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Abstract

This paper proposes a procedure to identify a stochastic Bouc-Wen model for
describing the dynamics of a structure assembled by bolted joints considering vi-
bration data. The proposed identification approach is expressed into a Bayesian
framework to take into account the data fluctuations related to uncertainties in
the measurement process. The calibration of the model parameters uses the
analytical expressions of the higher-order frequency response functions (FRFs)
for approximating experimental measurements. The Metropolis-Hastings algo-
rithm is employed for approximating posterior distributions. Once calibrated,
the applicability of the probabilistic Bouc-Wen model is evaluated, and its dy-
namical behavior is compared with experimental measurements from the bolted
structure. The results show that the stochastic version of the Bouc-Wen model
can predict with adequate agreement, including hysteretic effects, the output of
the jointed structure considering several excitation amplitudes.
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1. Introduction

Several engineering systems are built with components assembled through
different types of joints or mechanical connections, which may affect the dynamic
performance of such structures. Concerning systems assembled by bolted joints,
the frictional contact between different structural components under vibrational5

loading cycles leads to the appearance of the hysteresis effect due to the stick-
slip motion occurring over the connected area [1]. In this context, developing
predictive numerical models of jointed structures is not an easy task, quite
the opposite. These systems may undergo challenging nonlinear behavior over
their operating range, including softening stiffness mechanism which decreases10

the resonant frequency at high excitation amplitudes, multi-valued hysteretic
restoring forces, or even memory dependency on the input, output and an evo-
lutionary variable that induces a delay among them [2, 3, 4]. Several hysteretic
models carry the potential to characterize such nonlinearities, including the
Iwan, Bouc-Wen, LuGre, Valanis, Coulomb, Masing, Jenkins models, etc. [5].15

The scientific community that investigates the dynamics of jointed structures is
very active at the moment, and still searching for scientific contributions toward
modeling and identification fields.

Note that frequency domain formulations are advantageous in dealing with
assembled structures. One topic of interest involves the identification of the20

evolution of resonance frequencies and damping ratios, according to excitation
amplitudes, the so-called “modal backbone” curves. Peyret et al. [6] developed a
framework for tracking of experimental backbones involving a clamped-clamped
beam with transverses interfaces subject to friction and partial slip. The au-
thors post-processed the modal damping and resonance frequencies related to25

the first bending mode of a by using the extended Kalman filter. Based on the
concept of nonlinear modes, Scheel et al. [7] developed a force appropriation
technique, which considers steady-state response periods for extracting reso-
nance frequencies and damping ratios considering isolated modes. Then, these
modal parameters are used to construct the modal backbone curve. Alterna-30

tively to these curves, frequency-domain methods are often used for predicting
the nonlinear behavior of assembled structures. Jaumouillé et al. [8] proposed
an adaptive harmonic balance method to compute higher-order harmonic am-
plitudes of a bolted joint structure. Claeys et al. [9] implemented the harmonic
balance method with continuation and condensation algorithms to predict the35

nonlinear vibrational response of an experimental setup, which includes fric-
tional elements. Lacayo et. al [10] put forward a frequency-domain solver,
which is based on a multi-harmonic balance approach, for capturing the slight
amplitude-dependency behavior of a bolted lap-joint structure.

The frequency-domain techniques are also useful in parameter estimation40

procedures. In this context, the multidimensional Fourier transform of the
Volterra Kernels is a possible approach to apply. The so-called higher-order
frequency response functions (FRFs) generalize the concept of the FRFs for
nonlinear systems exploiting the convolution structure on these kernels [11, 12].
The computation of the higher-order FRFs is performed having the mathemat-45

2



ical model of the system or structure in interest by using the harmonic probing
method, which consists of exciting the nonlinear system with a proper combina-
tion of harmonic inputs [13]. On the one hand, the framework of the higher-order
FRFs is suitable for applications involving parameter estimation on polynomial
nonlinearities [14, 15, 16]. However, there is a lack of contributions related to50

parameter estimation of hysteretic systems. Recently, Teloli and da Silva [17]
introduced a new approach for harmonic probing of hysteretic systems through
a nonlinear smooth operator. The authors predicted in a pioneering way, using
closed-form solutions, the output of a Bouc-Wen oscillator after rewriting the
loading and unloading regimes of the hysteresis loop through smooth operators,55

which are based on the Taylor series procedure.
In the present paper, we use a stochastic version of this Bouc-Wen model

to reconstruct a probabilistic hysteresis loop of the first vibrating mode of an
experimental cantilever beam formed of two aluminum beams assembled by a
bolt connection considering data variation related to the presence of uncertain-60

ties in the measurement process. It is essential to point out that the hysteretic
model is not used to describe directly the frictional forces in contact interfaces,
but rather the whole restoring forces related to the mode of interest. The Bouc-
Wen model stands out for accomodating a wide range of hysteresis loops in
the restoring force versus displacement plane [18]. Additionally, it is argued65

that this model can represent any Iwan’s model, which is the most widely used
model for modeling jointed structures, just by selecting its parameters [19]. It
is worth mentioning the work of Oldfield et al. [20], which brings forward a
Bouc-Wen model for producing the hysteresis loop generated by synthetic data
of a finite element model involving three components in the assembled configu-70

ration. However, the fact that the Bouc-Wen parameters are non-physical turns
the parameter identification process into a challenging task if not properly con-
ducted, and justifies why their use for capturing the dynamic behavior in jointed
structures is still modest [21].

Thus, with regard to the parameter identification scheme to compute the75

Bouc-Wen parameters, this work proposes a procedure formulated into a white-
box Bayesian modeling framework and considers, as an essential step in the
complete identification process, the use of higher-order FRFs derived by Teloli
and da Silva [17]. The advantage of using the Volterra kernels at this iden-
tification scheme lies in the possibility of visualizing, with physical meaning,80

the influence of the nonlinear parameters on the system output through the
Volterra contributions. The main contribution of this work lies in proposing a
new parameter estimation procedure in reduced numerical probabilistic models
for representing the dynamics of bolted joint structures by propagating uncer-
tainties in the coefficients that control the hysteresis loop. Moreover, although85

this paper investigates the first vibrating mode of a structure which carries com-
plex nonlinear effects, the identification strategy here proposed may be suitable
for dealing with hysteretic systems that potentially allow the use of smooth-
ing procedures, such as the bit-rock interaction of a drill string [22] or even
as a formulation in the parametric reduced-order models of jointed structures90

[23, 24].
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Toward this background, the parametric identification strategy here pro-
posed includes, firstly, the identification of the underlying linear model using
conventional modal techniques. Then, the higher-order FRFs are used to cal-
ibrate the Bouc-Wen parameters with independent experimental realizations95

with probing tests. After, through the Markov Chain Monte Carlo (MCMC)
Metropolis-Hastings algorithm, the probability density function (PDF) of each
random variable is updated. Once calibrated, the computational model is evalu-
ated, and its dynamical behavior is compared with experimental measurements
from the bolted structure. For covering all these steps, the paper’s outline100

is section 2 presents an overview of the smoothing procedure carried on the
Bouc-Wen oscillator and also the theoretical background for deriving the higher-
order FRFs through the harmonic probing method. Section 3, in turn, starts
presenting a complete description of the parameter estimation procedure pro-
posed. Then the section goes on the Bayesian inference strategy, describing the105

MCMC/Metropolis-Hastings algorithm to update the random variables. Next,
section 4 presents an experimental application of the identification procedure
for identifying an assembled structure by bolted joints, exemplifying the ap-
plicability of the stochastic Bouc-Wen oscillator in representing the linear and
nonlinear behavior of the experimental test-bench structure. Since this model110

is not commonly used to represent bolted joints, comparing with the Iwan’s
model, this paper shows that the Bouc-Wen model operates well, assuming the
available experimental data. Finally, section 5 reports the final remarks and the
next steps for future work.

2. Overview of the Higher-Order FRFs for Hysteretic Systems115

2.1. Smoothing of the deterministic Bouc-Wen model

The single-degree-of-freedom Bouc-Wen model is given by:

ÿ (t) + 2ζωnẏ (t) + ky (t) + Z (y, ẏ) = ũ (t) (1)

Ż (y, ẏ) = αẏ(t)− γ |ẏ(t)| |Z (y, ẏ)|ν−1Z (y, ẏ)− δẏ(t)|Z (y, ẏ)|ν (2)

where ωn is the resonance frequency, ζ is the damping ratio, k is a normalized
stiffness coefficient and ÿ(t), ẏ(t) and y(t) are the acceleration, velocity and dis-
placement, respectively, of the hysteretic oscillator when subjected to an input120

ũ(t), whereas Z(y, ẏ) is the hysteretic restoring force that obeys the differential
term Ż(y, ẏ); α, γ, δ and ν are the Bouc-Wen parameters. For this paper, ν = 1.

Figure 1(a) exemplifies, in the restoring force × displacement plane, the
hysteresis loop produced by a Bouc-Wen model when subjected to a bounded
harmonic input ũ(t) = A cos (ωt), defined in a period T ∈ [0 2π

ω ], whereas Fig.125

1(b) depicts an exemplifying output. The hysteretic restoring force Z(y, ẏ) is
a multi-valued function according to the excursion interval of the pair (Z, y),
which can move along the path ACD when ˙̃u < 0, otherwise it moves on the
path DBA for ˙̃u > 0; these excursion intervals define the loading and unloading
regime cycles, respectively, on the hysteresis loop.130

4



(a) Hysteresis loop of a hysteretic model (b) Exemplifying hysteretic output.

Figure 1: Illustrative example of the hysteresis loop. represents unloading regime of
motion whereas represents the loading one.

Additionally, the hysteretic restoring force of the Bouc-Wen model allows
its division into four different paths. Teloli and da Silva [17] have shown that
for conditions where the hysteresis force is weak, each of these paths can be
smoothed by a functional expansion through the Taylor series approach:

• path AC: ẏ 6 0,Z > 0135

Z1 ≈
α

(δ − γ)

(
1−

[ ∞∑
n=0

[−(δ − γ)]
n

(y − y0)n

n!

])
(3)

• path CD: ẏ 6 0,Z 6 0

Z2 ≈ −
α

(δ + γ)

(
1−

[ ∞∑
n=0

[(δ + γ)]
n

(y − y0)n

n!

])
(4)

• path DB: ẏ > 0,Z 6 0

Z3 ≈ −
α

(δ − γ)

(
1−

[ ∞∑
n=0

[(δ − γ)]
n

(y + y0)n

n!

])
(5)

• path BA: ẏ > 0,Z > 0

Z4 ≈
α

(δ + γ)

(
1−

[ ∞∑
n=0

[−(δ + γ)]
n

(y + y0)n

n!

])
(6)

where the pair (Z1,Z2) corresponds to the unloading cycle of the hysteresis
loop, whereas the pair (Z3,Z4) is for the loading one. Although the more terms140

included in the Taylor series approach, the more significant the precision of the
polynomial form for the hysteresis loop will be; the conditions addressed in this
work deliver perfectly acceptable results assuming the first three orders n = 3
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for each path [17]. A similar procedure for smoothing nonlinear systems was
performed by Miguel et. al [25].145

Based on the Weierstrass approximation theorem [26], it is suggested the
following bounding functions F ↑[y(t)] and F ↓[y(t)], both limited along the
interval ymin ≤ y(t) ≤ ymax, to describe properly the load and unload regime:

F ↑[y(t)] = λ0 + λ1y(t)− λ2y
2(t) + λ3y

3(t) for sign
[

˙̃u(t)
]
≥ 0 (7)

F ↓[y(t)] = −λ0 + λ1y(t) + λ2y
2(t) + λ3y

3(t) for sign
[

˙̃u(t)
]
≤ 0 (8)

where λ0 [Nkg−1], λ1 [Nkg−1/m], λ2 [Nkg−1/m2] and λ3 [Nkg−1/m3] are the
bounding function coefficients. Due to the symmetry of the hysteresis loop,150

the bounding functions present an equivalent structure, which means that the
coefficients with the same subscript have equal absolute values. Nevertheless,
the function F ↑[y(t)] is responsible for encoding the loading paths (Z3,Z4),
whereas F ↓[y(t)] encodes (Z1,Z2). The polynomial order is selected according
to the order used in the Taylor series approach [17].155

Thus, the coefficients of the polynomial form are expressed as a function of
the Bouc-Wen parameters by minimizing an error function described by:

E(λ0, λ1, λ2, λ3) =

∫ y0

−Y

{
Z2 −F ↓[y(t)]

}2
dy +

∫ Y

y0

{
Z1 −F ↓[y(t)]

}2
dy (9)

subjected to
∂E

∂λi
= 0, for i = 0, 1, 2, 3. Minimization procedure results in the

following expressions:

λ0 =
αy0

16
(3δY + 8γy0 − 16) (10)

λ1 = α (11)

λ2 =
α

16Y

(
8δ2Y y0 + 8γ2Y y0 + 15δγy2

0 − 8γY − 15δy0

)
(12)

λ3 =
α

96Y 5

(
16δ2Y 5 + 70δγY 4y0 − 70δγY 2y3

0 − 35δY 4+
105δY 2y2

0 − 105δy4
0

)
(13)

where Y = |ymin| = |ymax| and y0 is a threshold displacement. These equations160

are valid only for harmonic excitations that ensure a weak hysteretic force and
when the force × displacement plane draws a single loop.

The switch between bounding functions occurs according to sign[ ˙̃u(t)] and
thus, an equivalent system with hysteresis is proposed:

ÿ (t) + 2ζωnẏ (t) + ky (t) + u0(t) + λ1y(t) + %y2(t) + λ3y
3(t)︸ ︷︷ ︸

=F [y(t)]

= ũ (t) (14)
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where F [y(t)] is the nonlinear operator responsible for encoding the hysteretic165

characteristics smoothly, and % is defined as % = λ2 (% = −λ2) for sign
[

˙̃u(t)
]
< 0(

sign
[

˙̃u(t)
]
> 0
)
. Additionally, for a single-tone input ũ(t) = Aejωt, the term

u0(t) = λ0Φ[ ˙̃u(t)], which is considered as an additional input applied to the
equivalent system, is given by:

u0(t) =
j2λ0

π

2∑
k=1

(
e−j[1+2(k−1)]ωt − ej[1+2(k−1)])ωt

1 + 2(k − 1)

)
︸ ︷︷ ︸

=Φ[ ˙̃u(t)]

(15)

where Φ[ ˙̃u(t)] is the complex exponential Fourier series up to the second term.170

Although the methodology proposed for smoothing hysteretic systems was
carried out on a Bouc-Wen model, its general form allows investigation of other
models. Specifically, on jointed structures, the bounding functions could be
formed following the Masing hypothesis, which is an assumption well accepted
in the literature to capture friction on interfaces [27, 28].175

2.2. Derivation of the higher-order FRFs through the harmonic probing method
For multi-input and single-output (MISO) systems, the functional of the

Volterra series in the continuous-time domain is given by [12]:

y(t) =

∞∑
η=1

yη(t) = y0 +

j∑
p=1

∫
IR1

h
(up)
1 (τ1)up(t− τ1)dτ1︸ ︷︷ ︸

=y1(t)

+

j∑
p=1

j∑
k=1

∫
IR2

h
(up,uk)
2 (τ1, τ2)up(t− τ1)uk(t− τ2)dτ1dτ2︸ ︷︷ ︸

=y2(t)

(16)

+

j∑
p=1

j∑
k=1

j∑
l=1

∫
IR3

h
(up,uk,ul)
3 (τ1, τ2, τ3)×

up(t− τ1)uk(t− τ2)ul(t− τ3)dτ1dτ2dτ3︸ ︷︷ ︸
=y3(t)

and higher-order contributions

where each polynomial contribution of η−order is given by :

yη(t) =

j∑
p=1

j∑
k=1

· · ·
j∑

n=1

∫
IRη

h(up,uk,...,un)
η (τ1, τ2, . . . , τη)

×
η∏
i=1

up(t− τ1)uk(t− τ2) . . . un(t− τη)dτ1dτ2 . . . dτη (17)
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where yη(t) is each contribution of the total output y(t), and the term180

h
(up,uk,...,un)
η (τ1, τ2, . . . , τη) is called Volterra kernel related to the jth input. The

multi-dimensional Fourier transform of the Volterra kernels for multi-inputs can
be calculated by [29]:

H(up,uk,...,un)
η (ω1, ω2, · · · , ωη) =

∫
IRη

h(up,uk,...,un)
η (τ1, τ2, . . . , τη)× (18)

η∏
i=1

e−jωiτidτ1dτ2 . . . τη

whereH(up,uk,...,un)
η (ω1, ω2, · · · , ωη) are the higher-order frequency response func-

tions, which can be used to describe the system output for any input with a185

well-known mathematical expression. To simplify the notation, it is assumed
that: ∫

IRη
=

∫
IR×IR×...IR

=

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞︸ ︷︷ ︸

ηth order

Additionally, the computation of the analytical expressions for each higher-
order FRFs is carried out through the harmonic probing method. For a three-
tone harmonic input given by:190

u(t) = A cosω1t+B cosω2t+ C cosω3t

⇒ u(t) =
A(ejω1t + e−jω1t)

2
+
B(ejω2t + e−jω2t)

2
+
C(ejω3t + e−jω3t)

2
(19)

the generalized expression for the contributions mapping of η−order is written
as [30]:

yη(t) =

1

2η

∑
N+M+L=η

ANBMCL
(
Cηp,q,r,s,v,$

)
Hp,q,r,s,v,$η (ω)ej(Nω1+Mω2+Lω3)t (20)

where p, q, r, s, v and $ are integer values and

Cηp,q,r,s,v,$ =
η

p!q!r!s!v!$!
(21)

Hp,q,r,s,v,$η (ω) = Hη(ω1, . . . , ω1︸ ︷︷ ︸
p times

,−ω1, . . . ,−ω1︸ ︷︷ ︸
q times

, ω2, . . . , ω2︸ ︷︷ ︸
r times

,−ω2, . . . ,−ω2︸ ︷︷ ︸
s times

,

ω3, . . . , ω3︸ ︷︷ ︸
v times

,−ω3, . . . ,−ω3︸ ︷︷ ︸
$ times

) (22)

8



The generalized expressions for the harmonic probing algorithm allow de-195

riving analytical solutions of the higher-order FRFs for the equivalent system
in equation (14). Then, after establishing the theoretical foundation of the
Volterra kernels, the next section presents a complete description of the identi-
fication procedure strategy proposed by this paper.

3. On the Parameter Estimation Procedure through the Higher-Order200

FRFs and the Bayesian Inference

3.1. On the parameter estimation procedure

The outline of the identification procedure is explained as follows:

• Step 1. Data acquisition:

In principle, this step involves experimental measurements considering con-205

trolled vibration tests. The following input signals were considered: white-noise
signal with low excitation amplitude to estimate parameters related to the lin-
ear regime of motion. Probing testing signals were considered to generate the
experimental higher-order FRFs. Experimental data from sweeping sine tests
were acquired for verification and testing of the proposed Bouc-Wen oscillator.210

• Step 2. Linear regime of motion:

This step identifies the underlying linear model. It starts with a modal test-
ing procedure for identification of the parameters ωn and ζ. To accomplish that,
the line-fit method [31] is applied on the experimental FRF, which is estimated
when the system is subjected to a white noise input with low excitation level.215

The framework of the higher-order FRFs requires the knowledge of the first-
order Volterra kernel, which corresponds to the conventional FRF. Having com-
puted the parameters ωn and ζ, the first-order Volterra kernel is estimated:

H1(ω) =
1

−ω2 + j2ωζωn + ω2
n

(23)

• Step 3. Nonlinear regime of motion:

This step covers the calibration of nonlinear parameters based on the higher-220

order FRFs for hysteretic systems. It is introduced through the following sub-
steps: 3.1. Harmonic filtering, 3.2. Third-order kernel computation, and 3.3.
Updating parameters. However, before proceeding, the important characteristics
of the framework involving the higher-order FRFs are addressed.

For conditions where the hysteresis loop is almost closed (y0 ≈ 0), the coeffi-225

cients related to the opening and closening of the loop are null, i. e. λ0 = λ2 = 0,
whereas the remaining terms result in:

λ1 = α (24)

λ3 =
16αδ2

96
− 35αδ

96Y
(25)
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These equations attend the characteristics of the Bouc-Wen model since they
are not a function of the parameter γ, which is responsible for the opening
and closening of the hysteresis loop. Thus, under the condition (y0 ≈ 0), the230

equivalent nonlinear system is rewritten as:

ÿ (t) + 2ζωnẏ (t) + (k + α)y (t) + λ3y
3(t) = ũ (t) (26)

Since the nonlinear system in equation (26) has terms up to the cubic order,
it is used η = 3 contributions to compute the higher-order FRFs [16, 17, 32].
Thus, applying the harmonic probing method to map the three-dimensional
kernel in frequencies ω1, ω2 and ω3, the derived higher-order FRF yields:235

H3(ω1, ω2, ω3) = −H1(ω1)H1(ω2)H1(ω3)H1(ω1 + ω2 + ω3)λ3 (27)

An alternative way to simplify the algebraic complexity of the higher-order
FRFs consists of analyzing only their leading diagonal by letting ω1 = ω2 =
· · · = ωη = ω. The leading diagonals encode the main characteristics of the
kernels, such as the sub-harmonic resonances and, additionally, the use of this
formulation is suitable for calculating response outputs or even estimating non-240

linear parameters [16]. Thus, the leading diagonal of the third-order Volterra
kernel in Eq. (27) is given by:

H3(ω, ω, ω) = −H1(ω)H1(ω)H1(ω)H1(ω + ω + ω)λ3

⇔ H3(ω, ω, ω) ≡ H3(ω) = −H3
1(ω)H1(3ω)λ3 (28)

where the dependence of the kernel H3(ω, ω, ω) on the first-order kernel H1(ω)
highlights that the previous step is essential to the advance of the identification
procedure. Nevertheless, the kernel expression in (28) indicates the presence245

of sub-harmonic in the third-order kernel at frequency 3ω. Furthermore, to
simplify excessive mathematical notation, once the kernel in Eq. (28) depends
only on the frequency component ω, it is considered the equivalent notation
H3(ω, ω, ω) ≡ H3(ω).

– Step 3.1. Harmonic filtering:250

Considering a harmonic excitation of frequency ω, the response output of the
equivalent nonlinear system from Eq. 27 can be written through the Volterra
series representation using η = 3 contributions [14]:

y(t) = |Y (ω)| cos (ωt+ φ1) + |Y (3ω)| cos (3ωt+ φ3) (29)

where |Y (ω)| and |Y (3ω)| are the amplitudes related to the first and third-order
harmonic amplitudes, respectively, whereas the respective phases are given by
φ1 = ∠Y (ω) and φ3 = ∠Y (3ω). The harmonic amplitudes can be filtered out
from the total experimental response using, for instance, the Fourier filtering.

– Step 3.2. Third-order kernel computation:255

10



By truncating the higher-order components at the third-order harmonic am-
plitude, the kernel Ĥexp

3 (ω) is estimated by [14]:

Ĥexp
3 (ω) ≈ 4Y (3ω)

Ã3
(30)

For experimental measuring of the kernel Ĥexp
3 (ω) following the assumption that

y0 ≈ 0, it is necessary to select properly a frequency range where the harmonic
amplitude is distinctly measurable. Based on the methodology proposed by
Chatterjee and Vyas [14], which developed an iterative estimation procedure
through the higher-order FRFs, the third-order harmonic component should260

be measured around a set of frequencies close to the sub-harmonic component
3ω = ωn, i. e., ω = ωn

3 , where the harmonic Y (3ω) is the most prominent.
Jointed structures carry the amplitude-dependent nonlinearity, having a

significant evolution of the frictional dissipation in the vicinity of resonance
frequencies, where the structure experiences the highest response amplitudes.265

Since the amplitude response around the sub-harmonic ω = ωn
3 assumes smaller

values in comparison with the amplitude in the vicinity of ωn, the assumption
of hysteresis almost closed y0 ≈ 0 seems to be adequate. The results in the
section 4.2 exemplify the harmonic amplitudes measured experimentally.

– Step 3.3. Updating parameters:270

The updating of parameters α and δ is carried out considering the experi-
mentally measured kernel Ĥexp

3 (ω):

Ĥexp
3 (ω) = −H3

1(ω)H1(3ω)

(
16αδ2

96
− 35αδ

96Y

)
︸ ︷︷ ︸

=λ3

(31)

where the Bayesian inference strategy, which is addressed in section 3.2, updates
the estimative of such parameters.

The advantage of using the Volterra series at this identification step lies
in the possibility of visualizing, with physical meaning, the influence of the
nonlinear parameters on the system output through the Volterra contributions.275

Additionally, the propagation of uncertainties through the analytical formula-
tion of the third-order kernel reduces the computational effort for the Bayesian
identification.

• Step 4. Model Verification:

This step conducts the updating, verification, and validation of the nonlinear280

model. The fourth step of the proposed strategy aims firstly to identify the
last parameter, γ, which controls the opening of the hysteresis loop when the
jointed structure operates under a nonlinear regime of motion. Since this is the
parameter that remains to be identified, it is estimated through the calibration
of the integrated numerical output of the proposed Bouc-Wen model in terms285
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of the experimental output of the jointed structure. The model verification is
performed through a comparison between the response of the identified model
with experimental measurements, whereas the validation occurs comparing the
experimental hysteresis loop with the estimated one.

3.2. Bayesian inference strategy290

We employ the Bayesian framework to infer information about the system
parameters. In this framework, prior knowledge is updated with experimental
data, statistical envelopes can be obtained for the identified parameters and the
model response, and it is possible to compute correlation among the variables.
The procedure considers that: (1) the parameters to be identified are modeled as295

random variables θ ∈ IRN , and the system observations are also random D ; (2) a
prior probability density function is assigned to the random vector (composed of
random variables), and a likelihood function is obtained from some hypotheses
of the process; (3) the solution lies in updating the prior density function based
on a set of data observations D from the system or structure in interest, which300

converts an a priori density function into a posteriori one π(θ|D) [33, 34].
In this sense, having D and θ as random variables, the posterior density

function is given based on the Bayes’ theorem:

π(θ|D) =
π(D |θ)π(θ)

π(D)
(32)

where π(θ|D) is the updated posterior probability density function given the
system observations D , π(D |θ) is the likelihood function, π(θ) is the prior prob-305

ability density function containing evidences for candidate model parameters,
whereas π(D) is a normalizing constant that ensures π(θ|D) is a probability
density function with integral equal to unity.

Assuming that the fluctuations in the system response are related to the
measurement process, the measurement data D are described as:310

D = DM(θ) + ε (33)

where DM(θ) corresponds to modelM predictions, given a set of parameters θ,
and ε ∼ N (0, Iσ2

ε) is a random noise vector ε ∈ IRN with covariance Iσ2
ε , where

I is the identity matrix, i.e., we are assuming and additive decorrelated Gaus-
sian noise. Based on equation (33), the analytical expression of the likelihood
function yields:315

π(D |θ) ∝ exp

(
−1

2

(
D −DM(θ)

)T (
D −DM(θ)

)
σ2
ε

)
(34)

and a common point estimate θ∗ is the maximum a posteriori probability (MAP):

θ∗ = argmax
θ

π(θ|D) (35)

12



It is noteworthy that, if a Uniform prior probability density function π(θ)
is chosen, the posterior probability density function is proportional to the like-
lihood function.

Toward this background, the parameters θ = {ζ, k, α, δ, γ}T for modelling320

the jointed structure are set as the random variables with an Uniform prior
probability density function, D consists of experimental measurements acquired
from the jointed structure at Step 1., Step 2. provides an initial estimate for
ωn and ζ, whereas DM(θ) is given according to Steps 3. and 4. respectively,
which results in the following likelihood expressions:325

π(D |{ζ, α, δ}T ) ∝ exp

−
∥∥∥H3({ζ, α, δ}T ;ω)− Ĥexp

3 (ω)
∥∥∥2

2σ2

 (36)

π(D |γ) ∝ exp

(
−‖y(γ; t)− ŷexp(t)‖2

2σ2

)
(37)

where H3({ζ, α, δ}T ;ω) and y(γ; t) are the leading diagonal of third-order kernel
and the output response, respectively, both predicted through the computational
model, whereas Ĥexp

3 (ω) and ŷexp(t) are experimental measurements. Once the
prior density function is Uniform, and we are assuming an additive Gaussian
noise, the MAP (35) produce the same value as the least squares estimate.330

The posterior distribution is approximated numerically. Samples are gener-
ated from the Markov Chain Monte Carlo (MCMC)/Metropolis-Hastings algo-
rithm [35, 36]. The random variables θ are limited to the interval [θmin,θmax],
whose current state is symmetrically normalized as θ′ = (1 − x)θmin + xθmax,
and x is a random variable ∈ [0, 1]. Only 90% of the Monte Carlo simulations335

ns are considered in the final stationary Markov chain (burn-in of 10%), and
the value of the random walk step σp is chosen such that the acceptance rate is
about 50%.

Finally, Figure 2 summarizes the strategy proposed along the section, de-
picting each step into a flowchart representation.340
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Figure 2: Flowchart of the estimation procedure. Step (1) provides experimental measure-
ments for each next step. Step (2) computes values for ωn and ζ and provides prior knowledge
about them; in Step (3), after computing the experimental third-order kernel, the PDFs of
{ζ, α, δ}T are updated, including the PDF π(ζ) because of the uncertainty regarding exper-
imental visualizations on the parameter, whereas ωn is held at the mean value; estimated
MAP of {ζ, α, δ, ωn}T are used to construct the computational model in Step (4) and update
π(γ), then to evaluate and to validate the constructed model.

4. Experimental Application of the Proposed Methodology in a Bolted
Joint Structure

4.1. Experimental setup

The identification problem tackled may be stated as follows: the experimen-
tal test rig is nonlinearly dependent on excitation amplitude, presenting the345

well-known softening effect of friction joints. The structure presents data vari-
ation related to the presence of uncertainties in the measurement process. The
experimental measurements were conducted through different days and only the
tightening torque in the joint connection was controlled after each experimental
realization. Once the general aspects of the identification problem have been350

discussed, this subsection focus on describing the experimental setup.
Figure 3 presents the jointed structure investigated. The test rig is formed

of two aluminum beams, each one with dimensions of 270 × 25.4 × 6.35 mm
and assembled by a bolted-joint connection with a tightening torque of 5 Nm.
The excitation of the structure was conducted by a Modal Shop 2400E shaker355

located at 85 mm from the clamped end of the cantilever beam to minimize
shaker–structure interaction [37]. Due to observability purposes for modeling
the first vibration mode of the structure, the system output was measured at
the free end of the beam, using a laser vibrometer Polytec R©OFV-525/5000S.
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The data acquisition system was the LMS SCADAS. The structure was excited360

using different levels of input amplitude 0.05 V (low), 0.10 V (medium) and
0.20 V (high). This paper regards the voltage supplied by the shaker amplifier
as the excitation signal since it is easier to keep this signal constant over a
frequency range. The same strategy was used in Villani et al. [38]. All signals
were measured with a sampling frequency of 1024 Hz.365

Measurement
Points

Laser 
Vibrometer

Bolted
Joint

Shaker

Top view of the bolted joint:

(a) Experimental setup

Accelerometers

Amplifier

LMS SCADAS
Data Acquisition

Laser Vibrometer

Desktop
Signal Processing

1

2

3

4

40 m
m

270 m
m

230 m
m

85 m
m

6.35  mm

Shaker

Bolted
Joint

(b) Schematic top view of the experimental
setup.

Figure 3: Experimental setup and the schematic representation illustrating the cantilever
beam which carries a bolted joint connection.

Figure 4(a) illustrates the receptance calculated during a sweeping sine test
from 0 to 40 Hz (around the first mode), collected with 16384 samples and burst
of 50%, regarding different input levels supplied in the shaker amplifier. On the
receptance, it is worthy of remark that the FRF starts to exhibit distortions and
shifts in the resonant peak as the input force level increases. Further, Figure370

4(b) depicts a zoom on the frequency response curve for a stepped sine test
from 3 up to 23 Hz, which indicates that the resonant frequency decreases when
the forcing amplitude increases, revealing the bolted joint softening operation.
For capturing this nonlinear behavior, the Bouc-Wen model parameters must
accomplish the condition 0 < γ 6 δ.375

Figure 5 exemplifies the data fluctuation considering several experimental
measurements with 99% of statistical confidence bands. This figure demon-
strates that even with a small confidence band variation, it is necessary to
create a stochastic model to encode the observed variations in experimental
realizations.380
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Figure 4: Frequency response plots for different excitation amplitudes: for low amplitude
level (0.05 V), 4 for medium amplitude level (0.10 V), and ◦ for high amplitude level (0.20
V).

(a) Low level of excitation amplitude (0.05 V).

(b) High level of excitation amplitude (0.20 V).

Figure 5: Variation of the Frequency Response Function calculated for different excitation

amplitudes with 99% of confidence bands. B represents the confidence bands, whereas
is the mean values.
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4.2. Identification of the stochastic Bouc-Wen model

Based on the identification steps in Fig. 2, this subsection is presented as
follows:

• Step 2. Linear regime of motion:

Figure 5(a) represents the FRF obtained experimentally used for extracting385

the system modal parameters considering a white noise as input signal with
low excitation amplitude (0.05 V). Under this operating condition, the system
behaves linearly, and the mean values were µωn = 18.80 Hz and µζ = 0.39%,
whereas the coefficient of variation (CV), defined as standard deviation over
the mean of the random variables, is 0.176% and 24.75%, respectively, implying390

that the uncertainty on the damping ratio is more significant than in the reso-
nance frequency. In this scenario, for the next identification step, the resonance
frequency will be held at the mean value of 18.80 Hz, whereas the posterior prob-
ability density function of ζ will be computed through the Metropolis-Hastings
algorithm.395

• Step 3. Nonlinear regime of motion:

For the identification Step 3.1., Figure 6 exemplifies a set of harmonic ampli-
tudes extracted from the structure response around the sub-harmonic ωn/3 us-
ing Fourier filter. Note that around the selected frequencies of [5, 5.5, 6, 6.5, 6.75]
Hz, considering a probing input with an amplitude level of 0.15 V to com-400

pute the leading diagonal of the third-order Volterra, the harmonic component
Y (3ω) is prominent and measurable. The probing signals were collected with
65536 samples to ensure that the harmonic components are extracted during the
steady-state condition. As summarized in Step 3.2., the third-order harmonics
are considered to compute the experimental third-order kernel.405

Figure 6: Harmonic Amplitude filtered from the system output. 4 for Y (3ω) and ∗ represents
the Y (ω) amplitude.

For updating the random variables θ = {ζ, α, δ}T in Step 3.3., the prior
PDF is set to Uniform assuming as limits θmin = {0.352%, 424.31, 272.80}T
and θmax = {0.528%, 589.61, 409.92}T , and then the updated PDF is computed
simulating a Markov Chain. In addition, it is important to point out that the
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prior PDF to ζ is set Uniform such that the previous results identified from410

Step 2. do not bias the updating at this step. The interval for each parameter
was based on initial results considering the sequential quadratic programming
(SQP) algorithm [39] as an optimization procedure for minimizing the objective
function:

min J({ζ, α, δ}T ) =
∥∥∥H3({ζ, α, δ}T ;ω)− Ĥexp

3 (ω)
∥∥∥2

(38)

subject to:415

0 < α 6 ω2
n and α+ k = ω2

n

0 < δ 6 500 (39)

For estimating the Markov Chain, it was assumed σ = 6.8092× 10−9, which
is calculated based on the covariance matrix of 8 experimental measurements
collected at each selected frequency, and σp = 2.5108 × 10−3 such that the
acceptance rate of the chain was ∼ 50%. The statistics of the parameters
were estimated considering Monte Carlo simulations with 850 samplings. The420

convergence concerning the number of samplings was estimated considering a
function which depends on the leading diagonal of the Volterra kernel:

conv(ns) =
1

ns

ns∑
i=1

∫
B

∥∥Hi3(ω)
∥∥2
dω (40)

where Hi3 corresponds to the ith calculated realization of the Volterra kernel in
the Markov Chain, and B is the integration domain.

Figures 7(a), 7(b) and 7(c) show the prior Uniform PDF of ζ, α and δ to-425

gether with the updated (posterior) PDF, respectively. Special attention should
be given for Figure 7(c), which shows that ζ has a completely different PDF
than the first one estimated. Besides, it is interesting to note that both PDF of
the damping ratio and the δ parameter exhibit bimodal behavior. The charac-
teristic of these PDFs shows that the Bayesian inference paradigm is robust to430

the presence of multiple possible solutions for the Bouc-Wen model, in which a
deterministic approach is not capable of dealing. Additionally, the prior PDF
for each parameter starts with a CV ∼ 28%, whereas the CVs based on the
posterior PDFs and given in Table 1 present lower values. Table 1 also shows
that the MAP estimator is very close to the mean values for each parameter.435

Parameter MAP estimator µ CV(%)
ζ 0.446% 0.444% 0.57
α 491.36 [N/mkg−1] 497.40 [N/mkg−1] 0.98
δ 341 340.21 0.98

Table 1: MAP estimator, mean value µ and CV for each random variable.

An alternative way to quantify how much information is lost concerning
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the prior PDF is computing the Kullback-Leibler (KL) Divergence [40]. The
KL divergence measures the similarity between two PDFs and is useful to an-
alyze which PDF provides a better representation of the experimental observa-
tions. For each posterior PDF at this step, the divergence values are around440

Dkl(posterior||prior) ≈ 0.36, which indicates that for all cases, the posterior
PDFs have added a considerable amount of information in comparison with the
Uniform one.

Figure 7: PDF of the random variables θ = {ζ, α, δ}T . In (a), represents the PDF
estimated after modal analysis, whereas in (a), (b) and (c), is the Uniform PDF and
is the posterior one.

Figure 8 depicts the leading diagonal of the calibrated third-order Volterra
kernel with 99% of statistical bands, evidencing that the analytical kernel can445

capture the data variation in experimental measurements.
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Figure 8: Comparison between the leading diagonal of the third-order Volterra kernel esti-

mated versus the experimental data. B represents the 99% model response confidence bands,
is the model response mean and • represents three experimental realizations.

• Step 4. Model verification:

The Step 4. of the identification procedure starts estimating the γ parameter.
At this stage, once the CVs of the parameters identified earlier are low ∼ 1%,
they were held fixed at their mean values {ζ, α, δ}T = {0.444%, 497.40, 320.21}T ,450

just as the resonance frequency. Thus, the prior PDF is also set to Uniform as-
suming the interval γmin = 17 and γmax = 41 based on initial observations
performed on the following objective function solved through the SQP algo-
rithm:

min J(γ) =

∥∥∥ˆ̇yexp(t)− ẏ(γ; t)
∥∥∥∥∥∥ˆ̇yexp(t)−mean(ˆ̇yexp(t))

∥∥∥ (41)

subject to:455

0 < γ 6 δ (42)

where [y(γ; t) ẏ(γ; t) ÿ(γ; t)]T are obtained through a numerical integration
scheme with the 4thorder Runge-Kutta method and variable time-step, whereas
the collected testing data (velocity vibration signal measured by the laser vi-
brometer Figure 3) ˆ̇yexp(t) for this step is based on a sweeping sine test around
the first vibrating mode, from 0 to 40 Hz, with an amplitude level of 0.20 V460

supplied in the shaker amplifier.
For estimating the posterior PDF of γ parameter, the Markov Chain was

computed assuming σ = 1.26 × 103, which is based on the covariance of 48
experimental measurements, and σp = 0.025, ensuring an acceptance rate also
around 50%. Besides, the statistics of γ was also estimated considering Monte465

Carlo simulations with 850 samplings. For this step, the convergence was es-
timated based on equation (40) and the numerically integrated velocity of the
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Bouc-Wen model considering high level of excitation amplitude.
Figure 9 presents a comparison between the prior and posterior PDFs of γ

parameter. Similar to what happened in the previous step, the posterior PDF470

also enclosed a great amount of information around the mean, providing a mean
value of µγ = 32.84, whereas the MAP estimated γ∗ = 33.01. The CV of the
posterior PDF is greater than in previous cases, being 10.20% but lower than
the CV of the prior PDF, which starts ∼ 28%. Further, the KL divergence
for the γ parameter is Dkl(posterior||prior) = 1.236, which means that in this475

specific case, the information lost by using the Uniform approximation is greater
than in the other ones.

Figure 9: PDF of the random variable γ. represents the prior PDF, whereas is the
posterior one.

Figure 10: Comparison between the frequency response functions estimated from the numer-

ical Bouc-Wen versus the experimental data around the first vibrating mode. B represents
the 99% model response confidence bands, is the model response mean and • represents
three experimental realizations.

For evaluation of the stochastic Bouc-Wen model, Figure 10 presents a com-
parison between the FRF reproduced by the Bouc-Wen with 99% of statistical
bands and three FRFs obtained experimentally considering white-noise exci-480

tation at the low amplitude level. As well as the experimental receptance,
the computational one also presents more significant uncertainty related to the
damping.
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Figure 11: Verification and validation of the Bouc-Wen model for low excitation amplitude

(0.05 V) considering a sweeping sine test. B represents the 99% model response confidence
bands, is the model response mean and • represents three experimental realizations.

Figure 12: Verification and validation of the Bouc-Wen model for high excitation amplitude

(0.20 V) considering a sweeping sine test. B represents the 99% model response confidence
bands, is the model response mean and • represents three experimental realizations.

Figures 11 and 12 illustrate the predicted response of the numerical model
with 99% of statistical confidence bands in comparison with experimental data485

for a sweeping sine test with low and high excitation amplitude, respectively.
The narrow confidence bands are a feature of the applied computational model,
which represents well the experiment under analysis.

Finally, Figure 13 exhibits the measured and the predicted hysteresis loops
for different amplitudes applied in the shaker. In all cases, both hysteretic cycles490

enclose substantially the same area on the restoring force versus displacement
plane, producing an adequate prediction for the experimental tests. This figure
evidences that the Bouc-Wen model can accommodate enough accuracy of the
experimental test-bench. In addition, Figure 13(a) shows that for a maximum
displacement of∼ 4.8 mm, the hysteresis loop is almost closed, which exemplifies495

that the assumption made during the Step (3) is reasonable, since the maximum
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displacement amplitude in Figure 6 is about ∼ 0.8 mm.

Figure 13: Comparison between the identified hysteresis loop through the Bouc-Wen versus

experimental data for several excitation amplitudes. B represents the 99% model response
confidence bands, is the model response mean and • represents three experimental real-
izations.

5. Final Remarks

This work proposes a procedure to identify structures that have jointed con-
nections based on a four-step algorithm. The identification procedure was ap-500

plied to an experimental setup under a nonlinear regime of motion due to the
frictional contact between different structural components. This work consid-
ers the white-box modeling of a Bouc-Wen model for capturing the dynami-
cal behavior of the jointed structure. A set of preliminary experimental tests
have shown fluctuations in the system response. Therefore, a Bayesian infer-505

ence strategy for updating the model parameters was employed. The Bayesian
strategy presented in this paper could be used directly to identify the complete
Bouc-Wen model, just setting all parameters to update in Step (4), which car-
ries similar particularities to the Worden and Hensman [41] work. However, the
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framework of the higher-order FRFs was fundamental for nonlinear parameter510

estimation, providing a clear physical meaning about the structure behavior and
conducted with traditional experimental tests.

The results of the stochastic Bouc-Wen model indicates that the computa-
tional model can provide an adequate description of assembled structures by
bolt connection. In an uncertain scenario, the model can reproduce well the515

fluctuations related to the damping ratio, which were also visualized in the
experimental FRF. The computational hysteretic loops carry a full confidence
band around the displacement y0, especially in Figure 13(a), where the hys-
teresis loop is almost closed. Despite this, it was possible to predict with an
adequate agreement the output of the jointed structure considering several ex-520

citation amplitudes.
Finally, this work is a natural extension of the methodology developed by

Teloli and da Silva [17], exploring the advantages of using the Volterra series as
an alternative tool to perform the nonlinear parametric estimation. Although
the benchmark addressed here is a controlled experimental laboratory setup525

and still far from complex industrial cases, this paper presents the use of both
higher-order FRFs and the Bouc-Wen model as effective alternatives to deal with
problems involving experimental bolted joints with data fluctuation, which is an
original contribution to literature. In future work, additional experiments will be
collected to test the identification procedure in an even more uncertain scenario,530

involving different tightening torque conditions and assembly/disassembly of
jointed structures, as this is a challenging issue that includes several variabilities
on the structures response. Additionally, future works will also focus on using
the Bouc-Wen parameters for modeling the contact interfaces in whole-joint
element models of assembled structures. To acomplish this task, modifications535

on the hysteretic model are expected to acommodate the non-local memory
effects present in frictional forces according to the pre-sliding and sliding regimes
of motion.
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