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SCHEDULING PROBLEM AT PORT OF

TRIPOLI-LEBANON
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Abstract. The quay crane scheduling problem (QCSP) is a global
problem and all ports around the world seek to solve it, to get an ac-
ceptable time of unloading containers from the vessels or loading con-
tainers to the vessels and therefore reducing the docking time in the
terminal. This paper proposes three solutions for the QCSP in port of
Tripoli-Lebanon, two exact methods which are the mixed integer linear
programming and the dynamic programming algorithm, to obtain the
optimal solution and one heuristic method which is the genetic algo-
rithm, to obtain near optimal solution within an acceptable CPU time.
The main objective of these methods is to minimize the unloading or
the loading time of the containers and therefore reduce the waiting
time of the vessels in the terminals. We tested and validated our meth-
ods for small and large random instances. Finally, we compared the
results obtained with these methods for some real instances in the port
of Tripoli-Lebanon.

Keywords: Optimization, Quay crane, Scheduling problem, MILP,
Dynamic programming, Genetic algorithm, Case study

1. Introduction and related works

This study addresses the QCSP at port of Tripoli-Lebanon. Lebanon has two
ports, the first one is located in the north (port of Tripoli) and the other one is
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Figure 1. Vessel-quay
cranes-bays Figure 2. Quay crane

located in Beirut (port of Beirut) which is the largest port. The port of Tripoli-
Lebanon has 3 zones: water zone, land zone and dump zone with areas 2.200.000
m2, 320.000 m2 and 480.000 m2 respectively. It receives about 400 ships every
year.
In August 2016, the container transportation and shipping company CMA CGM
(Compagnie Maritime d’Affrètement (CMA) and Compagnie Générale Maritime
(CGM)) released a route from south Asia to north Europe passing by the port
of Tripoli-Lebanon, as a transshipment port. This will transfer the port from the
secondary to the main center. Therefore, about 800 containers will pass through
the port of Tripoli - Lebanon in a week, and finally the vessels will move to their
intended ports.
The quay crane is a machine used to unload containers from the vessels or to load
containers on the vessels, and the container is an enclosure for holding products
such as cars, food, wood... (Figure2). Each vessel is divided into many rows, and
many bays and contains a specific number of containers (Figure1).
(Figure reference: https://www.morethanshipping.com)
The scheduling problem is a popular problem in many maritime ports. In this
paper we propose a solution for the scheduling problem in the port of Tripoli-
Lebanon. Many researchers have proposed the QCSP and have proposed methods
for solving problems such as exact and heuristic methods. 26 of them are men-
tioned in the list below:
[8] Daganzo (1989) is one of the first searcher who studied the QCSP for multiple
container vessels. His suggestion was to divide the container vessels into bays,
where only one quay crane can work on a bay at a time. These quay cranes are
free to move quickly from one bay to another, and container vessels cannot depart
until all their bays are unloaded. Minimizing the cost of delay is the main pur-
pose, with an exact and an approximate solution method. Furthermore, a branch
and bound method for the static QCSP was developed by [22] Peterkofsky et al.
(1990), only if the quay cranes could cross over each other. Otherwise, [14] Kim
et al. (2004) discussed the QCSP with non-interference constraints, considering
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the case of a single container vessel. The main purpose was to reduce the total
completion time of all quay cranes.
[16] Lim et al. (2004) assumed that a container vessel is a job. When this job is
assigned to quay crane, there is a profit value. They found an assignment match-
ing which maximizes the total profit. A dynamic programming algorithm and a
Tabu search are used to provide a solution to the problem.
[27] Steeken et al. (2004) studied the QCSP to increase the competition’s capacity
of port container terminals.
[15] Liang et al. (2008) studied the berthing position problem and determined
the number of quay cranes assigned to each ship. The objective was to reduce
the handling time and the waiting time for each vessel. A genetic algorithm was
proposed to find the best solution.
[19] Moghaddam et al. (2008) presented a novel, MIP model for the quay crane
scheduling and assignment problem, after that [28] Wang et al. (2009) determined
the sequence of unloading operation, with the objective to minimize the weighted
operation time of jobs and travel time.
[29] Wang et al. (2010) made a study to improve knowledge for quay crane and
berth scheduling.
[7] Chung et al. (2012) proposed a modified genetic algorithm to deal with the
problem and to test the optimization reliability of the proposed algorithm. A set
of well-known benchmarking problems was solved, meanwhile [31] Yi et al. (2012)
proposed a general model for the QCSP and introduced a heuristic model to solve
it. Their objective is to minimize the total handling time of all tasks.
[4] Azza et al. (2014) found the handling sequence of tasks at ship. Their objec-
tive is to minimize the time spent by the vessel at berth and minimize the total
cost. MILP and ant colony algorithm were used in the previous papers to solve
the problem. Furthermore, [9] Diabat et al. (2014) developed a formulation for
the quay crane scheduling problem and quay crane assignment which accounts for
crane position. They also proposed a resolution by genetic algorithm. Moreover,
[1] Al-Dhaheri et al. (2015) determined the sequence of unloading operations of
a vessel that a set of quay cranes will perform so that the completion time of the
operations is minimized. A mixed-integer programming (MIP) formulation was
presented for the problem.
[17] Liu et al. (2015) proposed models and algorithms for the general double-
cycling problem with internal-reshuffles, where reshuffle containers can move di-
rectly from one stack to another. A branch-and-price framework is used to solve
the problem.
[3] Al Awar et al. (2016) proposed a solution to minimize the entire processing
time for all vessels and used mixed-integer linear algorithm to solve the problem.
Then, [2] Alnaqbi et al. (2016) aimed to minimize the latest starting time for the
vessel and its handling time. They used MILP and a hybrid algorithm to solve the
problem, meanwhile [6] Boysen et al. (2016) presented a classification scheme for
the QCSP without considering the non-interference constraints between the quay
cranes. A scheme was applied to classify the existing literature, to determine the
status-quo of complexity results, and to identify future research.
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[20] Msakni et al. (2016) studied the problem of determining the assignment of
quay cranes to containers vessels and the scheduling operation by each quay crane.
They developed an exact method based on a branch-and-price algorithm.
[21] De Oliveira et al. (2016) focused on the integration of quay side operations
and the QCSP taking in consideration the minimization of the time spent and the
fuel consumption.
[18] Liu et al. (2016) studied a scheduling problem with two uniform quay cranes.
Their objective was to minimize the turn-around time of a vessel.
[32] Zhen et al. (2016) studied the quay crane and yard truck scheduling problem
to minimize the total handling time of all tasks, using a MILP solved with CPLEX
and a particle swarm optimization algorithm-based solution.
[11] Haoyuan et al. (2017) proposed a simulation model of container terminal, to
solve its quay crane scheduling problem, with the objective to optimize the short-
est total delay time for all vessels. [23] Salhi et al. (2017) proposed a model that
combines three distinct problems, namely berth allocation, quay crane assignment,
and quay crane scheduling that arises in container ports. A genetic algorithm was
developed to solve the problem and finally, [30] Xiazhong et al. (2017) found the
optimal storage location of container groups while minimizing both the maximum
completion time and the traveling time of trucks. They used MILP and tabu
search to solve the problem.
[24] Skaf et al. (2018) studied the QCSP with non-interference constraints in
the port of Tripoli-Lebanon. They proposed a mixed-integer linear programming
(MILP) model and a dynamic programming algorithm to solve the problem.
[25] Skaf et al. (2019) studied the QCSP with non-interference constraints in the
port of Tripoli-Lebanon, they proposed a genetic algorithm to solve the problem,
and finally they compared the obtained results with the mentioned port results.
The above review suggests that methods such as genetic algorithm are adapted to
solve the Quay Crane Scheduling Problem (QCSP).
Later, [26] Skaf et al. (2019) aimed to study both the quay crane and yard truck
scheduling problem for a single quay crane and multiple yard trucks, the main ob-
jective is to minimize the total completion time for all containers. They proposed
a MILP and a dynamic programming to solve the problem.
Table 1 shows a classification of works according to the resolution methods (exact
or heuristic) and according to the variant of the studied problem. We note that
most researchers have used the MILP as an exact method and the genetic algo-
rithm (GA) as a heuristic method to solve the QCSP.
In this study, we propose three solving methods for the scheduling problem of
unloading tasks performed by several cranes assigned to a single vessel in ports
like that of Tripoli-Lebanon. Those methods are a MILP, a dynamic programming
algorithm (DPA) and a genetic algorithm. After that, we compare all obtained
results for those methods with real results from the mentioned port.
The proposed MILP and the DPA allow us to find all possible assignments for the
quay cranes to the bays, taking into consideration the non-interference constraints
between quay cranes. Their main objective is to minimize the total completion
time.
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The proposed genetic algorithm aims to minimize the total completion time and
to find the near optimal solutions. This study allows to find the optimal com-
pletion time for a container’s vessel. We observe that the dynamic programming
algorithm provided better results than the mixed-integer linear programming in
terms of CPU time and completion time for large number of bays. Nevertheless,
the drawback of the DPA is that for larger instances, for example, for 22 bays, it
may take 4 hours to give a result, and therefore in such cases, we propose a genetic
algorithm to obtain optimal or near optimal results with a quick execution time
for the quay cranes scheduling problem without cranes crossing.

Table 1. Classification of works

References Variant
Resolution methods
Exact Heuristic

[16] Lim et al. QCSP DPA Tabu search
[15] Liang et al. QCSP GA
[9] Diabat et al. QCSP GA
[1] Al-Dhaheri et al. QCSP MIP
[19] Moghaddam et al. QCSP MIP
[7] chung et al. QCSP GA
[32] Zhen et al. QCYTSP MILP PSO
[4] Azza et al. QCSP MILP Ant-colony
[2] Alnaqbi et al. QCSP MILP Hybrid
[3] Al Awar et al. QCSP MILP
[23] Salhi et al. QCSP GA
[30] Xiazhong et al. QCYTSP MILP Tabu search
This study QCSP MILP, DPA GA

QCSP: quay crane scheduling problem
QCYTSP: quay crane and yard truck scheduling problem

Later in this paper, in section 2 we define the studied problem. In section 3 we
propose three solving methods. In section 4 we compare the results of the three
solving methods and the real results in the port of Tripoli-Lebanon. Finally, in
section 5 we give a conclusion and a direction for future research.

2. Problem definition and mathematical formulation

In this section, we provide the problem definition and the mathematical formu-
lation such as the assumptions, the needed parameters and the decision variables
used in the mathematical model.
We study a QCSP with non-interference constraints for a single vessel unloaded by
several quay cranes, as can be encountered in the port of Tripoli-Lebanon, using
three solving methods to improve the results of such port.
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2.1. Assumptions

The QCSP we study has the following characteristics:

• A single vessel is considered, which transports containers. Its surface is
divided into many bays and each bay contains a specific number of con-
tainers put in a row or over each other. (cranes number<bays number)

• The quay cranes move along a single-track, this means that they work
without any crossing between them.

• Each quay crane is able to unload containers from only one bay at a time,
when it completes its work in the current bay, it can pass to the next one.

• Each quay crane can unload one container at a time.
• Each bay is handled by at most one quay crane at a time.
• We ignore the travel time between two bays because it is short compared

to the unloading times.
• No idle quay crane.

2.2. Mathematical formulation

In this sub-section, we present the mathematical formulation of the problem with
the different parameters, variables and the mathematical model.

2.2.1. Data

• Q: set of quay cranes, with |Q|: number of quay cranes.
• i: index of quay crane (i={1..|Q|}).
• qi: the ith quay crane (i={1..|Q|}).
• B: set of bays, with |B|: number of bays.
• j: index of bay (j={1..|B|}) on the vessel.
• Cj : number of containers in bay j.
• Tc: time to unload a container by a quay crane and put it in the storage.

It is supposed to be the same for all containers in all bays.
• M: great integer number.

2.2.2. Decision variables

∀i ∈ Q,∀j, j′ ∈ B

• x(j,i) =

{
1 if bay j is handled by quay crane i
0 otherwise

• z(j,j′) =

 1 if the unloading of bay j finishes before starting to unload
bay j’

0 otherwise

• tj : completion time of bay j

• Cmax : makespan
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2.2.3. Mathematical model

Here we show some equations to facilitate the understanding of the problem.

tj ≤ tj′ ∀j, j′ ∈ B (1)

tj ≤ tj′ − (Tc · Cj′) ∀j, j′ ∈ B (2)

tj > tj′ − (Tc · Cj′) ∀j, j′ ∈ B (3)

qi + 1 ≤ qi+1 ∀qi ∈ Q (4)

Equations (1) means, if there are two successive bays to be worked inside, then
the completion time of the second one is greater than the first one. Equation (2)
is used when the work at bay j finishes before than starting the work at bay j’,
while equation (3) is used when the work at bay j finishes after the one at bay j’
starts. Equation (4) is used if quay crane qi works in bay j and quay crane qi+1

works in bay j’ to prevent the crossing between quay cranes.

3. Solving methods

In this section, we will propose three solving methods: MILP solved by CPLEX
and dynamic programming algorithm coded with Java to obtain exact solutions,
and a genetic algorithm which is a meta-heuristic method coded in Java to obtain
near optimal solutions.

3.1. Mixed integer linear programming

The mixed integer linear formulation was found by [13] Leonid Kantorovich (1939).
It is a technique for the optimization of an objective function, subject to linear
inequality and equality constraints.
The MILP we propose is as follows:

Objective
Minimize Cmax (5)

Subject to
|Q|∑
i=1

x(j,i) = 1 ∀j ∈ B (6)

tj ≥ (Tc · Cj) ∀j ∈ B (7)

tj − tj′ + (Tc · Cj′) + z(j,j′) ·M > 0 ∀j, j′ ∈ B (8)

tj − tj′ + (Tc · Cj′)− (1− z(j,j′)) ·M ≤ 0 ∀j, j′ ∈ B (9)

|Q|∑
i=1

i · x(j,i) + 1 ≤
|Q|∑
i′=1

i′ · x(j′,i′) + (z(j,j′) + z(j′,j)) ·M ∀j, j′ ∈ B, j < j′ (10)

Cmax = max
j

tj (11)
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x(j,i) = {0, 1} ∀j ∈ B, ∀i ∈ Q (12)

z(j,j′) = {0, 1} ∀j, j′ ∈ B, j < j′ (13)

Equation (5) is the objective function that it is desired to minimize the makespan
(completion time of all bays). Constraint (6) ensures that every bay must be
handled only by one quay crane. Constraint (7) ensures that the completion time
is bigger than the working time in each bay (Working time = number of containers
× time needed to unload a container and store it). Constraint (8) indicates that if
z(j,j′) = 1, then bay j finishes before bay j’ starts (Equation 2) and constraint (9)
indicates if z(j,j′) = 0, bay j finishes after bay j’ starts (Equation 3). Constraint
(10) avoids the interference between the quay cranes : Suppose that bays j and j’
are performed simultaneously and j < j’, if the first quay crane works in bay j and
the second quay crane works bay j’, then q1 + 1 ≤ q2 (Equation 4). Constraint
(11) defines the Cmax value, finally constraints (12) and (13) define the property
of the decision variables.

3.2. Dynamic Programming Algorithm

3.2.1. Definition

Dynamic programming algorithm was found by [5] Richard Bellman (1957). It
is used for problems optimization to explore the optimal solution. The dynamic
programming algorithm (DPA) consists in dividing the problem into many small
sub-problems and after solving each sub-problem only once, and ultimately, the
problem has been solved. Finally, we can save the results and select the obtained
optimal solution. The dynamic programming problems can be classified into two
categories:

• Optimization problems
Selecting the feasible solution with the value of the function is maximized or min-
imized.

• Combinatorial problems
Figuring out the number of ways to do something, or the probability of some
events happening.

3.2.2. Hierarchy tree diagram

A hierarchical chart represents a system of hierarchy progressing from the top to
the bottom and can also be referred to as a structure chart.
The first node of the tree is called the root. If this root node is connected by
another node, the root is then a parent node and the connected node is a child.
All Tree nodes are connected by links called edges. It's an important part of trees,
because it manages the relationship between nodes.
We start by generating all parameters and we finish by obtaining the optimal so-
lution.
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The DPA works depending on the hierarchy tree diagram system. As shown be-
low, a detailed tree example of the DPA is provided:

Parameters

Conditions

Get all possible choices

choice 1

solution 1

choice 2

solution 2

choice 3

solution 3

optimal solution

choice 4

solution 4

We start by developing all the needed conditions in the problem. After we get all
possible choices whatever the CPU time will be high, with a single solution for
each choice. Finally, we choose the optimal solution which is the smallest one.

3.2.3. Algorithm description

Algorithm 1 Dynamic programming algorithm

1: Generate variables();
2: Generate assignments();
3: for each assignment do
4: if crossing = false then
5: calculate completion time();
6: else
7: go to next assignment;
8: end if
9: end for

10: min←value first assignment;
11: for each assignment do
12: if min > value next assignment then
13: min←value next assignment;
14: End;
15: else
16: go to next assignment;
17: end if
18: end for
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Lines explanation:

• Line 1: generating all needed variables (number of quay cranes, number of
bays, number of containers in a specific bay, and time to unload a container
by the quay crane).

• Line 2: generating all possible choices for the assignment of all bays to
quay cranes.

• Lines 3 to 9: for each assignment, we test if there is any crossing between
the quay cranes. If yes, we test another assignment; if there is no crossing,
we calculate the completion time.

• Line 10: create a new variable called min and give it the calculated value
of the first assignment.

• Lines 11 to 18: for each assignment, we test if the completion time is less
than the variable min, if yes set min to the new completion time, or else
go to the next assignment.

3.2.4. Process example

We suppose that we have 2 quay cranes with 4 bays containing 13, 16, 12 and 9
containers respectively to be unloaded. The container’s unloading times of these
4 bays are respectively 15.21, 18.72, 14.04 and 10.53 time units.

Figure 3. Process example

Our DPA generates all variables and then all crane-to-bay assignments. In this
case, for 4 bays and 2 cranes, there is initially 24, or 16 possible assignments which
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are: 1-1-1-1, 1-1-1-2, 1-1-2 -1, 1-1-2-2, 1-2-1-1, 1-2-1-2, 1-2-2-1, 1-2-2-2, 2-1-1-1 , 2-
1-1-2, 2-1-2-1, 2-1-2-2, 2-2-1-1, 2-2-1-2, 2-2-2-1, 2 -2-2-2. In these x-y-z-t type lists,
the value in ith position represents the number of the crane assigned to unload
bay i.
In a second step, the 2 assignments (1-1-1-1 and 2-2-2-2) are eliminated because
all the cranes reserved for the vessel are all supposed to unload containers. We
are therefore forbidden here to use only one crane.
In the next step, a crossing test is carried out, which leads to eliminating the
assignments which start with 2. In fact, if the second crane works in the first bay
there will be a crossing between the cranes. Note that the reverse is not true: the
quay crane 1 can unload the containers from bay 4, however it cannot start with
this bay, which will be limiting in terms of the scheduling phase.

• The first assignment is 1-2-1-2, means that the first quay crane (QC1)
unloads the containers from bays 1 and 3 for a theoretical completion
time of 29.25 (15.21 + 14.04), while the second quay crane (QC2) unloads
bays 2 and 4 with an effective working time of 29.25 (18.72 + 10.53). The
makespan should theoretically be 29.25. However, once bay 1 has been
unloaded, QC1 cannot start to unload bay 3 because QC2 does not finish
its work in bay 2 until 18.72. QC1 must therefore wait 3.51 units of time,
and then the two cranes can move simultaneously towards bays 3 and 4
respectively. The actual end of work date of QC1 is therefore not 29.25
because it is necessary to add a time of waiting for 3.51 to avoid a collision,
which is 32.76. The makespan is therefore equal to 32.76.

• The second assignment is 1-1-2-2, means that QC1 unloads containers 1
and 2 with a completion time of 33.93, while QC2 unloads containers in
bays 3 and 4 with a time completion of 24.57. The total time to perform
these unloadings is therefore equal to 33.93.

• The third assignment is 1-2-2-2, means that QC1 unloads the 13 contain-
ers from bay 1 with a completion date of 15.21, while QC2 unloads the
containers from bay 2, 3 and 4 and completes work on date 43.29. The
makespan is therefore equal to 43.29.

• The fourth assignment is 1-1-1-2: QC1 unloads bay 1, 2, and 3 until date
47.97, while QC2 takes care of bay 4 with a completion date of 10.53. The
total time for unloading the vessel is therefore equal to 47.97.

• The fifth assignment is 1-1-2-1: QC1 unloads the containers from bays 1,
2 and 4 and ends at 44.46, QC2 finishes unloading bay 3 at 14.04. The
time to unload the 50 containers is therefore equal to 44.46.

• The sixth assignment is 1-2-1-1: QC1 unloads the containers from bays
1, 3 and 4 and theoretically ends at 39.78 (15.21 + 14.04 + 10.53), but
actually at 43.29. Indeed, QC2 takes care of bay 2 until the date 18.72,
and once bay 1 is unloaded at 15.21, QC1 must wait for the end of the
work of QC2 to be able to move to bays 3 and 4. QC1 must therefore
undergo a 3.51 wait (18.72-15.21). The time to unload the 50 containers
is therefore equal to 43.29 (39.78 + 3.51).
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• The seventh assignment is 1-2-2-1: the QC1 crane (respectively QC2)
unloads the containers from bays 1 and 4 (respectively 2 and 3) with an
end date of 43.29 (respectively 32.76). The makespan is therefore equal to
43.29. As for scenario 6, this date includes a waiting time for QC1, here of
17.55 time units between the unloading of bays 1 and 4, in order to allow
QC2 time to finish its work in bays 2 and 3 and avoid thus a collision.

3.2.5. Summary

The dynamic programming algorithm (DPA) allows to find all possible completion
times which grow when the number of quay cranes and bays increases, taking into
consideration the non-crossing conditions for the quay cranes. Finally, it allows to
choose the optimal completion time.

3.3. Genetic Algorithm

Figure 4. Genetic algorithm flowchart
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After testing large instances using the MILP and dynamic programming algorithm,
we observed that those two methods took a long CPU time to solve the problem
and obtain the optimal solution (as we will see later in the next section). We pro-
pose a meta-heuristic method which is the genetic algorithm (GA) to obtain near
optimal solution with fast CPU time. The genetic algorithm (GA) was proposed
by [12] John Holland (1960) and developed and applied by [10] David Goldberg
(1989).
In this paper, GA depends on Roulette wheel selection, order crossover and swap
mutation.
The genetic algorithm steps are presented as follows:
generation of an initial population of solutions, after that, test of the non-interference
constraints for the quay cranes to avoid the crossing between them, if there is no
crossing, calculation of the fitness value, if not setting of the fitness to zero. If the
current generation is the final one, then the program is terminated, and the results
are provided. If not, we execute the GA steps which are roulette wheel selection,
order crossover and swap mutation.
We choose the genetic algorithm due to its simplicity, as it is easy to be imple-
mented. Figure 5 describes the flowchart of this genetic algorithm.

3.3.1. Representation of a chromosome

The solution in the genetic algorithm is called a chromosome and each element
inside is called gene. In our study, the chromosome is composed of a serie of bays.
Table 2 shows a chromosome and each gene contains the bay number. For example,
the third element (third gene) in the chromosome represents the bay number 4.

Table 2. Chromosome and genes

7 9 4 10 3 8 6 1 2 5

3.3.2. Initial positions of quay cranes

To fix the initial position of a quay crane we use the following equation: 1 + (i−
1)× R, where i is the index of the quay crane and R a random number between 1
and L, with L = bays number / quay cranes number. If L is a rational number, we
take its natural part number. Be aware that the position of the first quay crane
is always at the first bay.
Example: Let us suppose that we have 12 bays and 3 quay cranes, then R should
be a random number between 1 and 12/3 (hence between 1 and 4). If R=2, then
the main position of quay crane 1 is at bay 1, quay crane 2 is at bay 3 and quay
crane 3 is at bay 5.

3.3.3. Quay cranes scheduling

Algorithm 2 explains how the scheduling problem works. The initial positions of
the quay cranes, and therefore the bays will be assigned to the quay cranes. A
sequential procedure is used to consider the order of the bays in the chromosome.
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Algorithm 2 Quay cranes scheduling

if qnb = 1 then
q1← bayj ;
bayj ← −1;
j ← j+1;
compq ← compq + wbayj ;

end

else
if compqi Not in {compq}/compqi then

compqi = Min{compq};
bayj ← −1;
j = Next bay();
compqi ← compqi + wbayj

;

end

else
if ∆(bay) > 0 then

qi ← bayj with shorter distance;
bayj ← −1;
j = Next bay();
compqi ← compqi + wbayj ;

end

end

else
qi ← bayj with smaller index number;
bayj ← −1;
j = Min bay();
compqi ← compqi + wbayj

;

end

end

compq : quay crane’s completion time // bayj : bay number j // qnb : number of
quay cranes // qi : the ith quay crane // wbayj

: quay crane’s time to finish
working in bay j // ∆ = |bayk2 − bayk1| : calculate the distance between bays//

Next bay() : get the next bay, Min bay() : get the smaller bay number

The four following steps of this algorithm are featured. For each step we clarify it
with the numerical example used in section 3.3.1 with 3 quay cranes and 10 bays.
In this example, the main makespan (completion time) of all the quay cranes is
initialized to 0, because no unloading operation has been performed until now
(iteration init in Table 3).
In the chromosome, we consider the current bay (current gene) which corresponds
to an unassigned bay, and we assign it to a crane. For example, let us take the
first gene of the chromosome (bay 7), and we suppose the processing time for all
bays is 10.
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Table 3. Detailed example

Iteration QC1 QC2 QC3

init bay position 1 3 5
partial scheduling ∅ ∅ ∅
completion time 0 0 0

1 bay position 1 3 7
partial scheduling ∅ ∅ 7
completion time 0 0 10

2 bay position 1 3 9
partial scheduling ∅ ∅ 7, 9
completion time 0 0 20

3 bay position 1 4 9
partial scheduling ∅ 4 7, 9
completion time 0 10 20

4 bay position 1 4 10
partial scheduling ∅ 4 7, 9, 10
completion time 0 10 30

5 bay position 3 4 10
partial scheduling 3 4 7, 9, 10
completion time 10 10 30

6 bay position 3 8 10
partial scheduling 3 4, 8 7, 9, 10
completion time 10 20 30

7 bay position 6 8 10
partial scheduling 3,6 4, 8 7, 9, 10
completion time 20 20 30

8 bay position 1 8 10
partial scheduling 3,6,1 4, 8 7, 9, 10
completion time 30 20 30

9 bay position 1 2 10
partial scheduling 3,6,1 4, 8, 2 7, 9, 10
completion time 30 30 30

10 bay position 2 5 10
completed scheduling 3,6,1 4, 8, 2, 5 7, 9, 10

completion time 30 40 30
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Non-crossing (step 1): The first step consists to determine which quay cranes
can unload the first unassigned bay in the chromosome without crossing with the
other quay cranes. If there is only one available quay crane, this bay is assigned
to this quay crane, else we continue to the next step. For our example, quay crane
2 and quay crane 3 can handle bay 7 without interference with quay crane 1.
Selection based on time criteria (step 2): Among these two cranes, we
choose the one which is available sooner. In case of equality, that means if the two
cranes have the same completion time, then we go to step 3 to discriminate them
according to a distance criterion. In our example, the completion times of quay
crane 2 and quay crane 3 are equal.
Selection based on distance criteria (step 3): If no crane has been chosen in
step 2 with the time criterion, we assign the current bay to the nearest crane. In
case of equality (if the two cranes are at equal distance from the bay), we choose
the crane at the left (with the smallest index). The distance between bay 7 and
bay 3 (which quay crane 2 works inside) is 3 bays and the distance between bay 7
and bay 5 (which quay crane 3 works inside), is 1 bay. Then crane 3 is nearer to
bay 7 than crane 2.
Assignment (step 4): Assign bay 7 to quay crane 3. Update the position of
quay crane 3 and the associated completion time (see iteration 1 in Table 3). Then
update the current gene (following one) in the chromosome (gene 2, bay 9 in our
example). Repeat the four steps until all bays are assigned to one quay crane.
Algorithm 2 describes the process of the quay cranes scheduling while Table 3
shows a detailed numerical example for the scheduling.

3.3.4. Fitness

In the previous section, we have seen a procedure to prevent the interference be-
tween the quay cranes. Nevertheless, we should check if the quay cranes satisfy
the constraints or not, so we used the two constraints (8) and (9) and then checked
the interference constraint (10) to ensure that there is no collision between quay
cranes. The fitness value will be calculated from the Equation (14). If the con-
straints are not satisfied, the fitness value will be set to zero.

Fitness = 1/Cmax (14)

3.3.5. Roulette wheel selection

The roulette wheel selection is a process to choose individuals from a population,
according to the ”fitness” function or the values of their cost, to form a new popu-
lation. Individuals will be evolved by some successive iterations of selection, called
generations.
All individuals are selected proportionally to their ”fitness” function, so an indi-
vidual with a higher fitness function will be more likely to be selected than another
with a lower fitness value. This function can be considered as a measure of profit
or quality that one wishes to maximize. A simple operator of selection is the
technique of the weighted roulette where each individual of a population occupies
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a surface of the roulette proportional to the value of its function ”fitness”. For
reproduction, candidates are selected with a probability proportional to their ”fit-
ness”. For each selection of an individual, a simple rotation of the wheel gives the
selected candidate. Roulette Wheel Selection works as follows:
Calculate the sum of all fitness, then generate a number between 0 and this sum;
add the fitness values to a partial sum X starting from the top of population, and
finally the chosen chromosome is the first chromosome for which X overpasses the
random number. The procedure is illustrated in Figure 6.

Figure 5. Roulette wheel selection

3.3.6. Order crossover

The order crossover procedure aims to select randomly a substring from a random
parent. After that we create an offspring by copying the selected substring in their
corresponding positions. Then, we delete from the second parent all existing in
the substring and place the genes in the empty positions of the offspring from left
to right. Finally, we should take into consideration the order of the sequence of
the offspring creation. The procedure is illustrated in Figure 7.

Figure 6. Order crossover
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3.3.7. Swap mutation

The swap mutation procedure aims to test all the individuals bit by bit.
From the chromosome, we randomly select two positions (two genes) and then we
swap the values of these two positions.
The procedure is illustrated in Figure 8.

Figure 7. Swap mutation

4. Experimental results

In this section, we evaluate the performance of our methods (MILP, dynamic
programming, and genetic algorithm). For this goal, we test them on randomly
instances, as well as on a real case related to the port of Tripoli-Lebanon.
Our programs were executed in a MacBook Pro 2,7 GHz Intel Core i5 with 8GB
RAM 1867 MHz DDR3 running in OSX 10.11.6.
We fix the size of the population, the probability of the mutation, the probability
of the crossover and the max number of generations when executing the genetic
algorithm which are respectively 300, 0.2, 0.25 and 1000.
Small and large sizes instances were generated randomly with 2 or 3 quay cranes,
4 to 15 bays, and containers number in each bay were also generated in a random
way between 5 and 30 containers.

4.1. MILP versus DPA

The MILP was solved by CPLEX 12.7.1, a software for solving integer program-
ming, while the DPA is coded with JAVA J2EE. JAVA is a programming language
developed by Sun Microsystems. It was designed to develop programs and creating
web applications. It is an object-oriented programming language and its syntax is
similar to C++.
As shown in Table 4, CPLEX results and DPA results are logically the same (same
makespan) for small and large instances, but DPA is better in terms of CPU time.
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Table 4. Small and large instances

No. (|Q| x |B|) Makespan CPU Time
CPLEX DPA CPLEX DPA
(min) (min) (s) (s)

1 2 x 4 32.76 32.76 < 1 < 1
2 3 x 4 24.57 24.57 < 1 < 1
3 2 x 5 39.78 39.78 < 1 < 1
4 3 x 5 29.25 29.25 < 1 < 1
5 2 x 6 51.48 51.48 < 1 < 1
6 3 x 6 37.44 37.44 < 1 < 1
7 2 x 7 58.5 58.5 < 1 < 1
8 3 x 7 39.78 39.78 < 1 < 1
9 2 x 8 73.71 73.71 < 1 < 1
10 3 x 8 51.48 51.48 < 1 < 1
11 2 x 9 90.09 90.09 < 1 < 1
12 3 x 9 60.84 60.84 < 1 < 1
13 2 x 10 99.45 99.45 4.77 1.33
14 3 x 10 70.2 70.2 1.16 0.35
15 2 x 11 104.13 104.13 24.43 3.89
16 3 x 11 73.71 73.71 5.57 1.13
17 2 x 12 107.64 107.64 115.27 13.34
18 3 x 12 73.71 73.71 7.39 3.28
19 2 x 13 114.66 114.66 1723.85 32.59
20 3 x 13 76.05 76.05 20.38 4.57
21 2 x 14 N.A. 119.34 N.A. 82.44
22 3 x 14 81.9 81.9 197.83 34.86
23 2 x 15 N.A. 127.53 N.A. 131.77
24 3 x 15 N.A. 91.26 N.A. 104.82

|Q| x |B|: number of quay cranes x number of bays
N.A. = No result after interrupting execution

For instance 21 with 14 bays and 2 quay cranes, CPLEX did not provide any result
after 2 hours, so we interrupted the execution, while DPA solved the problem to
optimality. But in instance 22 for 14 bays and 3 quay cranes CPLEX gives us
a result like DPA. For instances 23 and 24, we waited more than 3 hours using
CPLEX without obtaining any result. We can therefore state that DPA is more
efficient in terms of time than MILP. We will adopt DPA as the exact method to
be compared with the meta-heuristic method.
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4.2. DPA versus GA

Table 5. Small instances

No. (|Q| x |B|) Makespan CPU Time
DP GA GAP DP GA

(min) (min) (%) (s) (s)

1 2 x 4 32.76 32.76 0 < 1 < 1
2 3 x 4 24.57 24.57 0 < 1 < 1
3 2 x 5 39.78 39.78 0 < 1 < 1
5 2 x 6 51.48 51.48 0 < 1 < 1

Table 6. Large instances

No. (|Q| x |B|) Makespan CPU Time
DPA GA GAP DPA GA
(min) (min) (%) (s) (s)

1 2 x 12 107.64 109.98 2.13 13.34 < 1
2 3 x 12 73.71 74.88 1.56 3.28 < 1
3 2 x 13 114.66 115.83 1.01 32.59 < 1
4 3 x 13 76.05 76.05 0 4.57 < 1
5 2 x 14 119.34 122.85 2.86 112.44 < 1
6 3 x 14 81.9 83.07 1.41 54.86 < 1
7 2 x 15 127.53 129.87 1.8 231.77 < 1
8 3 x 15 91.26 92.43 1.27 104.82 < 1
9 2 x 16 132.21 132.21 0 303.04 2.31
10 3 x 16 95.94 98.28 2.38 112.94 1.59
11 2 x 17 139.23 142.74 2.46 509.96 4.36
12 3 x 17 101.79 105.3 3.33 203.34 3.12
13 2 x 18 146.25 147.42 0.79 1144.12 9.67
14 3 x 18 105.3 106.47 1.1 708.32 7.39
15 2 x 19 153.27 155.61 1.5 1392.84 13.34
16 3 x 19 113.49 113.49 0 912.48 10.62
17 2 x 20 161.46 164.97 2.13 1601.13 32.99
18 3 x 20 118.17 119.34 0.98 1044.19 28.64
19 2 x 21 170.82 173.16 1.35 3563.7 58.28
20 3 x 21 125.19 127.53 1.83 2390.13 34.72
21 2 x 22 N.A. 180.18 - N.A. 77.14
22 3 x 22 N.A. 128.7 - N.A. 60.12
23 2 x 23 N.A. 186.03 - N.A. 104.35
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The genetic algorithm (GA) and the DPA are both coded with JAVA J2EE.
Table 5 shows us, that both GA and DPA gave the same optimal solution with an
acceptable and realistic CPU time but only for small instances.
As shown in Table 6, from instance 1 to instance 20, DPA gives us the optimal
solutions and GA gives us near optimal solutions, but the difference is the higher
CPU time for DPA. The GAP between DPA results and GA results is between 0%
and 3.33%. From instance 21, DPA was unable to provide any solution after more
than 4 hours of CPU processing time, meanwhile GA provides solutions in a very
short time. We therefore state that the proposed GA is successful and practical
for our problem. (GAP = ((DPA - GA)/DPA) * 100)

4.3. Stability analysis of the genetic algorithm

To evaluate if our genetic algorithm is stable, we executed the same instance 5
times and we got the same result as shown in Table 7 for small instances.

Table 7. Stability analysis for small instances

(|Q| x |B|) (|Q| x |B|) (|Q| x |B|) (|Q| x |B|)
Execution 2 x 4 3 x 4 2 x 5 3 x 5

1 32.76 24.57 39.78 29.25
2 32.76 24.57 39.78 29.25
3 32.76 24.57 39.78 29.25
4 32.76 24.57 39.78 29.25
5 32.76 24.57 39.78 29.25

For the large instances, we also executed the same instance 5 times (Table 8). At
least two executions have the same near optimal result, with a percentage of 40%
while the three other executions give results more or less 3% away from the near
optimal result.
As an example, for 2 quay cranes and 12 bays, the first, third and fourth executions
give the near optimal solution obtained by the genetic algorithm (109.98), while
the second and the fifth executions give results more or less 3% away from the
near optimal solution.
Percentage calculation for second execution:

• 112.32 - 109.98 = 2.34
(2.34/109.98) * 100 = 2.12% from the near optimal result.

• 113.49 - 109.98 = 3.51
(3.51/109.98) * 100 = 3.19% from the near optimal result.

• 77.22 - 74.88 = 2.34
(2.34/74.88) * 100 = 3.12% from the near optimal result.

• 76.39 - 74.88 = 1.51
(1.51/74.88) * 100 = 2.01% from the near optimal result.
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Table 8. Stability analysis for large instances

(|Q| x |B|) (|Q| x |B|)
Execution 2 x 12 3 x 12

1 109.98∗ 74.88∗

2 113.49 76.39
3 109.98∗ 77.22
4 109.98∗ 77.22
5 112.32 74.88∗

∗ : the best near optimal solution

We therefore state that the proposed genetic algorithm is stable and good to be
applied.

4.4. Comparison between both DPA, GA and port results

In Table 9, the real results in the port of Tripoli-Lebanon are compared with the
dynamic programming algorithm (DPA) results and with the genetic algorithm
(GA) results.

Table 9. DPA results vs Port results vs GA results

Ex. Cranes Bays Containers Port DPA GA Saved time %
makespan Port-DPA

1 2 6 25 40 19.5 21.84 51.25
2 2 4 62 95 44.78 45.95 52.86
3 2 3 90 103 70.2 72.54 31.84
4 2 4 84 96 49.14 52.01 48.81

In the second example in Table 9, there are two quay cranes and four bays con-
taining in total 62 containers. The time to unload a container by a quay crane
is about 1.17 minutes. DPA makespan is 44.78 minutes, whereas in the port, the
unloading time of 62 containers is about 95 minutes. Finally, the DPA enables us
to save time by 52.86%, while GA result is 45.95 minutes and it enables to save
time by 51.63%. (we add the percentage of the saved time only for DPA because
it is the best method). The better one should have the higher percentage of saved
time but although the percentage of the saved time by GA is smaller than DPA
percentage, the GA results are good and can be applied. Note that this model
accommodates the true conditions of the port of Tripoli-Lebanon.

5. Conclusion

This paper studies the QCSP in its multi-cranes variant, for which we proposed
a mixed-integer linear programming (MILP) model, a dynamic programming al-
gorithm (DPA) and a genetic algorithm (GA). Then, we make results comparison



TITLE WILL BE SET BY THE PUBLISHER 23

with the real instances from the port of Tripoli-Lebanon.
This paper shows the difference between two exact methods and a meta-heuristic
method. We saw that for the large instances, the QCSP should be solved by a
meta-heuristic method which is genetic algorithm, to have good solutions quickly.
To improve the quality of solutions in terms of execution time and convergence
towards the optimal solution, other meta-heuristic methods should be tested in
future work.
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