically etched during the adsorption/dissociation of the CaF2 molecules to form a (2x3) 

unit-cell as recalled in Fig. 1a.  The WL forms patches appearing as dark corrugations in Fig. 1b. Inside 

these patches, each unit-cell is oriented along the silicon dimer rows [110] direction and their relative 

direction can be identical or head-to-tail29. Increasing the amount of CaF2 molecules during surface 

exposition results in observing the second step of the VW process leading to the formation of ultra-thin 

ribbons of stripes, as it can be observed in Fig. 1b. At this stage, it is unknown if the additional CaF2 

molecules are partially dissociated or if they are kept unspoiled to form the stripes. Additionally, the 

electronic insulating character of these stripes in not yet demonstrated27 and the precise atomic scale 

structure of the ribbons of stripes remains unknown.  

A careful look in Fig. 1b shows that a ribbon is composed of several parallel stripes oriented 

perpendicularly to the unit-cells of the WL, i.e. the silicon dimer rows. Note that the stripes are 

surrounded by either residual bare silicon dimer rows or spots of WL29.  The averaged distance between 

each stripe is 11.7 ± 0.3 Å. Paying attention on each stripe, one can identify that they appear to be 

composed of a series of twisted chevrons. As we emphasized, the ribbon of stripes seems to be sitting 

on the WL. One of the important parameter for the understanding of the growth of a CaF2 semi-insulating 

layer is thus its relative orientation between the WL unit-cells.   

 To investigate the inner structure of a stripe, we have enhanced the measured height variations of 

a portion of a ribbon via a three dimensional representation of the STM topography. It reveals a 

measured corrugation between two stripes of ~ 0.5 Å (Fig. 2a, see also the supplementary Fig. S1). The 

stripes appear to be composed of left and right chevrons, each of them made of shifted bright features. 

The red dotted lines in Fig. 2a locate the chevrons maxima. The zoom on a single stripe shown in Fig. 

2b estimates precisely the separation between the left and right chevrons in the order of ~ 1.4 Å. 

The atomic scale structure of a ribbon of stripes can also be compared with the relative positions of 

the silicon atoms surrounding the stripes as shown in Fig. 2c. By locating the direction of the silicon 

dimer rows (horizontal red dotted lines) and the maximum density of state (DOS) intensity at the stripes 
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(horizontal blue dotted line), one can determine that both have the same periodicity (7.8 ± 0.2 Å and 7.9 

± 0.3 Å, respectively). One can also notice that the lateral distance between these two directions is 

similar to the size of a silicon dimer row width (i.e. 2.6 ± 0.2 Å). The STM image shown in Fig. 2c 

allows to locate the position of each silicon dimers along the bare Si(100) surface, via the identification 

of the silicon back-bonds (BB) directions 35  by vertical dotted white lines (Fig. 2c). A detailed 

explanation of the positioning of the back-bonds is recalled in Fig. S2 and are observed as darker spots 

of DOS separated by brighter lines in the back-bond rows. Combining these two perpendicular directions 

(red horizontal and white vertical dotted lines) forms a grid that can be extended and superimposed over 

the ribbon of stripes area.  From this, we can locate the relative positions of the oriented WL unit-cells 

in the area of the ribbon of stripes, as if they were part of this structure. The direction of the WL unit-

cell is here chosen via a careful comparison of the surrounding of the ribbon of stripes29.  This 

assumption reveals how the substitutional Ca atoms of the WL can be aligned along the stripes (light 

green balls of the cells). Coherently to the second Volmer-Weber growth phase, when additional CaF2 

molecules are evaporated over these areas, they are not likely to dissociate during their adsorption, as 

for the formation of the WL, but rather interact with the existing structure as an interstitial element. 

Hence, to form the observed ribbon of stripes oriented in the [1-10] direction, it is consistent to consider 

that the additional CaF2 molecules are mostly located in between each WL unit-cell and most probably 

within the substitutional Ca atoms of each cells.  

To understand how the additional CaF2 molecules react with the organized WL, we have performed 

DFT calculations on a silicon slab having a surface area made of 4 WL unit-cells (see section 2.1 for 

details). We have thus based our investigation by adding additional CaF2 molecules near two 

consecutive Ca restatoms of two WL unit-cells. In a first step, the entire relaxed geometry of the slab is 

obtained from DFT calculation by optimizing the energy of the initial large structure of the wetting layer 

for both Si atoms and surface unit-cell. In a second step, the requested number of CaF2 molecules (four) 

is added on the designed slab and we then proceed to the annealing and relaxation of the whole system 

(see Fig. S3 for further details). To simulate the experimental annealing and reproduce the dynamics of 

the ribbon formation, the random initial velocities, corresponding to a temperature of 1000 K, are 

assigned to all the atoms of the surface by using Maxwell–Boltzmann distribution. 



 8 

The final relaxed structure is shown in Fig. 3a-c. Figs. 3b and 3c show the two side views of the 

slab as described in the top view in Fig. 3a. It is interesting to notice that, following the relaxation, the 

substitutional Ca atoms are not anymore centered at the missing Si dimer of the WL unit-cell but shifted 

towards the two F atoms (F1) that passivate the neighbor Si dimer. Our calculations show that the stripes 

shape observed in Fig. 2 are formed via the intercalation of additional CaF2 molecules (Ca1 and F2 in 

Fig. 3a) along with the Ca of the WL unit-cell. Here, the interactions of the Ca atoms with the four F 

atoms (i.e. two chemisorbed on the Si dimer of the WL cell and the two from the CaF2 molecule) are 

significant for the stabilization of the entire stripe structure. As a consequence, the distance that separates 

two consecutive Ca atoms along a stripe is ~1.4 Å while the side views in Figs. 3b, 3c reveal a height 

variation between two successive Ca atoms of ~ 0.7 Å. Hence, the calculated periodicity between two 

repeated stripes is 11.7 Å (Fig. 3c). Logically, the length separating two chevrons (i.e., two substitutional 

Ca atoms) is ∼7.6 Å. For the sake of clarity, we have also compared the calculated local density of states 

(LDOS) distribution of the simulated surface with the experimental STM images (Figs. 3d and S4). All 

these data are in very good agreement with the experimental measurements reported in Figs. 1 and 2. 

It is now essential to examine the electronic structure of the ribbon of stripes. For this, we have 

measured the averaged differential conductivity by acquiring various dI/dV curves at different positions 

across a ribbon of stripes. The result of the averaged measurements is presented in Fig. 4a. The surface 

gap energy can be deduced by defining the asymptotic intersections at the valence and conduction bands 

edges with the zero conductance plateau. The crossing values worth -1.13 ± 0.10 V and 2.09 ± 0.10 V, 

giving a total surface gap energy of 3.22 ± 0.20 V. This experimental value can be compared with a 

theoretically estimate of the surface gap energy of the semi-insulating layer performed via a specific 

calculation. We used the DFT+U approach method implemented in SIESTA based on the Dudarev et 

al. scheme36 that combines the two parameters U and J to produce an effective Coulomb repulsion 

energy defined by  U
eff = U − J.  In order to retrieve the experimental surface gap energy, given the 

intrinsic difficulty in determining the ab-initio value of Ueff., we have computed the surface gap evolution 

as a function of Ueff varying from 2 eV to 30 eV. Although the implemented DFT+U approach in 

SIESTA allows defining independently the U and J parameters for each atomic shell, we have chosen 
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to use the same Ueff value for the Ca, Si and F atoms. Each PDOS curve is defined by 500 points spanning 

over the [-20 eV to 10 eV] energy window from either side of the Fermi energy value. The smearing 

energy used for the PDOS curves is fixed at 0.3 eV. The ensuing evolution of the calculated surface gap 

as a function of the tested Ueff. values is reported in Fig. 4b. The surface gap remains negligible (ie < 

200 meV) for Ueff. varying between 0 eV and 4.45 eV and then increases almost linearly until Ueff. 

reaches 26.45 eV to finally decreases sharply. Therefore, we deduced that the most accurate value of 

Ueff. reproducing the measured surface gap energy on the ribbon of stripes is 26.45 eV. An example of 

a PDOS curve at this Ueff. value is given in Fig. 4c with the detailed contribution of the F, Si and Ca 

atoms.  Note that there are no dopants atoms in the considered slab for the calculations. This can explain 

why the experimental and theoretical Fermi energy are not the same in Figs. 4a and 4c. It is relevant to 

observe that the Hubbard correction in the DFT+U method induces energy shifts of the occupied states 

towards lower energies, rendering the estimation of the surface gap energy relatively accurate. From the 

subsequent total PDOS of the considered example reported in Fig. 4c, it is possible to estimate a 

calculated surface gap energy of 3.1 eV (Fig. 4d).  

The charge states of the various elements forming the stripes are analyzed via the Bader scheme37,38. 

The initial effective charge for the valence electrons of the Ca atoms is 2e. After relaxation (without 

Hubbard correction), the charges of the residual Ca of the additional CaF2 molecules (Ca1 in Fig.3a) are 

at 0.891e and 0.897e, respectively, thus having lost 1.109e and 1.103e. When the Hubbard correction is 

applied for fitting the experimental surface gap energy, the Ca effective charge is worth 0.173e and 

0.171e, leading to an even stronger charge loss (i.e. 1.827e and 1.829e, respectively). Concerning the 

substitutional Ca atoms of the WL (Ca(2) in Fig.3a), their charge states are slightly different  (0.768e 

without Hubbard correction and 0.202e with correction) but show the same trends ( +1.80e). The charge 

variation of the F atoms changes in the opposite way, as one would expect, mimicking the CaF2 ionic 

crystal. Here, the F atoms have an initial charge of 7 electrons. With Hubbard correction, the F atoms 

attached on the Si dimers nearby the substitutional Ca2 atoms (F1 in Fig. 3a) win negative charges to 

reach 7.59e whereas the charge of the F atoms forming the CaF2 molecule is slightly higher with 7.82e. 

This reveals that the F atoms of the CaF2 molecules added on the slab remain strongly bonded to the Ca 
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atom and form an ionic bonding network with the substitutional Ca atom of the WL layer. Note that our 

calculated effective charge of a CaF2 molecule are similar to former work, i.e. a loss of ~1.80e for Ca+ 

and a gain of ~ 0.88e for F-, respectively39. Therefore, we can conclude that the simulated stripes 

structure that takes into account the Hubbard correction fits correctly our experimental observations and 

shows a good trend of the electronic structure of the insulating layer. A detailed description that 

summarizes these data is given in the supplementary Fig. S5. It is important to underline that the 

relatively high energy of Ueff. needed to reproduce the experimental surface gap energy of ~ 3.2 eV is 

not so surprising considering the large amount of computational parameters that may affect this tuning 

value, and the lack of initial localization in the exchange correlation functional that traduce Coulomb 

interactions. One can however observe that the Hubbard correction affect the charge state of the Ca and 

F atoms of the insulating layer in a way where the ionic properties of the Ca-F ionic bonding is enhanced. 

However, as shown in Fig. S6, the geometry of both type of Ca atoms (Ca1 and Ca2) of the insulating 

layer is only weakly affected (less than 2 %) by the Hubbard correction Ueff. = 26.45 eV. Note that other 

approaches using ab-inito method such as unrestricted Hartree Fock may also give interesting results 

but are beyond the scope of the present paper40.      

To test the electronic semi-insulating properties of the ribbon of stripes, we have studied how a 

FeTPP molecule is perturbed when adsorbed on the epitaxial surface. As previously investigated, this 

molecule shows, on this surface, two main conformations having a mirror symmetry20. Only one of these 

configurations is considered here (Figs. 5a, 5b). While the molecule may be initially considered as 

physisorbed, its electronic structure on the semi-insulating surface is clearly unknown. 

The ensuing conformation of a FeTPP molecule adsorbed on a stripe is detailed in Fig. 5b. Further 

details of the considered slab for this calculation are provided in Fig. S8. In order to take into account 

Van der Waals interaction between the substrate and the molecule, relaxation of the overall system was 

performed with double-plus polarization functions orbitals with VdW-DF functional (DRSLL)41,42. 

From these calculations, the relative height of the FeTPP molecule compared to the surface can be 

deduced. For example, the Fe atom of the FeTPP (center of the molecule) is located at 5.4 Å from the 

surface. The nearest atoms of the molecule from the surface are hydrogen atoms of the phenyl rings 
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located along the stripe with a typical distance of 2.9 Å. These values confirm the physisorbed character 

of the adsorbate. The calculated STM image of a FeTPP molecule adsorbed in this conformation is 

shown in Fig. 5d and presents good agreements with the experimental one (Figs. 5a, see also the Fig. S7 

for additional details). To highlight the perturbations of the surface on the molecule or vice versa, the 

Bader charges are computed on the whole slab. Here, the calculated total charge transfer between the 

substrate and the molecule is relatively low and worth 0.053e. In order to further highlight the interaction 

between the molecule and the substrate, we have computed the variations of the LDOS in the slab. It is 

obtained when the LDOS is computed for the substrate (LDOSsub.) and the molecule (LDOSMol.) 

separately, in one first step. The difference LDOS) is then achieved, as a second step, via the 

subtraction of the total LDOSTot. computed when the molecule is adsorbed on the surface with the two 

other values (LDOS) = LDOSTot. - LDOSsub. - LDOSMol.). The results of the charge densities 

differences are shown in Figs 5e and 5f. The red and blue iso-surfaces represent positive or negative 

differences of the LDOS) values, respectively. One can firstly observe that the LDOS) is globally 

weak since the selected isodensity values is in the range of 10-4 e/Å-3. Furthermore, the LDOS variations 

are mainly concentrated on the phenyls of the FeTPP molecule and especially on the two phenyls located 

along the insulating stripe (see black arrow in Fig. 5e for Ph1 and Ph2). The concentration of LDOS) 

on the upper and lower phenyls is further detailed in Fig. 5f, which mainly reveals that the lower part of 

the molecule is perturbed by the surface. A detailed analysis of the molecule-surface interactions reveals 

that after the FeTPP molecule adsorption, one of the lower carbon atoms from Ph2 can lose up to 0.09e, 

while the carbons atoms of Ph1 are less impacted (maximum gain of 0.008e). The charge state of the 

hydrogen atoms from the two considered phenyls are not impacted at all for Ph1 and only slightly 

changed for Ph2 (gain of 0.02e). As a consequence, the underlying Ca atoms below Ph2 and Ph1 lose 

both ~ 0.05e. The F atoms in the vicinity of these phenyl rings are also gently impacted with a maximum 

charge gain of 0.03e. Considering the relatively long distance separating the lowest hydrogen atom of 

the FeTPP molecule to the surface, these small charge perturbations are coherent with van der Waals 

forces interactions. A detail analysis of the charge state distributions of the FeTPP molecule in 

interaction with the surface is provided in Fig. S9.  It is important to underline that the charge variations 
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presented in the case of the bare insulating surface (Figs. 3 and S4) are slightly different due to the fact 

that the Hubbard correction is not taken into account in the case of the calculations of the molecule on 

the surface. 

Similarly to what has been done with NaCl insulating layers in the presence of charged adsorbates43, 

it is interesting to describe how the surface structure may be modified because of the presence of the 

FeTPP molecule. The investigation of the atomic displacement of the first two layers of the semi-

insulating layer (Ca and F) indicates that only the atoms of the stripe on which the FeTPP molecule is 

straddled are faintly impacted by the adsorbate, whereas the surrounding of the molecule is not. For all 

the considered atoms, the displacements are less than ± 0.15 Å in both the [110] and [1-10] directions. 

For the vertical direction, i.e. perpendicular to the surface, it mainly occurs at the two substitutional Ca 

atoms having vertical displacements of ~ 0.25 Å. Additional information concerning these displacement 

is provided in Figs. S10.    

It is now crucial to determine if the considered semi-insulating ribbon of stripes are able to correctly 

electronically decouple the FeTPP adsorbate with a good efficiency. The dI/dV curves acquired at three 

different parts of the molecule shown in Fig. 6a exhibit flat signals in the range -1.2 V to 1.5 V. Small 

peaks of density of states measured at -1.6 V and +1.6 V, at the pyrroles locations (red dot in the inset 

of Fig. 6a) indicate a probable HOMO-LUMO gap of 3.2 eV. The two dI/dV curves acquired at the 

phenyls and central part of the molecule are rather similar and show an occupied DOS peak at -2.4 V 

below the surface Fermi level whereas the unoccupied states can progressively span up to 2.5 V. These 

experimental data can be compared to the calculated PDOS at specific areas of the molecule as illustrated 

in Figs. 6b and 6c. When the PDOS includes only the phenyl groups of the FeTPP molecule (Fig. 6b), 

one can see two mains PDOS peaks at -2.4 eV and 2.8 eV with two weaker satellites peaks at -1.1 eV 

and 0.9 eV. Surprisingly, the PDOS curves calculated at the four pyrroles of the FeTPP molecule (Fig. 

6c) exhibit DOS peaks at -1.1 eV and 0.9 eV, i.e. at the same energy of the satellite PDOS peaks 

observed in Fig. 6b. The dI/dV peaks observed at the pyrroles locations on the FeTPP at ± 1.6 V can be 

related with the calculated PDOS satellite peaks in Figs. 6b and 6c. Their relative weak dI/dV intensities 

also reveal that the insulating layer may hinder the accurate measurement of the frontier orbitals HOMO-
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LUMO gap of the molecule.  

Generally, when adsorbates are interacting with surfaces the HOMO-LUMO gap energy of the 

molecules known in gas phase can be significantly reduced44, especially if chemisorption occurs. On 

insulating layers, another effect can take place, arising from the potential loss at each interfaces of the 

double STM junction45, involving higher applied voltages to reach frontier orbitals. Looking at the 

symmetrical position of the dI/dV peaks in Fig. 6a and PDOS in Fig. 6b compared to the Fermi level 

energy, our results indicate that the electrochemical potential of the adsorbed FeTPP molecule is weakly 

perturbed by the insulating layer. It also shows that the total voltage drops at each STM junction (i.e. 

silicon-molecule and molecule-tip) in the range of 0.4 eV. The FeTPP molecule orbitals energies 

calculated in gas phase are reported in Fig. 6d and clearly indicate that a group of orbitals (N° 169 to 

176) having almost degenerated energies levels are the HOMO - LUMO frontiers orbitals as measured 

in the dI/dV and PDOS curves in Figs. 6a and 6b. These orbitals mainly involve the central macrocycle 

and especially the pyrroles groups of the porphyrin. Coherently, the phenyl rings of the FeTPP molecule 

are involved at orbitals of higher or lower energies. 

   

 

4. CONCLUSION  

 

In summary, we have performed the first complete experimental and theoretical investigation of the 

structural and electronic description of CaF2 ribbons of stripes at the nanoscale. Our work shows that 

the initial formation of a wetting layer on the Si(100) surface is the first stage of the growth of ribbons 

of CaF2 stripes. A detailed analysis of the STM images acquired at low temperature (9K) provides a 

clear description of the relative positioning of the additional CaF2 molecules within the existing wetting 

layer structure. The characterization of the observed epitaxial structure is supported by precise DFT 

calculations of the ensuing surface geometry and compared with the acquired STM images. By using 

the DFT+U method, the electronic structure of the surface gap energy of a ribbon of stripe reproduces 
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the one measured experimentally. In particular, we have shown that the effective charges on the Ca and 

F atoms of the insulating layer are similar to those determined on bulk CaF2 surface reconstruction. 

Thus, our findings imply that the electronic insulating properties are efficient from one single 

monolayer. To further test the electronic properties of the CaF2 insulating layer, we have studied the 

interactions of a single FeTPP molecule with the surface structure as it appears on the STM images. 

Weak interactions between the surface and the adsorbate are observed via the study of the LDOS 

difference between the molecule and the surface. A detailed analysis of the charge state of the adsorbed 

FeTPP molecule indicates typical van der Waals interactions. The electronic properties of the FeTPP 

molecule is described via dI/dV tunnel spectroscopy measurements acquired at several strategic 

locations. The comparison of these data with ad-hoc calculations of the FeTPP molecule on the surface 

and in gas phase further confirms that the electronic structure of the adsorbate is almost not affected by 

the CaF2 insulating layer. The ensemble of these findings endorses that the electronic charge transfer 

between the adsorbate and the semi-insulating layer is weak46. It also demonstrates the clear insulating 

properties of the described CaF2 ribbon of stripes. Such insulating layer on the Si(100) surface will 

definitively open new perspectives in the control of electronic, optic and magnetic devices at the 

nanoscale.  
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Université de Franche Comté. 

FIGURES CAPTIONS: 

 

Figure 1: (a) Recall of the three dimensional balls and sticks structure of the wetting layer (WL) unit-

cell following the epitaxy of Si(100) with CaF2 molecules at low coverage. (b) 21.4 x 22.7 nm² STM 

topography (I = 32 pA, V = -2.5 V) after the epitaxy of the bare Si(100) surface with a coverage of 1.3 

monolayer of CaF2. The positions of the WL unit-cells (blue rectangles) are indicated in (b) as compared 

to the ribbon of stripes and the residual Si(100) surface areas.  

 

Figure 2: (a) Three dimensional representation (perspective) of the stripes structure of a small section 

(19 x 41 Å²) of the topography in Fig. 1b. The vertical axis relative scale (i.e. corrugation) is increased 

http://orcid.org/0000-0001-5891-5500
https://zimbra.u-psud.fr/
https://orcid.org/0000-0003-1820-504X
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by software to improve the observation of the stripes structure. (b) Details of a three dimensional 

representation of a single stripe (top view) showing the chevrons structure. (c) 8.2 x 4.3 nm² STM 

topography (I = 17 pA, V = -2.5 V) showing the top view of a ribbon of stripes located nearby a bare 

silicon surface area. The lateral blue and red curves represent the relative height profile acquired either 

along a stripe or across the silicon dimer rows, respectively. The silicon dimer rows directions are 

symbolized by red dotted lines. Four consecutive WL unit-cells are superimposed along these red dotted 

lines to identify the location of the substitutional Ca atoms compared to the stripes locations.  

   

Figure 3: (a) Top view of the considered silicon slab of the insulating layer electronic properties 

comprising two portions of CaF2 stripes (four unit-cells). (b) and (c) Side A and side B of the slab, 

respectively, as indicated in (a). (d) Comparison of the STM topography (left panel, 35.1 x 30.8 Å², Vs 

= -2.3 V, I = 12 pA) of two insulating stripes with the same calculated LDOS structure (right) at -1.5 

eV below the Fermi energy. The positions of the Ca (green) and F (cyan) atoms from the calculated 

structure are reported in the left panel for comparison.   

 

Figure 4: (a) Semi-logarithmic representation of dI/dV spectroscopic curve resulting of the average of 

ten measurements acquired at twenty different points along various stripes of the same ribbon. (b) 

Evolution of the calculated surface gap energy as a function of the Hubbard parameter Ueff.. (c) 

Calculated PDOS curves for the F, Si and Ca atoms and for the total system (Ueff = 26.45 eV).  (d) 

Example of a semi-logarithmic representation of the total PDOS from which a calculated surface gap 

energy is extracted (Ueff = 26.45 eV).  

 

Figure 5: (a) 7.7 x 3.9 nm² STM topography (I = 12 pA, V = -2.7 V) of a FeTTP molecule adsorbed on 

a ribbon of stripes. (b) and (c) top and side views of the FeTPP molecular structure on the insulating 

layer after relaxation. (d) Calculated STM image of an adsorbed FeTPP molecule (LDOS) following the 
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conformation shown in (b) and (d). (e) and (f)  Calculated spatial LDOS difference before and after 

adsorption of the FeTPP molecule onto a CaF2 stripe. The red and blue isodensities stand for positive or 

negative LDOS differences, respectively.   

 

Figure 6: (a) Averaged measured dI/dV curves acquired at 3 different locations on top of the FeTPP 

molecule. (b) and (c) Calculated PDOS curves over the four phenyl rings and pyrroles of the adsorbed 

FeTPP molecule, respectively. (d) Calculated molecular orbitals energies of the FeTPP in the gas phase 

and estimation of the HOMO-LUMO gap energy.      
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