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Abstract—This paper address the problem of scheduling pro-
duction and maintenance operation in predictive maintenance
context. It proposes a contribution in the decision making
phase of the prognostic and health management framework. The
prognostics and decision processes are merged and an ant colony
optimization approach for finding the sequence of decisions that
optimizes the benefits of a production system is developed. A case
study on a single machine composed of several components where
machine can have several usage profiles. The results show that
our approach surpasses classical condition based maintenance
policy.
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I. INTRODUCTION

Nowadays, the industry sector is experiencing an economic
pressures due to the highly competitive environment driven by
the market requirements. Which motivated the manufacturers
to optimize their process in term of time, cost and quality.
In order to do so, companies are focusing on production and
maintenance activities improvement. Therefore, one can find
considerable number of research work on these two major
activities of the industry sector.

In the last decades, production scheduling, an important
task of manufacturing, has been extensively studied. One can
find several works in the literature that aims to optimize the
production planning of manufacturing system. One can refer
to [1], [2], [3] and [4], for more information about production
scheduling optimization and the various existing method to do
so.

On the other hand, maintenance had its fair share of
attention. Maintenance evolved from corrective maintenance
where interventions are made after the failure of the system
to systematic preventive maintenance where interventions are
planned in advanced based on reliability information such
as the Mean Time Between Failures. Not so long after,
the development of condition monitoring technology made a
break through in maintenance strategies, that resulted in the
Condition-Based Maintenance (CBM). With CBM, the critical
components of a system are identified, studied and supervised

to monitor their degradation level. Once the degradation level
of a component or a system exceeds a predefined threshold a
maintenance intervention is scheduled. literature reviews are
proposed on maintenance scheduling in manufacturing con-
text [5] and Condition-Based Maintenance [6]. Recently, the
prediction techniques saw the light. Subsequently, they made
one more upgrade to the maintenance policies by promoting
the predictive maintenance [7]. Where, maintenance decision
makers no longer settle for monitoring critical components and
assessing their health status, but they predict the future states
of the components and the system. Therefore it is possible
to estimate how long a system will take to reach a failure
state or a certain failure or event. The estimated duration
is called Remaining Useful Life (RUL). The framework of
monitoring, signal processing, health assessment, diagnostics,
prognostics and decision making is called Prognostics and
Health Management (PHM).

The maintenance planning and production scheduling are
usually in conflict since they perform on the same resources.
Although, undoubtedly, the fusion of these two activities will
increase the agility of the manufacturing systems, they have
always been optimized separately. One can still find a lot
of works in literature that aims at optimizing one activity
regardless of the other, yet in the last decade, one can easily
notice the emergence of the optimization of maintenance
and production scheduling simultaneously. Kaabi et al. [8],
developed four heuristics to minimize the total tardiness of
jobs on a single machine subject to systematic preventive
maintenance. Benbouzid et al. [9], presented a sequential
strategy and an integrated one to schedule maintenance and
production activities in a flow shop. Few years later, Khe-
lifati and Benbouzid-Sitayeb [10] proposed a multi-objective
genetic algorithm to solve the same problem in a job-shop
workshop. Najid et al. [11], optimized the joint scheduling of
production and systematic maintenance for a multiple objects
lot-sizing problem using a mixed integer linear programming.
Fitouhi and Nourelfath [12], integrated noncyclical preventive
maintenance scheduling and production planning for multi-
state machines in order to minimize the total cost through a
simulated annealing algorithm.978-1-7281-1317-3/19/$31.00 © 2019 IEEE



The implementation of PHM techniques was the scope of
several research papers in different decision making aspects,
automatic control [13], logistics [14], mission assignment [15]
and in particularly the mixed problem of production and
maintenance scheduling. Pan et al. presented in [16], a math-
ematical programming formulation to minimize the maximum
tardiness of a single machine by simultaneously scheduling
production and predictive maintenance based on it’s RUL.
Varnier and Zerhouni in [17], solved the joint scheduling
problem for a flow-shop workshop where the machines have
two production modes that influences their degradation by
optimizing the aggregated sum of makespan and maintenance
delays. Fitouri et al. [18], proposed a heuristic to solve the
problem of job shop production and predictive maintenance
scheduling for a job shop based on prognostic information.
The proposed approach aims at minimizing the makespan
and the total cost of maintenance. Ladj et al. [19] solved
the integrated production and maintenance scheduling for a
multi-functional single machine, in order to minimize the
total maintenance cost, where each job is characterized by a
degradation level. Later, Ladj et al., in [20], presented a hybrid
of variable neighbor search and fuzzy logic to solve predictive
maintenance and production scheduling for a permutation flow
shop where each of the considered machines has its deterio-
ration level, remaining useful life and a future degradation
value when processing each kind of job. Liu et al. [21], used
the health states and the RUL of a single machine to jointly
schedule production activities and maintenance actions in the
aim of minimizing the total cost. Bencheikh et al., presented in
[22], a process to solve the joint problem for a multi-machine
workshop using multi-agent systems. The agents are used to
model the machines and the tasks. As the agents negotiate
the schedule of production and maintenance based of the
health states of the machines. Cheng et al. [23], presented a
methodology to solve the problem of scheduling production
and maintenance on a single machine while including the
quality management of the produced parts.

In the previous studies, either a unique estimation of the
RUL or the health indicators of the machines was performed
and the obtained values is compared against a threshold to
schedule maintenance regardless of the tasks being processed.
Or the production tasks have a predetermined value of the
amount of RUL they are consuming. However, the degradation
of the machine under a new task depends of the initial
degradation of the machine and the operational profile used
to perform the task. This paper presents a solution for the
problem of jointly scheduling maintenance and production
tasks on a single machine while dynamically incorporating
the new available health indicators. A modified Ant Colony
Optimization (ACO) algorithm is used to solve this problem
in order to maximize the total profit of the workshop over a
simulation period.

The remaining of the paper is organized as follows. In
section II, the integrated scheduling problem is detailed.
A modified ACO algorithm and a classic process of joint
scheduling using Moore algorithm and CBM are presented

in section III. The developed algorithms are tested on a case
study and the obtained results are discussed in section IV.
Finally a conclusion of the works and some future works are
given in the last section.

II. PROBLEM STATEMENT

A. Machine Model

In order to implement Prognostics and Health management
techniques in the resolution of the joint problem of scheduling
maintenance and production, one needs to define the prob-
lem in a PHM context. Thus we are going to consider for
this problem a single machine that is capable to produce
N types of products (where these products are different in
the production process, type of material, etc...) and with M
different operational profiles. An operational profile can be
considered as a speed, or production rate. The considered
machine is composed of L components. Interactions between
components can be divided into three categories, economic,
structural and stochastic dependencies [24]. In this problem
only structural dependencies will be considered between the
components of the system, in a way that if one component
fails the whole system fails. Each component of the system is
supposed to be subject to a degradation only when the machine
is producing. The degradation of a component is also supposed
to be influenced by the task the machine is processing and by
the profile of execution of the task. For simulation purposes,
we used an exponential function as a degradation model for
each component. Thus the degradation of component l while
producing product n with the profile j is given in equation 1.

Dl,n,j(x) = al × (expbl×Sj×ρn,l×x−1) (1)

Where al and bl are two parameters that defines the scale
of the exponential function for a component l. Sj is the
coefficient that reflects the influence of production profile j
on the degradation of the component. ρn,l reflects the severity
of producing product n on the degradation of the component.

The RUL of component l is defined as the time left where
component l can still produce before its degradation level
reached a failure threshold noted thl.

B. Production Problem

The production problem consists of the scheduling of K
production order. Each production order k has a release date
rk, a due date dk, a deadline Dk and a quantity Qk of a product
type to be manufactured. The machine is able to produce at
most one production order at a moment. The production orders
are available at their release date and should be finished before
their due date. If the order is done after its due date, then a
penalty will be paid by the company for tardiness, and the
amount of the penalty is independent to the duration of the
tardiness. Any order that exceeds its deadline is considered as
a lost opportunity.

The scheduled order k with a chosen production profile j
is defined in this work as a local decision of production. Thus



such a local decision has a cost and an estimated gain that are
described in equation 2 and 3 respectively.

Cp(k) = Qk ∗ Cn,j + uk ∗Qk ∗ LPn (2)

Gp(k) = Qk ∗ Pn (3)

With Cn,j is the price of producing one unit of product n
with production profile j, uk is equal to 1 if the order k is
finished late otherwise 0, LPn is a tardiness penalty for the
product n and Pn is the selling price of one unit of product
n.

C. Maintenance Problem

To guarantee the availability of the machine and its reliabil-
ity, some maintenance activities needs to be scheduled from
time to time to replace the compromised components. Once a
component is maintained it is considered to be in an “as good
as new” state. The scheduling of a maintenance activity for
a group of components (noted PM ) is defined in this work
as a local decision of maintenance. The maintenance activity
does not have a direct effect on the estimated gain. Therefore,
the gain of a maintenance local decision Gm is equal to zero.
On the other hand, the cost of a maintenance local decision is
defined in equation 4.

Cm(l ∈ PM) =
∑
l∈PM

(Ml + PRULl ∗REPl) (4)

With :

REPl =

{
RULth −RULl if RULth < RULl

0 otherwise (5)

Where RULl is the RUL of component l, RULth is a prede-
fined threshold for the RUL of component l and PRULl is a
penalty on the not used portion of the maintained component.

D. Production and Maintenance Scheduling Strategy

The objective behind this application is to find the suitable
compromise between the production and the maintenance
activities. As a matter of fact, the aim is to establish a set-
tlement between producing with different production profiles
and maintaining the system to maximize the factory benefits
over a simulation horizon SH . The simulation horizon will
be divided into smaller decision horizon called steps. At
each step the joint schedule of maintenance and production
activity well be built out of the local decisions of production
and maintenance. The objective function can be described by
equation 6.

max
∑
i∈SH

Bi = max
∑
i∈SH

Gi − Ci (6)

With Bi the benefits of the ith step and Ci and Gi are
respectively the cost and the gain of the ith step as described
in equation 7 and 8.

Ci =
∑

Cp(k) +
∑

Cm + Lop ∗ (Ai − Ui −Mi) (7)

Gi =
∑

Gp(k) (8)

With: Lop is a penalty on the time where the machine is
capable of producing but it is idle for the lack of a production
order. Ai, Ui and Mi are respectively the available time for
production, the time where the machine is used to produce
and the time spent in maintenance in the ith step.

III. RESOLUTION

Most of the works in literature that implemented health
management techniques into the resolution of the joint
scheduling of production and maintenance, either estimated
only one RUL value or supposed that the effects of the deci-
sions on the degradation of the system is known in advance.
Unlike those works, the present paper treats the decision
making process of the PHM framework as interdependent with
the prognostic process. In other words, this work consider the
effect of a selected decision on the system health and the new
possible decision that can be introduced by a change in the
estimated RUL.

The idea is to adapt the PHM framework to build decision
iteratively over a decision horizon. For this, suppose that the
prognostic module can be equipped with two different algo-
rithm : (i) the first algorithm will be used to make long-term
predictions to estimate the RUL value of the system, (ii) the
second algorithm will be used to make short-term predictions
to estimate the future state of the system while executing a
local decision (i.e. the production of a job or the maintenance
of some components). To guarantee the building aspect of the
decision, a decision building module is introduced with two
main operations : (i) finding all possible jobs to schedule at
time t, (ii) evaluate the outcome of the short-term prognostics
and schedule one job of the list of feasible decisions. This
proposed framework is presented in figure 1.

In figure 1, the decision building loop is represented with
the dashed arrows, while the physical loop of decision making
is represented by the full arrows. At each execution of the
PHM process to make an integrated schedule of production
and maintenance activities, the physical loop is executed once
while the decision building loop is executed several times
depending on the parameters used to control the loop. Actually
for the decision building loop the process is the following: the
short term prognostics state is updated to match the state of the
real system, then the decision building module creates a list of
all possible decisions, the items on this list are evaluated in the
short term prognostics algorithm and a new list of the feasible
decisions is created. At last the decision building selects one
decision of the feasible list and updates the state of the short
term prognostics and so on until the duration of the decision
horizon is reached.

A. Ant Colony Optimization

To save the construction aspect of the decision, a mod-
ified Ant Colony Optimization (ACO) algorithm is set in
place. The ACO [25], is modified to incorporate the short-
term prognostics and some technicalities about the decision
building process. The modified ACO proposed is presented in
algorithm 1. Actually the decision building loop presented in



Fig. 1. PHM framework for joint scheduling

figure 1 is implemented in each ant of the colony in a way that
every ant is equipped with its own short-term prognostics and
the ant itself has the role of the decision building module. At
each execution of the decision building process, each ant of the
colony is set to build a schedule. Once all ants have built their
schedules the best schedule is selected and the pheromones
quantities on the jobs are updated and with that a new cycle
of construction is launched until the number limit of cycles is
reached.

The selection of the local decision of the list of the feasible
decisions is made with a probability selection where each
of the local decision has a selection probability defined by
equation 9.

pk(t) =
(qk)

α ∗ ( 1
C(k) )

β1 ∗G(k)β2∑
i∈List(t)(qi)

α ∗ ( 1
C(i) )

β1 ∗G(i)β2
(9)

Algorithm 1 Algorithm for the modified Ant Colony Opti-
mization
Input: List of available jobs
Output: Schedule of production and maintenance (σ∗)

Initialization :
1: Create the Colony

For every step do :
2: while cycle < CycleLimit do
3: for each ant ∈ Colony do
4: while time < DecisionHorizonDuration do
5: Find all possible local decisions
6: Evaluate the degradation level of the machine with

each possible local decisions
7: Building the feasible local decisions set
8: Select one decision of the feasible set
9: σant ← σant + selected local decision

10: Update the virtual state of the machine
11: time ← time + selected local decision duration
12: end while
13: end for
14: Update the best schedule (σ∗)
15: Update the Pheromones
16: cycle++
17: end while
18: return σ∗

B. Moore Algorithm with Condition Based Maintenance

The proposed ACO is compared to a classical method of
joint optimization of production and maintenance scheduling
without implementing the health management concept. For

this, all the equation recently presented will be the same except
for equation 4 where the RUL is no longer computed.

The maximization of the benefits is obtained by maximizing
the gain and minimizing the total cost. Thus, we focus here on
the minimization of the total cost by choosing to minimize the
cost of tardiness. Therefore we choose the Moore Algorithm
as defined in [26], for it is known to minimize the number of
tardy jobs.

The Moore algorithm is used to schedule the production
The maintenance schedule is constructed using a Condition
Based Maintenance (CBM) protocol. The resulting algorithm
is presented in algorithm 2 and for rest of this paper this
algorithm id denoted MCBM.

Algorithm 2 MCBM algorithm (Moore with Condition Based
Maintenance)
Input: List of available jobs
Output: Schedule of production and maintenance (σ)

1: while i < SimulationHorizon do
2: Inspection of the system
3: for l ∈ Components do
4: if Dl > Thresholdfailure then
5: Schedule Corrective Maintenance
6: else if Dl > Thresholdpreventive then
7: Schedule Preventive Maintenance
8: end if
9: end for

10: Schedule the rest of the period i with Moore Algorithm
11: i++
12: end while
13: return σ

IV. CASE STUDY

A. Numerical Example

To apply the proposed approach, we consider the case of
a single machine system. The machine has three components
and it is able to produce four types of product with three
different production profiles (low, medium and high speed).
• Different degradation dynamics were considered in mak-

ing the test cases in order to study the influence of the
degradation profile on the proposed approach.

• Different initial states of the system were considered,
where each component has a different initial level of
degradation.

• Three types of production orders were considered. The
categories were built according to the quality of the
demanded product; small tasks where Q ∈ [10, 50],
medium tasks where Q ∈ [30, 100] and large tasks where
Q ∈ [100, 200].

The combinations of the aforementioned parameters resulted
in around 100 test cases. The results obtained in these test
cases are presented in the next subsection.

B. Results

In this subsection, the obtained results are presented. Essen-
tially three types of results are presented; (i) general results



Fig. 2. Benefits of ACO vs MCBM

of the comparison between the ACO and the MCBM (ii) the
results of the consistency of the ACO results (iii) the variability
of the use of the different production profiles.

1) General results: Here, the results obtained by the imple-
mentation of PHM in the scheduling problem are compared
to the benefits obtained by MCBM. Both of the results are
presented in figure 2. As shown by the figure, the integration
of prognostic information in the scheduling of production and
maintenance guarantee higher benefits for the factory than
using traditional approach like MCBM. Also, the bigger the
tasks is the larger the improvement of the benefits using PHM
are.

2) Robustness of the output: To study the robustness of the
output schedule of the ACO algorithm, we run the same test
case for 100 times and we compared the obtained results over
one period. The obtained benefits are represented in figure 3.
Please note that for clarity purpose the range of the y-axis in
figure 3 is from 2150 to 2300. The maximum obtained benefits
over this period is equal to 2292, while the average benefits
and the minimum benefits is equal to 2156 and 2281.94
respectively. Over the 100 run we had only 10 results below
the average value where only 5 of them were equal to the
minimum benefits. Plus the variation of the benefits between
the worst result and the maximum result is less than 6% of the
average benefits. On the other hand the benefits obtained for
the same test case using the MCBM is equal to 1723. Thus,
the obtained results of the proposed approach is 20% more
important than the benefits of the MCBM in the worst case.
With 95% of the time, the capacity of the ACO algorithm
to produce schedules with high benefits, we judge that our
algorithm is robust toward the tackled problem.

3) Variability of the profile: One of the contributions of
this paper is the assumption that the machine can function
with different production profiles. The proposed algorithm is
supposed to alter between the different profiles (i.e. speeds)
to better manage the degradation of the components. Thus a
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Fig. 3. Benefits of the same test case

study of the variability of the chosen profile to execute the
various jobs is needed to evaluate this option. Table I present
the percentage of each of the profiles in the case of the small,
medium and large jobs.

Actually low speed production is characterized to be the
least expensive production profile and the least degradation
for the components. Thus the percentage of the use of this
speed is the highest among the different test cases. Yet the
use of low speed can effect the number of produced parts
this explain the use of other production profiles. In the case
of small jobs it is easier for the algorithm to find jobs that
can fit the remaining time before the end of the period thus
explain the low usage of the other speeds. When jobs tends to
be bigger and with higher processing time the algorithm shift
towards using more the high speed profile. By comparing the
total produced parts between the proposed algorithm and the
MCBM (table II), one can see that the frequent use of the
low speed profile does not have a big influence on the total
production. This can be explained that the machine is used
more in production in the case of ACO so the time spent by
the machine waiting for jobs is considerably less and that the
time for maintenance is lower since the degradation of the
machine is slower and no corrective maintenance is present.

TABLE I
VARIABILITY OF THE USED PROFILE

Task Size Low Speed Medium Speed High Speed
Small 74% 18% 8%

Medium 69% 19% 12%
Large 59% 20% 21%

V. CONCLUSION

In this work, we propose an ant colony optimization based
algorithm to schedule maintenance and production on a single
machine. The approach proposed is based on the integration
of health management techniques in the process of scheduling,



TABLE II
SINGLE STEP PERFORMANCE COMPARISON

Task Size Total Produced U(%) M(%) L(%)
ACO MCBM ACO MCBM ACO MCBM ACO MCBM

Small 1475 1532 96.8 85 1.2 2 2 13
Medium 1498 1574 97.9 87.5 1.5 2 1.6 10.5

Large 1592 1533 97 85 1.2 2 1.8 13

where the capability of the machine to perform the production
tasks is assessed at every step of the construction of the
schedule. Based on the predicted degradation level of the
components, the machine defines its need for maintenance
interventions. We show in this paper the importance of using
prognostic information to help solve the conflicts between
production and maintenance services. The obtained results
were compared to a classic method of production scheduling
combined with a classical periodic inspection condition based
maintenance to prove the great capacity of the PHM frame-
work. Still this work was based on strong assumptions like
the usage of exponential function to model the degradation of
the components and the availability of a high speed short term
prognostic algorithm. For future works, we aim to integrate the
uncertainties in the degradation estimation, some degradation
models are available for such goal like the gamma process.
Another future work is the use of the case based reasoning in
the loop of decision building.
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