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Abstract

Efficiency and robustness in remaining useful life (RUL) prediction are crucial in system
health monitoring. Thus, the internal logic computation of a Deep LSTM model for RUL
prediction is mainly shaped and evaluated over a training data-set and its performance
examined on a testing data-set. This paper proposes a framework for testing robustness of
deep Long Short Term Memory (LSTM) architecture for remaining useful life prediction that
enables to gain confidence in the trained LSTM model for RUL prediction and ensures better
quality. The resiliency of proposed Deep LSTM networks for RUL estimation using stress
functions is first checked then the effect of the stress on model performance is analyzed. A
comparison between the performance of the constructed mutant fuzzed Deep LSTM networks
and the original Deep LSTM model for RUL prediction is provided to determine the quality
of the RUL prediction model.

Furthermore, the main purpose of this paper is to determine to what extent Deep LSTM
models in the neighborhood of the trained LSTM model still have high test accuracy and
quality scoring. Thus, the use of ϕ-stress operators shows that we could build stable and
data-independent Deep LSTM models for RUL prediction. Finally, the proposed framework
is validated using the Commercial Modular Aero Propulsion System Simulation (C-MAPSS)
data-set.
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1. Introduction

Predictive maintenance (PdM) is applied in complex industry areas such as aerospace
systems, nuclear power plants, chemical plants, advanced military systems, automotive man-
ufacturing, and transportation [1]. The purpose of PdM is to ensure the reliability of complex
systems by reducing downtimes and preventing unplanned failures which lead to cost-saving
especially when scheduled maintenance is considered unnecessary and is canceled.

This crucial phase in the Prognostic and Health Management (PHM) process for com-
plex systems [1] is defined as condition-based maintenance, and it is performed to avoid
catastrophic breakdown events. These breakdowns express operating limits of a system
components, known in each domain expertise by analyzing the specific journal of failures or
degradation modes [2]. The predictive maintenance process intends to monitor industrial
system conditions to precisely schedule maintenance actions [3, 4]. This key objective in
the health management of complex industrial systems [5] enables to determine precisely the
time for a system component to perform its functional capabilities before it fails [6, 7].

For health monitoring information [2], remaining useful life (RUL) prediction of a system
component is of primary interest where several RUL estimation methods were proposed in
the literature [8, 9]. Thus, suitable and feasible deep data-driven models were proposed
in [10, 11, 5] for health management and component prognostic in many industrial fields.
These data-driven models use data-set traces of failures and operating conditions to deter-
mine precise RUL estimates for the industrial complex system components. These given
ongoing data sets repositories, which are time series from some nominal states to a failed
state, can not guarantee efficiency and robustness of proposed RUL prediction Deep Long
Short Term Memory models [10]. The question is to what extent a Deep LSTM model is
robust and how its robustness could impact RUL estimation quality for a system compo-
nent. In that respect, we notice that it is well known that achieving better accuracy for
a Deep LSTM model using RMSE and scoring metrics did not ensure genericity and it is
not good enough for a better robustness quality evaluation [12]. Thus, a robustness testing
framework should necessarily reinforce quality evaluation and confidence for a trained Deep
LSTM Model.

In this paper, we propose a framework for Deep LSTM robustness testing based on prog-
nostics data repository C-MAPSS, a collection of data sets used exclusively for prognostic
of system components. After training and constructing the Deep LSTM network for RUL
estimation, a mutation process is handled by invoking the stress on the internal logic of
this generated deep learning network for RUL prediction. For each mutant model, a deep
network is constructed and then evaluated. Finally, a smooth comparison is done between
mutant models and the original learned Deep LSTM model, to qualify robustness of the
RUL prediction baseline model. The remainder of the paper is structured as follows. Sec-
tion 2 presents related work. Section 3 introduces the robustness testing framework and
then Section 4 details Deep LSTM Fuzzy Models. In section 5, we present the robustness
of the deep last model. Finally, experiments and conclusions are presented, respectively, in
Sections 6 and 7.
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2. Related Works

In [13], RUL estimation is determined with models built to capture time sequence fea-
tures. These collected informations are time-dependent events that could be modeled as a
time series in nature. For sliding models introduced in [14], the entire time sequence series
of sensors data are sliced into windows characterized by their local RUL estimation. Nev-
ertheless, the issue in such a sliding model is to better determine window sizes and so, to
keep dependency over time of collected sensors data. Larger is the slide window time range
more the time sequence information is captured. However, when the time range is larger,
the entire sequence information is difficult to handle and over-fitting often appears. The
challenge still is the preservation of time dependency between sliding windows.

Hidden Markov Models (HMMs) were proposed in [15] to deal with time dependencies
in information sequences. Unfortunately, the HMM model states depend only on the last
previous information which makes them inappropriate for long range dependencies [16].
Consequently, major drawbacks of hidden Markov models are related to space and time
consuming, as well as their inefficiency for large size discrete data. In [8, 17], neural network
techniques were implemented for short or long range time dependencies for RUL prediction.
These models known as Neural Recurrent Networks (RNN) [18, 19] can efficiently handle
short-term time sequence data but are limited when applied for long-term time dependency
solving problems [20] and often propagated gradient either vanish or explode.

Currently, more efficient deep learning approaches have been widely used in different
information technology applications such as computer vision, image and video saliency pro-
cessing, speech recognition, and natural language processing [21, 22, 23]. Even more, con-
volutional Neural Network and Long Short-Term Memory network [22, 24, 8] were used to
deal with long-term time dependency in RUL prediction using In-gate, Forget-gate, and
Output-gate functions for LSTM cells. Indeed, the recent research in RUL prediction tries
to leverage Deep LSTM learning, but some concerns raised about the need for more gen-
eralization and robustness of such models [12]. This is due to the inadequate configuration
of the Deep LSTM network for RUL prediction but also the lack of training/testing data
sets. In such proposed LSTM neural networks for RUL prediction, the key issue is robust-
ness testing where mutation techniques can be used to stress the internal logic of the Deep
LSTM model for RUL estimation and then assess its quality.

The mutation process would impact the source-level, program-level, or model-level of
a deep learning network for RUL prediction. Thus, by using different mutation operators,
stresses are injected in training data, training programs or even internal logic of the pre-
trained deep network. Furthermore, the design of mutation operators as the key components
to ensure the genericity and robustness of the trained Deep LSTM models could be used
at the input source level as stress operators to enrich training/testing data sets. In the
programming level, mutation-based code testing enables to maintain Deep LSTM model
performance. Unfortunately, the mutation operators at source and program levels require
more space and time-consuming computation. However, the model level mutation operators
seem to be more suitable for our robustness framework. The core contribution is to ensure
better quality evaluation of a Deep LSTM model for RUL prediction, knowing that the
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trained internal layers and cells in LSTM models using training/testing data sets still have
a lack of genericity and efficiency. This is because of Deep LSTM Network sensitivity to
any change in training/testing data sets or program tuning parameters. In our model-based
mutation robustness testing, quality of testing data sets generated by the NASA institution
- Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) - has been of great
interest in this proposed robustness framework.

3. Robustness Testing Framework

Although suitable training and testing data sets are used, a deep learning model that has
achieved high accuracy results may still have a lack of generalization. Thus, the robustness
of the Deep LSTM model is of great importance to gain confidence in RUL prediction data-
driven models. Besides, relevant verification on a validated testing data-set is necessary
for Deep LSTM model efficiency. Consequently, a well-established mutation framework to
verify and evaluate the quality of a Deep LSTM model is crucial to trust deep models for
RUL estimation.

In our context, we have defined a set of model-level mutation operators [25] that in-
troduces exclusively stresses to the weights of the deep learning models without a training
process. This means that training data sets and programs were kept unchanged. The aim
is to determine and perform to what extent a Deep LSTM model is sensitive to model-level
stresses. We notice that use of model-level mutation for RUL prediction models was mo-
tivated first, in regards to time-consuming in the training phase and second, according to
deep model architecture role in solving RUL estimation problem (see Figure 1).

The proposed framework in Figure 1 shows a workflow of fuzzing or stressing transforma-
tion steps on an original Deep LSTM model for RUL prediction. The mutants are considered
holistically as outputs of model-level mutation techniques that impact LSTM cell weights
and different layers of RUL prediction deep model. The cell and layer weights are stressed
by the appropriate ϕ-functions. The stress of these latters was validated first on Weierstrass
function [26] and corresponding ρ stress intensities were tuned adequately (see Equation 1).

W(a,b)(x) =
∑k

n=0 a
ncos(bnπx). k ∈ N, k > 100

0 < a < 1
ab > 1 + (3/2)π

(1)

One should note that Weierstrass function was adopted for stress tuning accordingly to
its property of being continuous everywhere but differentiable nowhere (i.e. high stress sen-
sitivity). Once more, Weierstrass W(a,b) function (see Figure 2) has a fractal behavior where
any zoomed region has the same values of the whole function. This helped us to construct
smooth and appropriate stress functions to impact gradually the Deep LSTM model for
RUL prediction.
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Figure 1: Robustness testing framework for a hyperparameter ε.

4. Fuzzy Mutants of Deep LSTM Model

Let us now consider an original pre-trained Deep LSTM model for RUL prediction with
its internal logic including hidden layers L and based on LSTM cell structure. Each LSTM
cell is composed of weights wA, w′A, wI , w

′
I , wO, w′O, wF and w′F as presented in Figure 3

and Figure 4.
As discussed previously, model-level based mutants for RUL prediction Deep LSTM

model were constructed by applying ϕ operator stressing. These operators are validated
and tuned upstream using the Weierstrass function (see Equation 1). Therefore, various
model-level based mutants can be generated for an original Deep LSTM architecture [27,
28] (see Figure 3). In our case, the configurations C# would be stressing of one-exclusive,
two-mutually exclusive, three-mutually exclusive, or four-mutually exclusive weights (see
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Figure 3: Deep LSTM-NN Network
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Figure 4: Standard LSTM cell

Tables 1, 2). We noticed that it is not beneficial to stress at the same time the input
and the output weights of an LSTM cell component node A, I,O, F (see Figure 4). This
is since the impact of stressed weights will not be consistent. Also, choco solver [29] was
used to determine exactly the number of model-level based mutants of a given Deep LSTM
model. Indeed, the variant configurations were respectively 8, 24, 32, and 16 mutants for
one-exclusive, two-mutually exclusive, three-mutually exclusive, or four-mutually exclusive
stressing.
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Config. C# wA w′A wI w′I wO w′O wF w′F
C1 1 0 0 0 0 0 0 0
C2 0 1 0 0 0 0 0 0
C3 0 0 1 0 0 0 0 0
C4 0 0 0 1 0 0 0 0
C5 0 0 0 0 1 0 0 0
C6 0 0 0 0 0 1 0 0
C7 0 0 0 0 0 0 1 0
C8 0 0 0 0 0 0 0 1

Table 1: Model configuration for one-exclusive stressing

Config. C# wA w′A wI w′I wO w′O wF w′F
C1 1 0 0 1 0 0 0 0
C2 0 1 0 0 0 0 0 1
C3 0 0 0 1 0 0 0 1
C4 0 0 1 0 0 0 1 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
C22 0 0 1 0 1 0 0 0
C23 1 0 0 0 0 1 0 0
C24 0 0 0 0 0 1 0 1

Table 2: Model configuration for two-exclusive stressing

In our experiments for Deep LSTM model robustness testing, we use one-exclusive
stressed weights of the internal LSTM cell weights wA, w′A, wI , w

′
I , wO, w′O, wF , and

w′F (see Equation 2). Thus, eight (08) mutant models under many stress intensities are
considered (see Table 1).

Ij = σ(tj × wI +Hj−1 × w′I + bI)
Oj = σ(tj × wO +Hj−1 × w′O + bO)

Algebric Model Fj = σ(tj × wF +Hj−1 × w′F + bF )
for LSTM cell Aj = tanh (tj × wA +Hj−1 × w′A + bA)

Cj = Fj ◦ Cj−1 + Ij ◦ Aj
Hj = Oj ◦ (tanhCj)

(2)

4.1. ϕ-stress operators

As indicated in Equation 2, we can stress an LSTM cell in its weights using variants of
ϕ stress operators or functions with different ρ stress intensities and ϕρ stressing operator
(see Equation 3).

ϕ(ρ, x) =

{
ϕρ(x) ϕ activated
x ϕ not activated

(3)
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For weight stressing, we have adopted Gaussian stress ϕg and deep Gaussian stress
ϕf functions. The gaussian stress ϕg (see Algorithm 1) is defined as a gaussian random
variable GX (i.e. x represents the observed values of variable GX), where ρ is the standard
deviation and x is the mean. So, the stressing range of a given input value x is the interval
[x− 3ρ, x+ 3ρ] to cover 99% of the random stressing distribution. For each value of x, a set
of Gaussian stress functions ϕk are defined on the neighborhood of x and are characterized
by their respective parameters ρk. Thus, the question is to determine the optimal stress
intensity ρ? of {ρk, k ∈ N} which produces adequate stress for control of Deep LSTM model
robustness.

Let us consider the optimum ρ? with a better dispersion impact on the most sensitive
weierstrass function W(a,b) [26] or determined by using an adequate optimization algorithm.
In this context, we pointed out the perspective of the use of an adaptive ρ stress thresholding.

Algorithm 1: ϕg(ρ
?, x) : x′

Data: ρ? : Optimal intensity threshold of stressing. % ρ is the stressing ratio;
x : input value to stress;
Result: x′ : stressed value;

1 Initialization;
2 r ← GX() % random Gaussian variable ;
3 x′ ← (((x− 3 ∗ ρ?) + (6 ∗ ρ?) ∗ r));
4 return x′;

Next, we proposed a deep gaussian stress ϕf function, introduced in Algorithm 2, where
we consider floating-scaled low-intensity stresses. The stress variation for an input value x
is considered in ulp (unit in Last Place). Thus, optimal ρ? parameter is used as a jump of
floor exposant value e of the input x (see Algorithm 2, instructions 4, 5).

Algorithm 2: ϕf(ρ?, x) : x′

Data: ρ? : Optimal intensity threshold of stressing. % ρ? is the stressing ratio;
x : input value to stress;
Result: x′ : stressed value;

1 Initialization;
2 r ← GaussianX() % random Gaussian variable ;
3 e : integer % exponent range of the Unit in Last Place (Ulp) ;
4 e← floor(|log10(Ulp(x)) ∗ ρ?)|);
5 σ ← 10e ∗ |(x− nextF loat(x, Up))|;
6 x′ ← (((x− 3 ∗ σ) + (6 ∗ σ) ∗ r));
7 return x′;

After implementation of these two variants of ϕ-stress functions, the key issue is the
choice of good stress ϕ functions and the tuning of parameter ρ, to have adequate model-
level based mutants.
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4.2. Fuzzy Deep LSTM Model

It is well known that the internal logic of Deep LSTM model M is composed of multiple
layers Li,i=1···k. Each layer is composed of a set of LSTM cells and followed at the final
stage by a fully connected feed-forward neural networks (FNN). Toese LSTM cells within
the LSTM layers [8] have the same structure with different weight parameter values. The
aim here is to construct mutant models from a pre-trained Deep LSTM model M .

The concept is to derive the fuzzy weights of the original Deep LSTM pre-trained
model M . The Fuzzing is done holistically on the different layers and cells of M (see
Figures 5 and 6). As indicated previously, we have adopted a model-level mutating process
on a given Deep LSTM pre-trained model M . The mutant models M ′ were generated by us-
ing ϕ-stress operators or functions. These stress functions have different scales of intensities
ρ determined and validated on the Weierstrass function [26].

We notice that ϕ-stress is applied on component nodes A (input), I (input gate), O (out-
put gate), and F (Forgate gate) of a given Deep LSTM model M (see dashed components
in Figure 6). A ρ-stress intensity impacted each layer Li=1···4 and its LSTM cell weights
{wA, w′A, wI , w′I , wO, w′O, wF , w′F}.

Ij = σ(tj × ϕ(wI) +Hj−1 × ϕ(w′I) + bI)
Oj = σ(tj × ϕ(wO) +Hj−1 × ϕ(w′O) + bO)

Algebraic Fuzzy Model Fj = σ(tj × ϕ(wF ) +Hj−1 × ϕ(w′F ) + bF )
for LSTM cell Aj = tanh (tj × ϕ(wA) +Hj−1 × ϕ(w′A) + bA)

Cj = Fj ◦ Cj−1 + Ij ◦ Aj
Hj = Oj ◦ (tanhCj)

(4)

Consequently, different fuzzy deep mutant models M ′ could be constructed with respect
to the Equation 4. A set L of generated mutant model M

′
modeled by NL(M,ϕf , ρ, ε) would

be used to test the robustness of the model M (see the Figure 7).

In addition, robustness is determined with respect to a tolerance range ε ∈ [0, 1] which
expresses that a model M is robust in regards to a ε tolerance. The issue is to analyze
performance improvement of original Deep LSTM Model M in relation to ϕ-stress intensity
threshold ρ and for a robustness tolerance region.

4.3. ϕ-Stress Dispersion Tuning and Validation

We now consider an original pre-trained Deep LSTM model M and a set of its model-level
mutants M ′, which is generated by a given ϕ stressing operator. We notice that robustness
testing efficiency of the model M depends on the quality of generated mutant models M ′.
Consequently, the choice of ϕ stress function and its intensity ρ are crucial for the quality
of our robustness framework.
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Figure 5: Fuzzy Deep LSTM-NN Network
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Figure 6: Fuzzy LSTM cell
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Figure 7: Mutant models M ′ = NL(M,ϕ, ρ, ε) for pre-trained Deep Model M .

So, to tune correctly the ρ-threshold stress parameter, we have evaluated the dispersion
index of gaussian ϕg and deep gaussian ϕf stressing operators. Furthermore, to strengthen
and to refine the quality of ϕ-stress functions one could also adopt learning techniques
with their k-fold cross-validation procedure to evaluate ρ hyperparameter for the proposed
ϕρ-stress.

In our proposed robustness testing framework for RUL prediction Deep LSTM models,
the Weierstrass function W(a,b) [26] was defined as a stress reference function with respect
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to its sensitivity. Besides, for ϕ stress tuning and validation a set of (×10000) values was
considered from Weierstrass function W(a,b). This latter ensures a formal statistical hypoth-
esis on the degree of randomness for different ρ stressing values. Also, the scale variation
hypothesis is considered to describe the stress ϕ functions and a scale deviation with its
corresponding index dispersion characterizes the parameter ρ for the corresponding ϕ stress
operator.

After varying ρ in the interval [0, 1] and applying the stress operators ϕ on n values
set of Weierstrass function, one can estimate the dispersion index (σ2/µ) of the observed
distribution variation between the original Weierstrass set values {W(a,b)(xi) | i ∈ [1, n]}
and their corresponding ϕ-stressed values {ϕ(ρ, W(a,b)(xi)) | i ∈ [1, n]} in respect to a given
hyperparameter threshold ρ (see Table 3 and Table 4).

ρ-threshold σ-stdeviation scale-stdeviation µ-mean Index σ2/µ

0.05 0.000001 1.0× 10−6 0.0000003 0.0000033
0.10 0.0000009 9.0× 10−7 0.0000003 0.0000027
0.15 0.0000078 7.8× 10−6 0.0000039 0.0000156
0.20 0.0000072 7.2× 10−6 0.0000029 0.0000179
0.25 0.0000259 2.59× 10−5 0.0000092 0.0000729
0.30 0.0000813 8.13× 10−5 0.0000374 0.0001767
0.35 0.0000916 9.16× 10−5 0.0000411 0.0002041
0.40 0.0002318 2.318× 10−4 0.000103 0.0005217
0.45 0.0007187 7.187× 10−4 0.0003145 0.0016424
0.50 0.0025114 2.5114× 10−3 0.0011536 0.0054673
0.55 0.0026653 2.6653× 10−3 0.0010538 0.0067412
0.60 0.0067376 6.7376× 10-3 0.0028339 0.0160187
0.65 0.0241251 2.41251× 10−2 0.0070331 0.0827545
0.70 0.027344 2.7344× 10-2 0.0082145 0.0910213
0.75 0.2508882 2.508882× 10-1 0.0903887 0.6963801
0.80 0.2548509 2.548509× 10−1 0.0900848 0.720976
0.85 0.2332845 2.332845× 10−1 0.0889307 0.6119558
0.90 2.6054599 2.6054599× 100 0.9998489 6.7894472
0.95 2.087747 2.087747× 100 0.7539066 5.7814689
1.0 23.983631 2.3983631× 10+1 8.3560683 68.837943

Table 3: The ρ-threshold parameter tuning, for deep stress ϕf

When the dispersion index (σ2/µ) is equal to 1, the stress is considered as a poisson pro-
cess and the mutant models M

′
are well-dispersed. Once more, if the dispersion index is less

than 1, the constructed mutant models M
′

are defined as under-dispersed. This indicates
that the stress function is regular and periodic and the mutant models M

′
are really near

from the original model M . In this case, difference pattern measures of Weierstrass set of
values with respect to their stressed values are under-dispersed and the stress will not be
conclusive. Even more, for an index dispersion larger than 1, the difference suite set (original
values - stressed values) is over-dispersed, and mutant models M

′
are highly diversified and
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ρ-threshold σ-stdeviation scale-stdeviation µ-mean Index σ2/µ

0.05 0.3108847 3.108847× 10−1 0.1372421 0.704225
0.10 0.6329393 6.329393× 10−1 0.3293736 1.2162848
0.15 0.8996437 8.996437× 10−1 0.4576311 1.7685832
0.20 1.2344517 1.2344517× 100 0.5150154 2.9588841
0.25 1.5386008 1.5386008× 100 0.5985575 3.954996
0.30 1.925791 1.925791× 100 1.099937 3.3717124
0.35 2.0713309 2.0713309× 100 0.9726125 4.4112239
0.40 2.30051 2.30051× 100 0.9484754 5.5798456
0.45 2.8412925 2.8412925× 100 1.2642861 6.3853769
0.50 3.051444 3.051444× 100 1.5096636 6.1678048
0.55 3.1224808 3.1224808× 100 1.453115 6.7096454
0.60 3.9597845 3.9597845× 100 1.9854777 7.8972901
0.65 3.9870738 3.9870738× 100 1.9026672 8.3549858
0.70 4.1758926 4.1758926× 100 2.1342777 8.1704828
0.75 4.4210885 4.4210885× 100 2.2468422 8.699331
0.80 4.7083735 4.7083735× 100 2.4729038 8.964676
0.85 5.4860879 5.4860879× 100 2.9822877 10.091971
0.90 4.9955571 4.9955571× 100 3.2179195 7.7551942
0.95 5.7202667 5.7202667× 100 2.5832466 12.666794
1.0 5.9164803 5.9164803× 100 3.6374172 9.6235148

Table 4: The ρ-threshold parameter tuning, for Gaussian stress ϕg.

are not good for the model M robustness testing. This is due to the fact that the generated
mutant models M ′ are in a widely range dispersion.

From Tables 3 and 4, it can be noticed that gaussian stress function ϕg goes quickly to
an overdispersion of the mutant models M ′ when ρ exceeds 0.05. In contrast, deep stress
function ϕf is better in terms of smooth stressing, and it covers all stress categories under,
well, and over dispersions. Considering the two stress functions ϕf and ϕg, we have retained
for our experiments, the ρ values introduced in Table 5.

Indeed, the threshold ρ = 0.60 and ρ = 0.70 for the ϕf stress function cover the range
ρ variation in [0.05, 0.75[ and represent an under dispersed generation of mutant models
M ′ (see Table 3). The value ρ = 0.75 is defined for the threshold range [0.75, 0.90[ and
characterize the well-dispersed mutant models. Finally, when ρ ∈ [0.90, 1.0], the models
M ′ are overdispersed (see index dispersion in Table 3). However, for the more sensitive ϕg,
we have chosen two ρ parameter values. First, ρ = 0.05 for nearest well-dispersed mutant
models and second, ρ ∈ {0.35, 0.60} for far overdispersed models M ′. In Table 5, we can see
clearly that when a dispersion index between Weierstrass values and theirs ϕ-stressed ones
is in the neighborhood of 1, the mutant models M ′ are considered as well-dispersed and so,
useful for the robustness testing of the model M .
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ϕ-Stress ρ-threshold σ-stdeviation scale-stdeviation µ-mean Index σ2/µ

Deep Gaussian —– —– —– —– —–
Stress ϕf

ϕf 0.60 0.0067376 6.7376× 10-3 0.0028339 0.0160187
ϕf 0.70 0.027344 2.7344× 10-2 0.0082145 0.0910213
ϕf 0.75 0.2508882 2.508882× 10-1 0.0903887 0.6963801
ϕf 0.90 2.6054599 2.6054599× 100 0.9998489 6.7894472

Gaussian —– —– —– —– —–
Stress ϕg

ϕg 0.05 0.3108847 3.108847× 10-1 0.1372421 0.704225
ϕg 0.35 2.0713309 2.0713309× 100 0.9726125 4.4112239
ϕg 0.60 3.9597845 3.9597845× 100 1.9854777 7.8972901

Table 5: The ρ-threshold parameter tuning for stress ϕ.

5. ε-Robustness for Deep LSTM model

Several Deep LSTM RUL prediction models were published in [30, 31, 32, 33] to provide
their competitive positions in terms of correctness (i.e. RMSE, Equation 5) and quality (i.e.
Scoring with an error E, Equation 6). Thus, the smaller are RMSE and Scoring [8, 34, 24],
the better are result and precision of the proposed RUL prediction model.

R =

√√√√ 1

n

n∑

i=1

Ei
2 (5)

S =
∑i=1

n (e
−Ei
13 − 1) for (Ei < 0)∑i=1

n (e
−Ei
10 − 1) for (Ei >= 0)

(6)

Indeed, RUL prediction metrics enable to find best weights wI , wO, wF , wA, w′I , w
′
O,

w′F , w
′
A and biases bI , bO, bF , bA for minimizing the Rul function defined in Equation 7 (i.e.

the variation between real remaining useful life Rj
calc and computed value Rj

est, in a state
j).

Rul =
∑

j

(Rj
est −Rj

calc)2 (7)

The performance robustness of a Deep LSTM model M is defined with respect to RMSE
metricRM and Scoring SM . Thus, each mutant model M ′ associated with the original model
M has a performance determined by ratio deviations introduced in Equations 8 and 9. These
ratio metrics determine the deviation of the mutant model M ′ from the original model
M . When these ratios are zero, the models M and M ′ are similar. Here, the maximum
performance deviation between M ′ and M was considered as equal to 1 (i.e. this represents
the maximum deviation of M ′ from the original model M in terms of RMSE and scoring
measurements).
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Rs =

∣∣∣∣
RM′ −RM
RM

∣∣∣∣ (8)

Ss =

∣∣∣∣
SM′ − SM
SM

∣∣∣∣ (9)

To integrate correctness Rs and quality Ss deviations of a mutant M ′ from a ϕ-stressed
Deep LSTM model M , we define the robustness of M as a linear evolution expression of its
mutant models (Proposition 1).

Proposition 1 (Robustnessα). A Robustness for a model M is defined as the combination
of the shift performance Ss and Rs of its mutant models M ′, with respect to the characterized
α parameter.

Robustα = (1− α) ∗Rs + α ∗ Ss , α ∈ [0, 1], ∀M ′ (10)

We notice that the parameter α is used to measure the combined impact of scoring sen-
sitivity (Quality) and the RMSE specificity (Correctness) of the mutant models M ′. If the
shift performances are impacted in the same manner, the formula in Equation (10) will be
(Rs + Ss)/2 and the parameter α is used to be 0.5.

Additionally, an ε-Robustness of a model M was introduced as the tolerance perfor-
mance response of M with respect to ϕ-stress function and its ρ intensity stressing on M
(Proposition 2).

Proposition 2 (ε-robustness). Let ε be a given value in [0, 1]. An ε-robustness for a
model M is defined as the robustness Robustε

α of the mutant models M ′ for the ε parameter.

Robustε
α =

{
1 if (1− α) ∗Rs + α ∗ Ss ≤ ε
0 else

(11)

Consequently, robustness and ε-robustness of a model M were considered as a combined
measure relative to the ε parameter [35, 36]. This means that when ε tends to 1, the ro-
bustness range of the model M has a large tolerance to the stress and many possibilities of
robust deep models can be constructed.

Otherwise, when the ε comes close to zero, the robustness range of M is sensitive to
the ϕ-stresses, and limited ε-robustness models are considered (see Algorithm 3). The ε-
robustness for M is defined in the interval range [0, 1] as the mean of the shift performance
metrics of the mutants M ′.
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Algorithm 3: Robustnessε(T, T
′,W) : {true, false}

Data: T : Data sets training;
T ′ : Data sets Testing;
W : Random suite Weierstrass set values;
Result: true/false;

1 % Initialisation
2 Let given ε;
3 Generation of Deep LSTM Network M using T ;
4 Construction of ϕ-stress operator using W ;
5 % initial ρ0 intensity and its dispersion index by regards to W ;
6 ρ← ρ0;
7 % Tuning stress ρ intensity for a given ϕ operator;
8 while (ρ is not eligible) do;

9 ρ← ρ
′
;

10 Computing of the new ρ and its dispersion index;
11 endwhile
12 Mutants M ′ generation of the Network Model M using Fuzzing ϕ-Operator and

intensity ρ;
13 % Robustness Testing
14 Computation of performance metrics Rs and Ss on data sets testing T ′;
15 ε-Robustness testing of M for data sets testing T ′;
16 if (M is ε-Robust) then return true;
17 else return false;

6. Experiments

In our experiments, we suppose that under a normal and healthy condition states, the
engine’s life decreases progressively until the occurrence of a failure or a run-to-failure event.
The goal is to predict the remaining useful cycles (RUL) of a system component and deduce
cycles numbers before a raw data failure, which allows performing maintenance in time and
to avoid any crashing.

6.1. Data Sets

We have used for the validation of our proposed framework, the C-MAPSS - Commercial
Modular Aero-Propulsion System Simulation - data sets [37]. These data sets were considered
as well characterizing fault evolution since the C-MAPSS experiment simulations are carried
out under different combinations of operational conditions and failure modes (see Table 6).
More specifically, several sensor channels are used to track the wear evolution of a turbofan
engine degradation. The generated data sets are organized in four data subsets with 26
criteria and many data rows, where each row includes a unit engine identity (id) and a
current working cycle number Ncycle.
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Data Sets (size) fd001 fd002 fd003 fd004

Training Data-set 20631 53759 24720 61249
Testing Data-set 13096 33991 16596 41214

Min. cycles to failure (TR) 128 128 145 128
Max. cycles to failure (TS) 362 378 525 543

Min. cycles with no failure (TS) 31 21 38 19
Max. cycles with no failure (TS) 303 267 475 486

#Engines (TR) 100 260 249 249
#Engines (TS) 100 259 100 248

Oper. conditions 1 6 1 6
Fault conditions 1 1 2 2

Table 6: C-MAPSS : Training(TR) and Testing(TS) data sets

6.2. Experimental guides

Let us consider Deep LSTM model M for RUL prediction, characterized by its RMSE
RM and scoring SM . We have constructed for M , a set of mutant models M ′ generated by
applying different intensities ρ of the ϕ-stress functions introduced previously in Section 4.
The stresses affect the LSTM cells weights {wA, w′A, wI , w′I , wO, w′O, wF , w′F} in a holistic
manner, under the condition that an LSTM cell component (ie. INPUT, IN-Gate, OUT-
Gate, and FORGET-Gate functions) should not be stressed on their input and output at
the same time.

Furthermore, to carry out robustness testing, stress intensity ρ, and robustness tolerance
ε parameters were tuned for index dispersion of the ϕ-stress (see Table 5). Therefore, ρ is
setted to {0.60, 0.70, 0.75, 0.90} for deep gaussian ϕf , and to {0.05, 0.35, 0.60} for gaussian
ϕg function. Concerning the tolerance robustness parameter ε, the thresholds were fixed
respectively to {0.05, 0.50, 0.90} for minimal, medium, and maximal.

Throughout our experiments, a mutant Deep LSTM network for RUL prediction M ′ is
characterized by M ′ = N(M,ϕ, ρ, ε), where ϕ is the stress operator, ρ the stress intensity,
and ε the robustness tolerance of the model M . For this original model M , we considered 4
layers, and 4 cell LSTM components for each layer, with seven 7 ϕ-stress intensities ρ and
3 categories of tolerance robustness. Thus, the total mutant models M ′ for our experiments
is |4| × |4| × |7| × |3| = 336 mutant models.

6.3. Results and Discussion

In this stage, we consider the hyper-parameters ε and ρ for robustness testing of a pre-
trained deep model M using its 336 mutant models M ′. Firstly, we considered the tolerance
of robustness threshold ε in its different tolerance levels: minimal (0.05), medium (0.50)
and maximal (0.90), independently of parameters ρ, layers L, and weights W . We notice,
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in Table 7, that Deep LSTM model M robustness is linearly proportional to the tolerance
ε over all data sets. It can be seen for df00x that intrinsic robustness criterion of a Deep
LSTM network is not covered with only ε tolerance parameter.

N(M,ϕ, ρ, ε) ε-Robustness ε-Robustness ε-Robustness ε-Robustness ε-Robustness
fd001 (%) fd002 (%) fd003 (%) fd004 (%) fd00x (%)

N(M,ϕ, ρ, 0.15) 43 41 37 50 43
N(M,ϕ, ρ, 0.50) 49 48 46 56 50
N(M,ϕ, ρ, 0.90) 54 53 50 63 55

Table 7: ε-robustness percentage of 336 mutants

Secondly, we studied the ε-robustness of model M using the mutant networks over in-
tensity ρ variation for the stress operators ϕf and ϕg (see Table 8). It is clear that when
the stress intensity ρ grows the robustness of the model M tends to be reduced. Also, the
ϕf seemed to be better for our framework, since the stress ϕg function is more sensitive (see
bold values in Table 8).

N(M,ϕ, ρ, ε) ε-Robustness (%) ε-Robustness (%) ε-Robustness (%)
εminimal = 0.15 εmedium = 0.50 εmaximal = 0.90

Deep Gaussian Stress ϕf —– —– —–

N(M,ϕf , ρ = 0.60, ε) 99 99 99
N(M,ϕf , ρ = 0.70, ε) 95 93 88
N(M,ϕf , ρ = 0.75, ε) 80 72 59
N(M,ϕf , ρ = 0.90, ε) 20 15 07

Gaussian Stress ϕg —– —– —–

N(M,ϕg, ρ = 0.05, ε) 48 43 34
N(M,ϕg, ρ = 0.35, ε) 26 16 07
N(M,ϕg, ρ = 0.60, ε) 18 09 04

Table 8: ε-robustness percentage over ρ variation

Finally, we chose ϕf stress function with the associated ρ intensities values {0.60, 0.70, 0.75}
to discuss the internal logic LSTM model layers and weights stressing for the model M . This
is due to the fact that ϕf is adequate for our robustness testing framework and some gener-
ated mutant models M ′ have better performance than M , in terms of correctness (RMSE)
and quality (Score). The impact of the ρ ∈ {0.60, 0.70, 0.75} variation on the different lay-
ers Li=1···4, indicates that layers are more impacted when stress intensity increases, and also
layer 1 seemed to be more sensitive with regards to the others layers (see Tables 9, 10 and 11).
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N(M,ϕ, ρ, ε = 0.15) Layer ε-Robustness ε-Robustness ε-Robustness ε-Robustness
#L fd001 (%) fd002 (%) fd003 (%) fd004 (%)

Stress Intensity ρ = 0.60 —– —– —– —– —–

N(M,ϕf , 0.60, ε) 1 100 100 100 86
N(M,ϕf , 0.60, ε) 2,3,4 100 100 100 100

Stress Intensity ρ = 0.70 —– —– —– —– —–

N(M,ϕf ,0.70, ε) 1 63 75 75 75
N(M,ϕf , 0.70, ε) 2 100 100 63 100
N(M,ϕf , 0.70, ε) 3 100 100 63 100
N(M,ϕf , 0.70, ε) 4 100 100 100 100

Stress Intensity ρ = 0.75 —– —– —– —– —–

N(M,ϕf ,0.75, ε) 1 25 38 38 25
N(M,ϕf , 0.75, ε) 2 86 75 38 75
N(M,ϕf , 0.75, ε) 3 75 75 0.0 88
N(M,ϕf , 0.75, ε) 4 75 88 75 75

Table 9: ε-robustness percentage over the layers for ε = 0.15

N(M,ϕ, ρ, ε = 0.50) Layer ε-Robustness ε-Robustness ε-Robustness ε-Robustness
#L fd001 (%) fd002 (%) fd003 (%) fd004 (%)

Stress Intensity ρ = 0.60 —– —– —– —– —–

N(M,ϕf ,0.60, ε) 1 100.0 100.0 100.0 87.5
N(M,ϕf , 0.60, ε) 2,3,4 100.0 100.0 100.0 100.0

Stress Intensity ρ = 0.70 —– —– —– —– —–

N(M,ϕf ,0.70, ε) 1 87.5 75.0 87.5 75.0
N(M,ϕf , 0.70, ε) 2 100.0 100.0 87.5 100.0
N(M,ϕf , 0.70, ε) 3 100.0 100.0 75.0 100.0
N(M,ϕf , 0.70, ε) 4 100.0 100.0 100.0 100.0

Stress Intensity ρ = 0.75 —– —– —– —– —–

N(M,ϕf ,0.75, ε) 1 37.5 62.5 62.5 37.5
N(M,ϕf , 0.75, ε) 2 100.0 75.0 37.5 87.5
N(M,ϕf , 0.75, ε) 3 75.0 100.0 37.5 87.5
N(M,ϕf , 0.75, ε) 4 87.5 87.5 87.5 87.5

Table 10: ε-robustness percentage over the layers for ε = 0.50

Now, we discuss the ε-robustness of the model M for a ϕ-stress intensity ρ = 0.75 over
the variation of ε. The percentage of the mutant models M ′ retained for the robustness
of the pre-trained deep model M is exposed in more detail in Figure 12. The maximum
(respectively minimum) percent of tolerant models by type of data-set indicates that fd003
is more impacted by the ϕ-stress operators.

For the stressed weights in Table 13, it seems that INPUT function node A is more sensi-
tive than the others. Also, the IN-Gate, OUT-Gate, and FORGET-Gate functions respond
in the same way for a given ρ stressing.
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N(M,ϕ, ρ, ε = 0.90) Layer ε-Robustness ε-Robustness ε-Robustness ε-Robustness
#L fd001 (%) fd002 (%) fd003 (%) fd004 (%)

Stress Intensity ρ = 0.60 —– —– —– —– —–

N(M,ϕf ,0.60, ε) 1 100.0 100.0 100.0 87.5
N(M,ϕf , 0.60, ε) 2,3,4 100.0 100.0 100.0 100.0

Stress Intensity ρ = 0.70 —– —– —– —– —–

N(M,ϕf ,0.70, ε) 1 87.5 75.0 87.5 87.5
N(M,ϕf , 0.70, ε) 2 100.0 100.0 100.0 100.0
N(M,ϕf , 0.70, ε) 3 100.0 100.0 87.5 100.0
N(M,ϕf , 0.70, ε) 4 100.0 100.0 100.0 100.0

Stress Intensity ρ = 0.75 —– —– —– —– —–

N(M,ϕf ,0.75, ε) 1 62.5 62.5 75.0 50.0
N(M,ϕf , 0.75, ε) 2 100.0 87.5 75.0 100.0
N(M,ϕf , 0.75, ε) 3 75.0 100.0 50.0 87.5
N(M,ϕf , 0.75, ε) 4 87.5 87.5 87.5 87.5

Table 11: ε-robustness percentage over the layers for ε = 0.90

N(M,ϕ, ρ = 0.75, ε) Layer ε-Robustness ε-Robustness ε-Robustness ε-Robustness
#L fd001 (%) fd002 (%) fd003 (%) fd004 (%)

Robustness tolerance ε = 0.15 —– —– —– —– —–

N(M,ϕf , ρ, 0.15) 1 25 38 38 25
N(M,ϕf , ρ, 0.15) 2 86 75 38 75
N(M,ϕf , ρ, 0.15) 3 75 75 0.0 88
N(M,ϕf , ρ, 0.15) 4 75 88 75 75

Robustness tolerance ε = 0.50 —– —– —– —– —–

N(M,ϕf , ρ, 0.50) 1 37.5 62.5 62.5 37.5
N(M,ϕf , ρ, 0.50) 2 100.0 75.0 37.5 87.5
N(M,ϕf , ρ, 0.50) 3 75.0 100.0 37.5 87.5
N(M,ϕf , ρ, 0.50) 4 87.5 87.5 87.5 87.5

Robustness tolerance ε = 0.90 —– —– —– —– —–

N(M,ϕf , ρ, 0.90) 1 62.5 62.5 75.0 50.0
N(M,ϕf , ρ, 0.90) 2 100.0 87.5 75.0 100.0
N(M,ϕf , ρ,0.90) 3 75.0 100.0 50.0 87.5
N(M,ϕf , ρ,0.90) 4 87.5 87.5 87.5 87.5

Table 12: ε-robustness percentage over the layers for ε
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N(M,ϕ, ρ, ε = 0.90) #w fd001 (%) fd002 (%) fd003 (%) fd004 (%) fd00x (%)

Weights for Node A —– —– —– —– —– —–

N(M,ϕ, ρ, ε) wA 28.57 35.71 25.0 35.71 31.25
N(M,ϕ, ρ, ε) w′A 39.29 35.71 32.14 39.29 36.61

Weights for Node I —– —– —– —– —– —–

N(M,ϕ, ρ, ε) wI 60.71 67.86 50.0 75.00 63.39
N(M,ϕ, ρ, ε) w′I 64.29 60.71 64.29 75.00 66.07

Weights for Node O —– —– —– —– —– —–

N(M,ϕ, ρ, ε) wO 57.14 57.14 53.57 67.86 58.93
N(M,ϕ, ρ, ε) w′O 60.71 57.14 67.86 71.43 64.29

Weights for Node F —– —– —– —– —– —–

N(M,ϕ, ρ, ε) wF 57.14 57.14 57.14 64.29 58.93
N(M,ϕ, ρ, ε) w′F 64.29 50.0 53.57 75.00 60.72

Table 13: ε-robustness percentage over ρ for LSTM cell weights and ε = 0.90

7. Conclusion

In this paper, we have developed a robustness testing framework for RUL prediction
Deep LSTM model M . The proposed framework introduces also ε-robustness testing for
RUL prediction Deep LSTM models. The metrics and measures used in our framework are
RMSE and scoring RUL prediction estimates. We adopted a model-level mutation tech-
nique to generate mutant model M ′ for a pre-trained model M . This is highly desirable
for less consuming time with regards to the source-level and program-level mutations where
we have to train the mutant models from scratch zero. The stressing ϕ-functions in the
robustness testing framework, were defined and validated using the Weierstrass function
known to be continuous everywhere but differentiable nowhere. Then, ϕ-stress operators
were holistically applied on the model M , impacting the weights of the LSTM cells and
layers of the RUL prediction deep learning network. It should be noted that in our frame-
work a better RMSE accuracy and scoring quality values for a deep LSTM network for RUL
prediction were ensured, as well as an adequate ε-robustness performance to avoid having
Deep LSTM models closely related to the training/testing data sets. The proposed robust-
ness testing framework enables to improve quality evaluation, to reinforce confidence, and
to build explainable data-independent Deep LSTM Models for RUL prediction.

The results of our experiments indicate the relevance of the proposed framework in
estimating the reliability of layers and weights for RUL prediction Deep LSTM Network.
Moreover, tuning of stress ρ and ε hyper-parameters should be done adequately to respond
to the robustness quality of a specific LSTM deep model for RUL prediction. The issue is to
enhance and/or adapt our framework to different domain expertise, having into account the
data knowledge vision. In perspective, many questions related to the data are now discussed
in the PHM field. Also, we still be concerned to analyze ϕ-stress operators for new field data
sets and to develop new optimization and learning techniques to well estimate ρ intensities
and ε robustness tolerance for RUL prediction Deep LSTM models.
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