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Abstract

A method is proposed herein to build beam equations for materials fea-

turing higher-grade elasticity. As it is based on the minimization of the con-

stitutive equation gap, static admissibility conditions are taken into account

so that it naturally converges to the usual beam equations resulting from

Cauchy elasticity when the beam dimensions are large enough. The method

is exemplified, for Euler-Bernoulli beams, on first-strain gradient and second-

strain gradient elasticity, which yield local and non-local beam equations,

respectively. The solutions of these equations are computed for tensile and

bending loads over a wide range of beam dimensions in order to assess the

role of the different grades on the global behavior of simple mechanical struc-

tures. Under first-strain gradient elasticity, the proposed approach extends

the validity of the equations obtained previously for tensile or bending load-

ings. Considering second-strain gradient elasticity, this additionally allows

to distinguish two different regimes, depending on whether the elasticity is

driven by the surface (it is proposed to denote this regime as the ecto-elastic

regime) or by the bulk. It may also model the chemo-mechanical couplings.

It finally suggests that second-strain gradient elasticity and first-strain gradi-
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ent elasticity may affect the bending stiffness in the same dimensional range,

so that both should always be considered simultaneously when analyzing

experimental results.
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1. Introduction

Since the emergence of integrated circuits at the end of the 1950s as

a response to the ”tyranny of numbers”, miniaturization has been a con-

cern for the electrical engineering community, namely, being able to produce

solid-state transistors was useless without the possibility to connect them

efficiently and reliably. The wires between transistors were all soldered by

hand, thus limiting both the increase in complexity and the reliability of the

final device. The groundbreaking idea was to integrate the circuitry to the

semi-conductor piece holding the transistors. It allowed the mass-production

of reliable devices, and has been the starting point for successive technolo-

gies, all described by the ”integration-level”, measured as the number of

transistors per chip, they allow: from small-scale integration (early 60s) to

very-large-scale integration (80s). The technology was at that time mature

enough to allow for other communities to benefit from the miniaturization

possibilities. Non-electronic functions thus started to be integrated to the

chips, and restricting to mechanical applications, this yielded devices such as

pressure sensors, accelerometers, gyroscopes, microphones or ink-jet printer

cartridges that are now on the market. The motivation was then mainly the
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same as for electronic devices, namely, integration (all the above-mentioned

mechanical devices are electrically read or driven), reliability and mass pro-

duction.

These devices do not make use of any scale effect on the mechanical behavior

of the fabricated objects, so that there is still room for innovative products

making the most of the miniaturization capabilities. This however requires

the development of modeling frameworks to pave the way for the engineering

of these scale effects. Focusing on the mechanical behavior of solids, such

scale effect encompass both size-dependent elasticity and surface couplings.

Only few experimental results demonstrating size-dependent elasticity have

been reported in the literature, mainly because of the difficulty to keep the

experimental errors low enough whereas the probed objects are more and

more difficult to handle when they scale down. Materials such as epoxy-

based materials [1, 2], pure metals [3] and ceramics [4] have been shown to

display such size-dependent elasticity. On the other hand, surface couplings

at the micrometer-scale have been shown to be rather easy to implement

since the mid 90s [5], and this triggered the development of micromechanical

sensors [6]. Such developments clearly call for some dedicated frameworks

to describe such scale effects for solids, and it is worth noting that most of

these experimental results have been obtained on one-dimensional objects,

thus stressing the need for tractable beam theories able to render these scale

effects. This also holds true for (large scale) beams made of architectured

materials [7, 8].

An extremely vast number of such beam models has already been proposed

in the literature [9]. To the best of the author’s knowledge, they all fall into
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two categories. Most of them, forming the first category, follow from the de-

velopments by Gurtin and Murdoch [10, 11] : the surface is considered as a

membrane material withstanding “surface stresses” with its own mechanical

properties , the membrane eigenstrain (and thus the surface energy) being

possibly discarded. Such an approach has been shown to efficiently render

size-dependent elasticity [3] and the thermodynamics of the involved chem-

ical system can be used to set the properties of the surface when dealing

with surface couplings [12, 13, 14] (also see [15] in the context of capillary

actions). The question of the connection between both the properties and

the mechanical state of the bulk and surface materials remains open, making

the role of the material itself in the observed effects somehow unclear.

The second category gathers models which rely on different types of non-

local formulations of the driving equations. Strongly non-local formulations

[16] appear as the introduction of regularization operators whose physical

meaning is sometimes questionnable [17]. Alternatively, weakly non-local for-

mulations rely on generalized continua, among which higher-grade continua

feature a lower complexity, and as such have been preferentially considered to

build simplified theories describing the behavior of one-dimensional objects.

The constitutive equations then make coefficients scaling as stiffnesses mul-

tiplied by characteristic lengths to the various powers appear : first-strain

gradient (FSG) elasticity [18] thus naturally renders size-dependent elasticity,

whereas second-strain gradient (SSG) elasticity further introduces a cohesion

modulus which has been shown to rigorously define the equivalent of surface

tension for solids [19]. Interestingly, modeling surface tension effects in solids

has recently (and rather independently) become an issue in the soft matter
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community together with the definition of a cut-off length able to smooth

stress singularities [20]. Several contributions focused on the assessment of

the equivalence between membrane-based descriptions and higher-grade elas-

ticity [21, 22]. These frameworks are thus particularly suited to describe scale

effects in elasticity [23, 24], so that some efforts have been made to translate

them to one-dimensional structures.

Focusing on beams, the vast majority of these attempts actually starts from

one-dimensional analogues of the three-dimensional equations describing the

continua [21, 25, 26, 27, 28, 29, 30]. This allows to introduce simplifications

and adjust the complexity to the effects the authors wish to describe, but the

link to the parameters in the three-dimensional constitutive laws is lost and

so for the underlying thermodynamics, so that paradoxes may appear when

comparing formulations [31, 32]. An alternative approach in such a complex

situation consists in starting from the three-dimensional constitutive law to

derive the beam equations. Even though the number of material parameters

is rather large (18 elastic parameters are for instance necessary to describe an

isotropic centrosymmetric material in SSG elasticity), the complexity is then

kept reasonable by making a direct use of the three-dimensional constitutive

law : the (higher-order) stresses in the beam are assumed to be obtained by

applying it to the (higher-order) strain fields derived from the chosen beam

kinematics [33, 34]. Static admissibility conditions are discarded, so that the

resulting beam equations are shown to inherit some deficiencies from this

construction, such as their inability to render Poisson’s effect and the right

tensile stiffness without a somehow arbitrary stiffness correction [33, 35].

This holds also true when simplified constitutive laws [36] are considered
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[37]. Because the constitutive equations under scrutiny herein are too com-

plex to allow for a direct asymptotic analysis [38], an alternative route has

to be found, but the quantitative character of the available beam theories

thus seems limited by the trade-off between complexity and thermodynamic

groundings.

This contribution therefore intends to overcome this difficulty by proposing

an approach to build beam equations for materials featuring higher-grade

elasticity. It is aimed to include the static admissibility conditions, which are

derived in Sect.(2) and which are missing in the above-mentioned approaches.

The complexity is kept rather simple by making use of the constitutive equa-

tion gap [39] in Sect.(3). This approach is then applied to SSG elasticity in

Sect.(4), for which all the involved terms are expressed as closed-forms and a

variational formulation is derived. The resulting equations are finally solved

for tensile and bending loadings in Sect.(5) in order to assess the role of the

different grades and provide a base for the experimental identifiability of the

constitutive parameters. The reader interested in applying these constitu-

tively optimal governing equations to its own problem may directly jump to

this Sect. and Appendix B for the closed-form expressions of the involved

coefficients.
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2. Problem statement

2.1. Geometry and kinematics

Considering a beam lying along x direction and using the Euler-Bernoulli

assumption, the displacement d for a plane loading in the (x,y) plane reads

dx = u(x)− y
dv(x)

dx
(1)

dy = v(x) (2)

Following Mindlin [19], the free energy is assumed to depend on the classical

infinitesimal strain ǫ1, as well as on the triadic ǫ2 = ∇∇d (symmetric in

the first two positions) and on ǫ3 = ∇∇∇d (symmetric in the first three

positions). ǫ1 has therefore a single non-vanishing component

ǫxx = −y d
2v

dx2
+

du

dx
(3)

The non-zero components of ǫ2 read

ǫxxx = −y d
3v

dx3
+

d2u

dx2
(4)

ǫxyx = −d2v

dx2
= ǫyxx (5)

ǫxxy =
d2v

dx2
(6)

The components of ǫ3 read

ǫxxxx = −y d
4v

dx4
+

d3u

dx3
(7)

ǫyxxx = −d3v

dx3
= ǫxyxx = ǫxxyx (8)

ǫxxxy =
d3v

dx3
(9)
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2.2. Second-strain gradient elasticity

Let us assume that all the material parameters are uniform all over the

cantilever beam. The approach proposed herein will be illustrated through-

out the manuscript considering the second-strain gradient elasticity (SSG)

of a centrosymmetric, isotropic material [19]. The free energy density ψ

therefore reads

ψ =
λ

2
ǫiiǫjj + µǫijǫij

+a1ǫijjǫikk + a2ǫiikǫkjj + a3ǫiikǫjjk + a4ǫijkǫijk + a5ǫijkǫkji

+b1ǫiijjǫkkll + b2ǫijkkǫijll + b3ǫiijkǫjkll + b4ǫiijkǫllkj

+b5ǫiijkǫlljk + b6ǫijklǫijkl + b7ǫijklǫjkli

+c1ǫiiǫjjkk + c2ǫijǫijkk + c3ǫijǫkkij

+b0ǫiijj (10)

where λ and µ are Lamé’s coefficients, whereas the other parameters

an, cn, b0 ∝ µl2S

bn ∝ µl4S

make characteristic lengths ∝ lS appear. The presence of the linear term

proportional to ǫiijj is to be highlighted. Without any external loading, it

makes the free energy non-zero

ψ =
b0
2
∆ (divu)
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and b0, which is denoted as the cohesion modulus, defines the equivalent of

surface tension for solids [19]. Defining the associated generalized stresses as

τ 1 =
∂ψ

∂ǫ1

τ 2 =
∂ψ

∂ǫ2

τ 3 =
∂ψ

∂ǫ3
(11)

, the virtual work principle reads, ∀d⋆ (admissible)

∫

V

W (d⋆)dV =

∫

V

(

τ 1 .. ǫ1(d⋆) + τ 2 ... ǫ
2(d⋆) + τ 3 .. ..ǫ3(d⋆)

)

dV = Wext(d
⋆)

(12)

Restricting to the derivation of beam equations, d⋆ derives from the chosen

kinematics (Euler-Bernoulli, Timoshenko...). τ i and ǫi are not necessarily

associated through Eqs.(10) and (11), so that a choice has to be made. As

already outlined in the introduction, the literature assumes, for the sake

simplicity, that τ i and ǫi are associated through the 3D laws, so that the

equations recalled in Appendix A hold [33, 34]. It should actually be high-

lighted that the usual (Cauchy) elastic beam theories make use of σxx = Eǫxx

at the local scale, where E is the Young’s modulus, which differs from the

coefficient λ+ 2µ obtained from the three-dimensional law. It is well known

this difference arises from the static boundary conditions. The purpose of

the next sections is thus to define the static admissibility conditions which

have been discarded so far and which should be taken into account to correct

such a deficiency.
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2.3. Static boundary conditions

Denoting

n =











0

cosα

sinα











(13)

the normal at the cross-section boundary, one assumes, for classical beam

theories, that the tractions at any beam boundary vanish :

τ 1n = 0 ∀α (14)

which is imposed by simultaneously ensuring

ytτ 1n = 0 ∀α (15)

ztτ 1n = 0 ∀α (16)

xtτ 1n = 0 ∀α (17)

Eqs. (15-16) are usually ensured by setting (using the symmetry of τ 1) :

τyy = τzz = τyz = 0 (18)

for all points P within the cross-section S, whereas Eq.(17) has to be satisfied
at the boundary B. This set of conditions defines the statically admissible

stress fields when using Cauchy elasticity. This section intends to extend

such approach to second strain gradient elasticity.
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2.3.1. Third-order traction

The general form of boundary conditions is given in [19], Eq.(18). Eq.

(18c) reads (using symmetry relationships):

t3 = cos3 α











τyyyx

τyyyy

τyyyz











+ 3 cos2 α sinα











τyyzx

τyyzy

τyyzz











+ 3 cosα sin2 α











τyzzx

τyzzy

τyzzz











+ sin3 α











τzzzx

τzzzy

τzzzz











(19)

Similarly imposing y · t3 = 0 ∀α and z · t3 = 0 ∀α for all points within the

beam cross-section yields

H3s :







τyyyy = τyyzy = τyzzy = τzzzy = 0

τyyyz = τyyzz = τyzzz = τzzzz = 0
∀P ∈ S (20)

Further imposing x · t3 = 0 ∀α at the boundary yields

H3b : 0 = cos3 ατyyyx+3 cos2 α sinατyyzx+3 cosα sin2 ατyzzx+sin3 ατzzzx ∀α∀P ∈ B
(21)

2.3.2. Second-order traction

Expanding Mindlin’s L operator, Eq. (18b) in [19] reads (using symmetry

relationships)

t2 = nn .. (τ 2 −∇ · τ 3) + 2(
s

∇ · n)t3 − n ·
[

s

∇ · (n · τ 3)
]

−
s

∇ · (nn .. τ 3) (22)

One thus has to satisfy, for all points of the cross-section :

y · t2 = 0 ∀α (23)

z · t2 = 0 ∀α (24)
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where t2 expands as

t2 = 2(
s

∇ · n)t3

−2 cos4 α τyyzk,z − 2 sin4 α τyzzk,y

+2 cos3 α sinα (τyyyk,z + τyyzk,y − 2τyzzk,z)

−2 cos2 α sin2 α (τyyyk,y − 2τyyzk,z − 2τyzzk,y + τzzzk,z)

−2 cosα sin3 α (2τyyzk,y − τyzzk,z − τzzzk,y)

+ cos2 α (τyyk − τlyyk,l − 2τxyyk,x)

+2 cosα sinα (τyzk − τlyzk,l − 2τxyzk,x)

+ sin2 α (τzzk − τlzzk,l − 2τxzzk,x)

+3fc
(

cos2 α τyyzk + cosα sinα(τyzzk − τyyyk)− sin2 α τyyzk
)

+3fs
(

cos2 α τyzzk + cosα sinα(τzzzk − τyyzk)− sin2 α τyzzk
)

(25)

with

fc = sinα
∂ cosα

∂y
− cosα

∂ cosα

∂z
(26)

fs = sinα
∂ sinα

∂y
− cosα

∂ sinα

∂z
(27)

Assuming that the condition H3s is satisfied, Eqs.(23-24) yield :

H2s :



















τyyk = 3 τxyyk,x

τyzk = 3 τxyzk,x

τzzk = 3 τxzzk,x

∀P ∈ S, k = y or k = z (28)

The condition x · t2 = 0 ∀α ∀P ∈ B has also to be satisfied, and has to be

examined for any particular loading and geometry.
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2.3.3. First-order traction

Expanding the L operator, Eq. (18c) in [19] reads (using symmetry rela-

tionships)

t1 = n ·
(

τ 1 −∇ · τ 2 +∇∇ .. τ 3
)

+ (
s

∇ · n)
[

t2 − (
s

∇ · n)t3
]

−
s

∇ ·
[

n ·
(

τ 2 −∇ · τ 3
)

−
s

∇ · (n · τ 3)− (
s

∇n) ·
(

nn .. τ 3
)

]

(29)

Imposing, at any point of the cross-section

y · t1 = 0 ∀α (30)

z · t1 = 0 ∀α (31)

yields, assuming that both H3s and H2s are satisfied :

H1s :







τyk − 2 τxyk,x + 3 τxxyk,xx = 0

τzk − 2 τxzk,x + 3 τxxzk,xx = 0
∀P ∈ S, k = y or k = z (32)

Similarly, the condition x · t1 = 0 ∀α ∀P ∈ B should be examined for the

considered loading and geometry.

2.4. Statically admissible (higher-order) stress fields

Extending the approach used for classical beam theories, one defines the

statically admissible (higher-order) stress fields as those simultaneously sat-

isfying conditions H3s, H2s and H1s. This set of conditions thus defines

a space of statically admissible stress fields Θ. The vector T gathers the
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involved stress components :

Tt =
[

τxx, τyy, τzz,
√
2τyz,

√
2τxz,

√
2τxy,

τxxx, τyyx, τzzx,
√
2τyzx,

√
2τxzx,

√
2τxyx,

τxxy, τyyy, τzzy,
√
2τyzy,

√
2τxzy,

√
2τxyy,

τxxz, τyyz, τzzz,
√
2τyzz,

√
2τxzz,

√
2τxyz,

τxxxx, τyyyx, τzzzx,
√
3τyzzx,

√
3τyyzx,

√
6τxyzx,

√
3τxzzx,

√
3τxxzx,

√
3τxxyx,

√
3τxyyx,

τxxxy, τyyyy, τzzzy,
√
3τyzzy,

√
3τyyzy,

√
6τxyzy,

√
3τxzzy,

√
3τxxzy,

√
3τxxyy,

√
3τxyyy,

τxxxz, τyyyz , τzzzz,
√
3τyzzz,

√
3τyyzz ,

√
6τxyzz,

√
3τxzzz,

√
3τxxzz,

√
3τxxyz,

√
3τxyyz

]

(33)

so that

Θ : {T/H1s} ∩ {T/H2s} ∩ {T/H3s} (34)

The stresses resulting from an Euler-Bernoulli displacement field through

the three-dimensional constitutive law are detailed in Appendix A (see Eqs.

A.8-A.24). It is straightforward to note that these stresses do not belong to

the Θ subspace. There exists a gap between the stresses obtained from the

displacement field and those belonging to the admissible space Θ. A direct

comparison of the conditionsH3s,H2s andH1s with the stress values obtained

from the three-dimensional constitutive law thus brings to the conclusion that

all conditions (Euler-Bernoulli kinematics, three-dimensional constitutive law

and free-boundaries conditions) cannot be met simultaneously, and one has

to somehow relax the constrains.
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3. Optimal constitutive equations for beams

It is actually proposed to make the constitutive equation accommodate

both the kinematic and free-boundaries conditions. As the static and kine-

matic fields cannot be related through the three-dimensional constitutive

law, the latter has to be replaced. The challenge is then to rigorously de-

fine the constitutive law to be used when writing the virtual work principle

(12) instead of the three-dimensional law. This Section details the use of the

so-called constitutive equation gap [39] for that purpose.

3.1. Constitutive equation gap

The free energy density ψ formally reads (see Eq.(10))

ψ(E) =
1

2
E · C · E+B · E (35)

where E is the vector gathering the kinematic variables :

Et =
[

ǫxx, ǫyy, ǫzz,
√
2ǫyz,

√
2ǫxz,

√
2ǫxy,

ǫxxx, ǫyyx, ǫzzx,
√
2ǫyzx,

√
2ǫxzx,

√
2ǫxyx,

ǫxxy, ǫyyy, ǫzzy,
√
2ǫyzy,

√
2ǫxzy,

√
2ǫxyy,

ǫxxz, ǫyyz , ǫzzz,
√
2ǫyzz,

√
2ǫxzz,

√
2ǫxyz,

ǫxxxx, ǫyyyx, ǫzzzx,
√
3ǫyzzx,

√
3ǫyyzx,

√
6ǫxyzx,

√
3ǫxzzx,

√
3ǫxxzx,

√
3ǫxxyx,

√
3ǫxyyx,

ǫxxxy, ǫyyyy, ǫzzzy,
√
3ǫyzzy,

√
3ǫyyzy,

√
6ǫxyzy,

√
3ǫxzzy,

√
3ǫxxzy,

√
3ǫxxyy,

√
3ǫxyyy,

ǫxxxz, ǫyyyz , ǫzzzz,
√
3ǫyzzz,

√
3ǫyyzz,

√
6ǫxyzz,

√
3ǫxzzz,

√
3ǫxxzz,

√
3ǫxxyz,

√
3ǫxyyz

]

(36)

15



and B is the vector rendering the cohesion modulus effect :

Bt =

[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, b0, 0, 0, 0, 0, 0,
b0√
3
, 0, 0,

b0√
3
, 0, b0, 0,

b0√
3
, 0, 0, 0, 0,

b0√
3
, 0, 0, 0, b0, 0,

b0√
3
, 0, 0,

b0√
3
, 0, 0

]

(37)

C is built from Eq.(10). The Legendre-Fenchel transform defines the conju-

gate potential ψ∗(T)

ψ∗(T) = sup
E

{T ·E− ψ(E)} =
1

2
(T−B) · C−1 · (T−B) (38)

and the corresponding residual ηψ(T,E)

ηψ(T,E) = ψ(E) + ψ∗(T)−T · E (39)

It is easily checked that ηψ(T,E) ≥ 0 ∀(T,E) and that ηψ(T,E) = 0 if the

constitutive equation is satisfied :

ηψ(C · E+B,E) = 0 ∀E (40)

ηψ(T,E) is also quadratic with respect to T. ηψ(T,E) is denoted as the

constitutive equation gap in the following. As its properties make it adequate

to measure the distance between T and E (i.e., the gap exposed at the

end of Sect. 2.4), it is used hereafter in order to account for the static

admissibility conditions when building the governing equations for beams.

The Euler-Bernoulli assumptions on the displacement field define the space
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of kinematically admissible fields :

Ξ =

{

Et =

[

ǫxx, 0, 0, 0, 0, 0,
∂ǫxx
∂x

, 0, 0, 0, 0,
√
2
∂ǫxx
∂y

,−∂ǫxx
∂y

, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,
∂2ǫxx
∂x2

, 0, 0, 0, 0, 0, 0, 0,
√
3
∂2ǫxx
∂x∂y

, 0,−∂
2ǫxx
∂x∂y

, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]

, ǫxx = −y d
2v

dx2
+

du

dx

}

(41)

As recalled in Sect.2.2, it is usually chosen in Eq.(12) [33, 34] to set W (d⋆)

as

W (d⋆) = (C · EKA +B) · E(d⋆)

EKA ∈ Ξ

E(d⋆) ∈ Ξ (42)

thus assuming the three-dimensional constitutive law is satisfied, without

any consideration for any (free) boundary condition. Such a choice is known

to yield deficient governing equations :

• In the context of Cauchy elasticity, it is recalled in Appendix C that

it results in an incorrect tensile stiffness and unbalanced stresses at

the cross-section boundary, because the static admissibility conditions

(and thus the Poisson effect) are not taken into account.

• In the context of second-strain gradient elasticity, this makes the gov-

erning equations converge towards equations exhibiting the same defi-

ciencies. The longitudinal stiffness is then arbitrarily rescaled to match

the Young’s modulus when the beam dimensions are large enough, but

this choice is definitely not unique and lacks a justification [33, 34].
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The key to fix these deficiencies is to account for the static admissibility

conditions, and the challenge is to keep it rather simple, even for complicated

constitutive equations. It is thus suggested to replace Eq.(42) by

W (d⋆) = TSA ·E(d⋆)

TSA = Argmin
T∈Θ

ηψ(T,EKA)

EKA ∈ Ξ

E(d⋆) ∈ Ξ (43)

TSA is thus the statically admissible stress state satisfying at best the three-

dimensional constitutive law for Euler-Bernoulli displacement fields. The

constitutive equation gap has been initially proposed to assess the quality of

finite-element analysis by measuring the distance between statically admissi-

ble fields and kinematically admissible ones [39]. It is proposed herein to use

it to define the constitutive equations making the kinematically admissible

and statically admissible fields correspond, while keeping the “distance” to

the three-dimensional constitutive law minimal in the sense of the chosen

norm. Such constitutive equations are denoted as optimal is the following.

3.2. Optimal constitutive equations

ηψ(T,EKA) is a quadratic function of the stress components, so that the

minimizer TSA is defined by a set of linear equations obtained by expressing

the stationarity of ηψ(T,EKA) with respect to the components of T ∈ Θ.

This latter condition is enforced by setting

T = PΘTΘ (44)
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where TΘ is the vector

Tt
Θ = [τxx, τxz, τxy, τxxx, τyyx, τzzx, τyzx, τxzx, τxyx,

τxxy, τxzy, τxyy, τxxz, τxzz, τxyz,

τxxxx, τyyyx, τzzzx, τyzzx, τyyzx, τxyzx, τxzzx, τxxzx, τxxyx, τxyyx,

τxxxy, τxyzy, τxzzy, τxxzy, τxxyy, τxyyy, τxxxz, τxyzz, τxzzz, τxxzz, τxxyz, τxyyz,

τxyy,x, τxzz,x, τxyz,x, τxyzy,x, τxzzy,x, τxyyy,x, τxyzz,x, τxzzz,x, τxyyz,x, τxxyy,xx, τxxzz,xx, τxxyz,xx]

(45)

and PΘ is the 54 × 49 operator defined from the conditions (20), (28) and

(32). The stationarity of ηψ(PΘTΘ,EKA) with respect to the components of

TΘ thus defines the optimal T̂Θ

(

P t
ΘC−1PΘ

)

T̂Θ = P t
Θ

(

EKA + C−1B
)

(46)

The procedure to easily solve Eq. (46) is detailed in Appendix B. The

resulting constitutive equations are formally denoted as

TSA = CEBopt EKA +BEB
opt (47)

The detailed expressions of the optimal constitutive law are also given in Ap-

pendix B, and the local constitutive equation gap ηψ(CEBopt EKA+BEB
opt ,EKA) >

0 may be expressed as a function of the local kinematic variables. The same

construction is detailed for Cauchy materials in Appendix C and is shown

to yield the classical beam equations.

4. Application to second-strain gradient elasticity

The expression of theTSA components have been obtained as closed forms

in Appendix B for second-strain gradient elasticity. It should be outlined
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that these closed forms have been obtained using the general constitutive

law as formulated by Mindlin [19], so that simplified forms resulting from

specific choices of the constitutive parameters [36, 37, 40, 41] can easily be

derived. Similarly to the residual constitutive equation gap analysis provided

in Appendix C, it can be shown that the remaining error is solely located

on (higher-order) strain components within the cross-section plane, so that

the other components may be considered as accurate.

4.1. Comparison to 3D law for stresses involved in Euler-Bernoulli equations

The differences with stresses obtained when discarding the static admis-

sibility conditions (see Appendix A) are now examined. Focusing on the

derivation of an Euler-Bernoulli beam theory with a uniform cohesion mod-

ulus, the optimal stresses τxx, τxxx, τxyx, τxxy, τxxxx, τxxyx and τxxxy above

should be compared to their 3D counterpart summarized in Appendix A.

τxx = Cxx
xxǫxx + Cxxxx

xx ǫxxxx + C0
xxb0

+C ix
xx

(

eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη

)

(48)

τxxx = Cxxx
xxxǫxxx = 2(a1 + a2 + a3 + a4 + a5)ǫxxx (49)

τxyx = Cxxy
xyxǫxxy + Cxxxxy

xyx

∂ǫxxxy
∂x

(50)

τxxy = Cxxy
xxy ǫxxy + Cxxxxy

xxy

∂ǫxxxy
∂x

(51)

τxxxx = Cxx
xxxxǫxx + Cxxxx

xxxxǫxxxx + C0
xxxxb0

+C ix
xxxx

(

eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη

)

(52)

τxxyx = Cxxxy
xxyxǫxxxy = −1

3
(4b2 + b3 − 2b4 + 2b5 + 6b6 + 2b7)ǫxxxy (53)

τxxxy = Cxxxy
xxxy ǫxxxy = −(b3 + 2b4 − 2b5 − 2b6 + 2b7)ǫxxxy (54)
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α7 results from the material parameters and is defined as

α2
7 =

2 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)
2)

(c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1)
(55)

As the Euler-Bernoulli kinematic assumptions impose that ǫxxyx = −ǫxxxy,
it should first be noticed that τxxx, τxxyx and τxxxy remain unchanged by

the optimization procedure. Contrarily, τxyx and τxxy now also depend on

the local variations on the (higher-order) strain field. Changes in the beam

equations are thus to be expected. τxxxx is significantly modified by an ad-

ditional, non-local term depending on the higher-order strains. τxx is also

altered by a similar non-local term. It should be emphasized that these non-

local terms result from the optimization procedure. The exponential weight

function results from the differential constrains and the characteristic length

α−1
7 now results from the constitutive parameters (Eq.(55)) instead of being

postulated as for Eringen-like elasticity [16].

τxx and τxxxx are furthermore modified by a new term proportional to the

cohesion modulus, which directly results from the optimality conditions. The

beam equations describing a chemical surface modification are thus expected

to be greatly modified by this direct contribution of the cohesion modu-

lus to the Cauchy stress tensor, which is absent from the equations derived

without consideration for the static admissibility conditions [33]. This di-

rect coupling between the Cauchy stress and the surface energy through the

cohesion modulus is a clear indication that the present approach paves the

way to description of the chemo-mechanical couplings at stake in cantilever

sensors. It should finally be outlined that these differences prove that the

remaining constitutive equation gap minT∈Θ ηψ(T,EKA) 6= 0 in general.
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4.2. Special case : First strain gradient

Setting the second strain-gradient components to zero still makes some

higher-order stress components different from those deduced from the 3D law

:

τxyx = Cxxy
xyxǫxxy (56)

τxxy = Cxxy
xxy ǫxxy (57)

τxzz =
a2 + 2a1

2
ǫxxx (58)

τyyx = (a2 + 2a3)ǫxxx = τzzx (59)

τyyy = τzzy = 0 (60)

The coefficients Cxxy
xyx and Cxxy

xxy are such that the stresses τxyx and τxxy now

differ from those resulting from the 3D constitutive law. The other stress

components are left unmodified.

4.3. Special case : Cauchy materials

Setting b0 = 0 and neglecting higher-order strains yields

τxx = Cxx
xxǫxx (61)

τxy = 0 (62)

τxz = 0 (63)

τyy = 0 (64)

τyz = 0 = τzy (65)

(66)

In addition,

lim
ci→0

Cxx
xx =

µ(3λ+ 2µ)

(λ+ µ)
= E (67)
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so that the usual relations for Cauchy materials are recovered.

4.4. Virtual work principle for a beam featuring a uniform b0

One considers in the following a cantilever beam (length L) with a rect-

angular cross-section (thickness t and width b). Assuming that b0 is uniform
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along the beam, the virtual work principle reads ∀d⋆ :

b−1t−1

∫ L

0

∫ b
2

−
b
2

∫ t
2

−
t
2

W (d⋆)dydzdx =

−
∫ L

0

(

Cxxxx
xxxx

d6u

dx6
+ (Cxxxx

xx + Cxx
xxxx − Cxxx

xxx)
d4u

dx4
+ Cxx

xx

d2u

dx2
+ C ix

xx

dĪx
dx

+ C ix
xxxx

d3Īx
dx3

)

u⋆(x)dx

+

[

u⋆(x)

(

Cxxxx
xxxx

d5u

dx5
+ (Cxxxx

xx + Cxx
xxxx − Cxxx

xxx)
d3u

dx3
+ Cxx

xx

du

dx
+ C0

xxb̄0 + C ix
xxĪx + C ix

xxxx

d2Īx
dx2

)]L

0

−
[

du⋆(x)

dx

(

Cxxxx
xxxx

d4u

dx4
+ (Cxx

xxxx − Cxxx
xxx)

d2u

dx2
+ C ix

xxxx

dĪx
dx

)]L

0

+

[

d2u⋆(x)

dx2

(

Cxxxx
xxxx

d3u

dx3
+ Cxx

xxxx

du

dx
+ C0

xxxxb̄0 + C ix
xxxxĪx

)]L

0

+

∫ L

0

(

Cxxxx
xxxxt

2

12

d8v

dx8
+

(

t2
Cxxxx
xx + Cxx

xxxx − Cxxx
xxx

12
− 2Cxxxxy

xyx + Cxxxxy
xxy + 3Cxxxy

xxyx − Cxxxy
xxxy

)

d6v

dx6

+

(

Cxxy
xxy − 2Cxxy

xyx + Cxx
xx

t2

12

)

d4v

dx4
− t

(

C ix
xxxx

d4Íx
dx4

+ C ix
xx

d2Íx
dx2

))

v⋆(x)dx

−
[

v⋆(x)

(

Cxxxx
xxxxt

2

12

d7v

dx7
+

(

t2
Cxxxx
xx + Cxx

xxxx − Cxxx
xxx

12
− 2Cxxxxy

xyx + Cxxxxy
xxy + 3Cxxxy

xxyx − Cxxxy
xxxy

)

d5v

dx5

+

(

Cxxy
xxy − 2Cxxy

xyx + Cxx
xx

t2

12

)

d3v

dx3
− t

(

C ix
xxxx

d3Íx
dx3

+ C ix
xx

dÍx
dx

))]L

0

+

[

dv⋆(x)

dx

(

Cxxxx
xxxxt

2

12

d6v

dx6
+

(

Cxxy
xxy − 2Cxxy

xyx + Cxx
xx

t2

12

)

d2v

dx2
− t

(

C ix
xxxx

d2Íx
dx2

+ C ix
xxÍx

)

+

(

t2
Cxxxx
xx + Cxx

xxxx − Cxxx
xxx

12
− 2Cxxxxy

xyx + Cxxxxy
xxy + 3Cxxxy

xxyx − Cxxxy
xxxy

)

d4v

dx4

)]L

0

−
[

d2v⋆(x)

dx2

(

Cxxxx
xxxxt

2

12

d5v

dx5
+

(

t2
Cxx
xxxx − Cxxx

xxx

12
+ 3Cxxxy

xxyx − Cxxxy
xxxy

)

d3v

dx3
− tC ix

xxxx

dÍx
dx

)]L

0

+t

[

d3v⋆(x)

dx3

(

Cxxxx
xxxxt

12

d4v

dx4
+
Cxx
xxxxt

12

d2v

dx2
− C ix

xxxxÍx

)]L

0

(68)

where
∫ t

2

−
t
2

b0(y)dy = tb̄0 (69)
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It should first be noticed that the tension and bending problems are de-

coupled, as for Cauchy elasticity. Two differences are to be highlighted in

comparison to the variational principles derived from the 3D constitutive

laws (see [33]) :

• Every term is altered by

Ix = eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη (70)

or one of its derivatives. This corresponds to a non-local term result-

ing from the optimal choice for the constitutive equation. The terms

deriving from Ix are easily evaluated if the form of the sought solution

is chosen. Looking for u(x) as exponentials :

u(x) = Aue
αux (71)

yields

Īx = eα7x

∫ x d3u

dx3
(η)e−α7ηdη − e−α7x

∫ x d3u

dx3
(η)eα7ηdη

=
2Auα

3
uα7

α2
u − α2

7

eαux + Auα
3
u

(

K̄+eα7x − K̄−e−α7x
)

(72)

where K+ and K− are to be determined. Similarly, setting

v(x) = Ave
αvx (73)

yields

−12

t
Íx = eα7x

∫ x d4v

dx4
(η)e−α7ηdη − e−α7x

∫ x d4v

dx4
(η)eα7ηdη

=
2Avα

4
vα7

α2
v − α2

7

eαvx + Avα
4
v

(

Ḱ+eα7x − Ḱ−e−α7x
)

(74)

and the Eq.(68) can be treated as usual.
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• Compared to the equation obtained by a purely kinematic approach

[33], the equation is also modified by the new C0
xx term, which also

results from the optimality conditions. It links the surface energy to

the Cauchy stress tensor through the cohesion modulus, and as such,

represents a chemo-mechanical coupling. It thus modifies boundary

conditions for the tension problem under chemical loading.

5. Solutions for purely mechanical problems

Two mechanical problems of practical interest are now solved using Eq.(68)

in order to exhibit the size-dependent elasticity rendered by the beam theory

under scrutiny.

5.1. Tension stiffness

5.1.1. Governing equations

One first focuses on the tension problem, for which the general solution

u(x) has to satisfy

Cxxxx
xxxx

d6u

dx6
+ (Cxxxx

xx + Cxx
xxxx − Cxxx

xxx)
d4u

dx4

+Cxx
xx

d2u

dx2
+ C ix

xx

dĪx
dx

+ C ix
xxxx

d3Īx
dx3

= 0 ∀x ∈ [0, L] (75)

It should be outlined that this equation clearly departs from an analogue of

the 3D constitutive laws [21], and this results from the static admissibility

conditions. Looking for solutions of the form (71) yields the characteristic

equation

0 =

{(

Cxxxx
xxxx +

2C ix
xxxxα7

α2
u − α2

7

)

α6
u +

(

Cxxxx
xx + Cxx

xxxx − Cxxx
xxx +

2C ix
xxα7

α2
u − α2

7

)

α4
u + Cxx

xxα
2
u

}

eαux

+α3
uα7

(

C ix
xx + α2

7C
ix
xxxx

) (

K̄+eα7x + K̄−e−α7x
)

(76)
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It is clear from Eq.(76) that α2
u = 0 is a trivial solution, and that the equation

obtained by multiplying Eq.(76) by
α2
u−α

2
7

α2
u

, has solutions if K̄− = K̄+ = 0.

One thus obtains

Cxxxx
xxxxα

6
u +

(

Cxxxx
xx + Cxx

xxxx − Cxxx
xxx + 2C ix

xxxxα7 − α2
7C

xxxx
xxxx

)

α4
u+

(

2C ix
xxα7 − α2

7 (C
xxxx
xx + Cxx

xxxx − Cxxx
xxx) + Cxx

xx

)

α2
u − α2

7C
xx
xx = 0

(77)

The solutions therefore read

αu =
{

±λ−1
u,1,±λ−1

u,2,±λ−1
u,3, 0

}

(78)

where λu,1, λu,2 and λu,3 are generally complex numbers scaling as lengths.

The general solution u(x) therefore reads

u(x) =

1
∑

i=0

qix
i +

3
∑

j=1

γ+j exp

(

x

λu,j

)

+ γ−j exp

(

− x

λu,j

)

(79)

{

qi, γ
+
j , γ

−

j

}

, are the 8 constants to be set from the boundary conditions.

However, only 6 boundary conditions are obtained from Eq.(68). Assuming

the beam is clamped at x = 0, these boundary conditions read

u(0) = 0

Cxxxx
xxxx

d4u

dx4
(0) + (Cxx

xxxx − Cxxx
xxx)

d2u

dx2
(0) + C ix

xxxx

dĪx
dx

(0) = 0

Cxxxx
xxxx

d3u

dx3
(0) + Cxx

xxxx

du

dx
(0) + C ix

xxxxĪx(0) = 0

Extending to second-strain gradient elasticity the terms coined in [42], this

would correspond to a singly clamped beam at x = 0. A tensile force F is

applied at x = L, the work of external forces reads δW ⋆ = Fu⋆(x = L) so
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that

Cxxxx
xxxx

d5u

dx5
(L) + (Cxxxx

xx + Cxx
xxxx − Cxxx

xxx)
d3u

dx3
(L)

+Cxx
xx

du

dx
(L) + C ix

xxĪx(L) + C ix
xxxx

d2Īx
dx2

(L) =
F

bt

Cxxxx
xxxx

d4u

dx4
(L) + (Cxx

xxxx − Cxxx
xxx)

d2u

dx2
(L) + C ix

xxxx

dĪx
dx

(L) = 0

Cxxxx
xxxx

d3u

dx3
(L) + Cxx

xxxx

du

dx
(L) + C ix

xxxxĪx(L) = 0

These conditions would actually be denoted as triply free if one extends the

nomenclature in [42]. These 6 conditions are obviously not sufficient to yield

a unique solution. It is evident this results from the non-local terms in the

optimal constitutive equations. Denoting

Sj = −α
2
7 (C

xxx
xxx − Cxx

xxxx) λ
4
u,j + (Cxx

xxxx − Cxxx
xxx − α2

7C
xxxx
xxxx + 2α7C

ix
xxxx)λ

2
u,j + Cxxxx

xxxx

λ4u,j (α7λu,j − 1) (α7λu,j + 1)

Tj =
α2
7C

xx
xxxxλ

4
u,j + (α2

7C
xxxx
xxxx − Cxx

xxxx − 2α7C
ix
xxxx)λ

2
u,j − Cxxxx

xxxx

λ3u,j (α7λu,j − 1) (α7λu,j + 1)

the linear system to be solved reads





























1 0 1 1 1 1 1 1

0 0 S1 S1 S2 S2 S3 S3

0 Cxx
xxxx T1 −T1 T2 −T2 T3 −T3

0 Cxx
xx 0 0 0 0 0 0

0 0 S1e
L

λu,1 S1e
−

L
λu,1 S2e

L
λu,2 S2e

−
L

λu,2 S3e
L

λu,3 S3e
−

L
λu,3

0 Cxx
xxxx T1e

L
λu,1 −T1e−

L
λu,1 T2e

L
λu,2 −T2e−

L
λu,2 T3e

L
λu,3 −T3e−

L
λu,3





























U =





























0

0

0

F
bt

0

0





























(80)

where

Ut =
[

q0, q1, γ
+
1 , γ

−

1 , γ
+
2 , γ

−

2 , γ
+
3 , γ

−

3

]t
(81)
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The full solution space for U reads

U = Um + UEPE (82)

where the columns of UE span the nullspace of the matrix in Eq.(80). This

solution space corresponds to the displacement fields :

• Locally satisfying the static admissibility,

• Locally minimizing the constitutive equation gap,

• Globally satisfying the static admissibility.

As the constitutive equations obtained in Sect.(3.2) differ from the 3D laws,

the remaining constitutive equation gap is nonzero (see Sect.(4.1)), so that

the fields defined by Eq.(82) are obviously not equivalent regarding the con-

stitutive equation gap at the global (structure) scale. Accounting for the

non-local terms in the constitutive equations thus requires to define the so-

lution P̂E for PE as the minimizer of the global constitutive equation gap

P̂E = Argmin
PE

∫

ηψ(CEBopt EKA(U) +BEB
opt ,EKA(U))dV (83)

As a consequence of Eq.(82), EKA formally reads

EKA(x) = Em(x) +ME(x)PE (84)

which is built explicitly and solved to yield the solution P̂E under the con-

strain of real-valued displacement fields. The components of the displacement

field are thus obtained

Û = Um + UEP̂E (85)
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It is worth noting that the solution here depends on b0. This results from

the fact that tension modifies the total amount of surface of the sample, b0

being the equivalent of surface tension for solids [19]. The normalized tensile

stiffness
SSSG
SCauchy

=
F L

b t u(L)Cxx
xx

(86)

may thus be computed to illustrate the scaling effect. It should be first

mentioned that the equations of first-strain gradient are easily obtained in

the present case by canceling all the SSG-related terms in Eq. (75). One

obtains (in the absence of distributed loading)

Cxxx
xxx

Cxx
xx

d4u

dx4
− d2u

dx2
= 0 ∀x ∈ [0, L] (87)

which is formally similar to the equation obtained using a purely kinematic

approach [42] with a simplified constitutive equation [43] :

g2
d4u

dx4
− d2u

dx2
= 0 ∀x ∈ [0, L] (88)

The main outcome of the proposed approach is thus the definition

g2 =
Cxxx
xxx

Cxx
xx

(89)

thus relating the parameters of the 3D constitutive law to the parameters of

the equations governing the beam behavior. Using this first-strain gradient

theory with the chosen boundary conditions yields exactly the same solution

as for Cauchy materials for the tension problem. The sole effect of second-

strain gradient elasticity is thus probed by this tensile test if second-strain

gradient elasticity is used.
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5.1.2. Application to the simulated materials

The quantities involved in the tension problem are now analyzed for a

large number of material parameters sets. 999 material parameters sets have

been obtained by generating parameters sets with lS = 1× 10−3 and keeping

those yielding a positive definite stiffness tensor. These parameters sets can

be scaled to physical ones by setting physical lS values [44, 45, 46].
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Figure 1: Cumulative distribution function for
Cxx

xx

E
.

The cumulative distribution function for Cxx
xx

E
is reported in Fig.1. The

obtained values are always such that Cxx
xx ≤ E. It should be noted that 73%

of the tested materials yield Cxx
xx ≥ 0.95 × E. The cumulative distribution

function for |α2
7| × l2S is reported in Fig 2. As already mentioned, α2

7 is either

positive or negative (yielding real or pure complex values for α7), and α2
7

may be considered to scale as l−2

S since 61.5% of the tested materials yield

|α2
7| × l2S < 10. The cumulative distribution function for |λu|/lS is shown

in Fig. 3. It can be kept that |λu| scales as lS, since 98.5% of the tested
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Figure 3: Cumulative distribution function for |λu|/lS.

materials yield |λu|/lS < 2. Cxxx
xxx is found to be always positive, and scales

as µ × l2S, as seen in Fig. 4. Cxx
xxxx and Cxxxx

xx are contrarily found to be

either positive or negative. |Cxx
xxxx| is found to scale as µ× l2S, as seen in Fig.
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Figure 5: Cumulative distribution function for |Cxx
xxxx|/l2S.

5. Similarly, |Cxxxx
xx | is found to scale as µ × l2S, as seen in Fig. 6. Cxxxx

xxxx is

also found to be either positive or negative, and scales as µ × l4S (see Fig.
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Figure 6: Cumulative distribution function for |Cxxxx
xx |/l2S.
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Figure 7: Cumulative distribution function for Cxxxx
xxxx/l

4

S.

7 ). The products α7C
ix
xx and α7C

ix
xxxx are found to be always real. Even

though its distribution is rather scattered, α7C
ix
xx is considered to scale as µ

(see Fig. 8). Similarly, α7C
ix
xxxx is found to scale as µ× l2S (see Fig. 9). Using
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Figure 9: Cumulative distribution function for α7C
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S (zoom).

all these coefficients, the tension stiffness of beams is computed following the

procedure detailed in Sect. 5.1.1, as a function of the beam’s length L and

of the cohesion modulus b0.
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Figure 10: a) Normalized tension stiffnesses for ’blue’ and ’green’ materials (see Appendix

E) using a purely kinematic approach. b) Normalized tension stiffnesses for ’blue’ and

’green’ materials and two different cohesion modulus values with the present approach :

solid lines are for b0 = 0, dashed lines are for b0 = l2S .

Fig. 10a first shows two examples of the tension stiffness SSSG obtained

using a purely kinematic approach as described in [33], without any arbitrary

rescaling. The used constitutive parameters are gathered in Appendix E.

The beam’s length is here normalized with respect to λS = |∑j λu,j|. It

should be outlined that for L≫ λS, SSSG does not converge to SCauchy. This

is another illustration of the deficiency inherited of the purely kinematic con-

struction already shown in [35]. The beam’s tension stiffness actually tends

to (λ + 2µ)S/L if the corresponding coefficient is not (arbitrarily) modified

[33, 35]. The purpose of the present approach is to correct for such a de-

ficiency and Fig. 10b displays two examples of the tension stiffness SSSG

obtained using the theory proposed herein, compared to the stiffness com-

monly obtained using Cauchy materials (SCauchy = Cxx
xxS/L). The solid lines

are obtained by setting b0 = 0, that is by discarding any surface tension. It
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is first seen that for L ≫ λS, SSSG → SCauchy so that the usual behavior is

recovered. Using the approach proposed herein, the limit is actually shown

to read Cxx
xxS/L (where the asymptotic behavior (67) holds). For L ≪ λS,

the tensile stiffness is driven by the higher-order elasticity parameters but

the order in magnitude is preserved. The dashed lines are obtained by set-

ting b0 = l2S. This clearly affects the tensile stiffness in the L ≪ λS region,

thereby highlighting the smaller beams are sensitive to surface elasticity in

addition to bulk elasticity. λS may thus be used as the cross-over between

two regimes for the elastic behavior of the beam : for beam lengths smaller

than λS, the elasticity in tension is surface-driven, which it is proposed to

denote as ecto-elastic (from ancient Greek “ektòs”, “outside”). If L ≫ λS,

the behavior is classically driven by the bulk.

Even though the cross-section dimensions do not appear explicitly in these

results, it should be recalled that the proposed equations hold if the stresses

fields belong to Θ (see Eq.(34)). The corresponding assumption could be

assessed for specific dimensions using a dedicated numerical scheme, see [23]

for instance.

5.2. Bending stiffness

5.2.1. Governing equations

One now focuses on the bending problem, for which the general solution

v(x) has to satisfy

Cxxxx
xxxx

t2

12

d8v

dx8
+ A

d6v

dx6
+K

d4v

dx4
− t

(

C ix
xxxx

d4Íx
dx4

+ C ix
xx

d2Íx
dx2

)

= 0 ∀x ∈ [0, L]

(90)
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with

A =
t2

12
(Cxxxx

xx + Cxx
xxxx − Cxxx

xxx)

−2Cxxxxy
xyx + Cxxxxy

xxy + 3Cxxxy
xxyx − Cxxxy

xxxy (91)

K = Cxxy
xxy − 2Cxxy

xyx +
Cxx
xxt

2

12
(92)

Looking for solutions of the form (73) yields the characteristic equation

0 = α4
v

{(

Cxxxx
xxxx

t2

12
α4
v + Aα2

v +K +
2α7t

2

12

α2
vC

ix
xx + α4

vC
ix
xxxx

α2
v − α2

7

)

eαvx

+
t2α2

7

12

(

C ix
xx + α2

7C
ix
xxxx

)

(

Ḱ+eα7x − Ḱ−e−α7x
)

}

(93)

It is clear from Eq.(93) that α4
v = 0 is a trivial solution, and that the equation

obtained by multiplying Eq.(93) by
α2
v−α

2
7

α4
v

, has solutions if Ḱ− = Ḱ+ = 0.

One thus obtains

Cxxxx
xxxx

t2

12
α6
v +

(

A− α2
7C

xxxx
xxxx

t2

12
+
t2

6
α7C

ix
xxxx

)

α4
v+

(

K − Aα2
7 +

t2

6
α7C

ix
xx

)

α2
v −Kα2

7 = 0 (94)

The t → 0 limit should be considered. For t = 0, the characteristic polyno-

mial simplifies as

A0α
4
v + (K0 − A0α

2
7)α

2
v −K0α

2
7 = 0 (95)

with

A0 = −2Cxxxxy
xyx + Cxxxxy

xxy + 3Cxxxy
xxyx − Cxxxy

xxxy (96)

K0 = Cxxy
xxy − 2Cxxy

xyx (97)

and thus defines two finite solutions

α2
v =

−K0 + A0α
2
7 ± |K0 + A0α

2
7|

2A0

(98)
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It is easily checked that the third solution reads

α2
v ≃ − 12A0

Cxxxx
xxxx

t−2 (99)

for a vanishing thickness. In general, the solutions read

αv =
{

±λ−1
v,1,±λ−1

v,2,±λ−1
v,3, 0

}

(100)

where λv,1, λv,2 and λv,3 are generally complex numbers scaling as lengths.

The general solution v(x) therefore reads

v(x) = q0 +
3
∑

i=1

qi
i

(x

L

)i

+
3
∑

j=1

γ+j exp

(

x

λv,j

)

+ γ−j exp

(

− x

λv,j

)

(101)

{

qi, γ
+
j , γ

−

j

}

, are the 10 constants to be set from the boundary conditions.

However, only 8 boundary conditions are obtained from Eq.(68). Assuming

the beam is clamped at x = 0, these boundary conditions read

v(0) = 0

dv

dx
(0) = 0

Cxxxx
xxxx

t2

12

d5v

dx5
(0) + J

d3v

dx3
(0)− tC ix

xxxx

dÍx
dx

(0) = 0

Cxxxx
xxxx

t

12

d4v

dx4
(0) + Cxx

xxxx

t

12

d2v

dx2
(0)− C ix

xxxxÍx(0) = 0

with

J =
t2

12
(Cxx

xxxx − Cxxx
xxx) + 3Cxxxy

xxyx − Cxxxy
xxxy (102)

Again extending to second-strain gradient elasticity the terms coined in [47]

for first strain-gradient elasticity, this would correspond to singly clamped

beam at x = 0. A bending force F is applied at x = L, the work of external
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forces reads δW ⋆ = Fv⋆(x = L) so that

Cxxxx
xxxx

t2

12

d7v

dx7
(L) + A

d5v

dx5
(L) +K

d3v

dx3
(L)− t

(

C ix
xxxx

d3Íx
dx3

(L) + C ix
xx

dÍx
dx

(L)

)

= −F
bt
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= 0

Cxxxx
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dx3
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xxxx
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Cxxxx
xxxx

t

12

d4v

dx4
(L) + Cxx

xxxx

t

12

d2v

dx2
(L)− C ix

xxxxÍx(L) = 0

These boundary conditions would be denoted as free if one extends the propo-

sition in [47]. These 8 conditions are obviously not sufficient to yield a unique

solution. This again results from the non-local terms in the optimal consti-

tutive equations. Denoting

Śj =
α7C

ix
xxxxt

6λ2v,j(1− α2
7λ

2
v,j)

+
Cxx
xxxxt

12λ2v,j
+
Cxxxx
xxxxt

12λ4v,j
(103)

T́j =
J

λ3v,j
+

α7C
ix
xxxxt

2

6λ3v,j(1− α2
7λ

2
v,j)

+
Cxxxx
xxxxt

2

12λ5v,j
(104)

Új =
K

λ3v,j
+

A

λ5v,j
+

α7t
2

6λ2v,j(1− α2
7λ

2
v,j)

(

C ix
xx

λv,j
+
C ix
xxxx

λ3v,j

)

+
Cxxxx
xxxxt

2

12λ7v,j
(105)

the linear system to be solved reads
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L
λv,3

−Ú3e
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where

Vt =
[

q0, q1, q2, q3γ
+
1 , γ

−

1 , γ
+
2 , γ

−

2 , γ
+
3 , γ

−

3

]t
(107)
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The full solution space for V reads

V = Vm + VERE (108)

where the columns of VE span the nullspace of the matrix above. A unique

solution for V is again obtained as the minimizer of the total constitutive

equation gap in the beam (see Eq.(83)). The linear system provided by the

stationarity condition is again built explicitly and solved to yield the solution

R̂E under the constrain of real-valued displacement fields. The components

of the displacement field are thus obtained

V̂ = Vm + VER̂E (109)

The main difference is that for the bending of a beam with a symmetric

cross-section, the b0 related terms are found to vanish. This is the expected

behavior : in such case, the total amount of beam’s surface remains un-

changed by the deformation, so that the solution is always insensitive to the

surface elasticity. The normalized bending stiffness

KSSG
V

KCauchy
V

=
4F L3

b t3 v(L)Cxx
xx

(110)

may thus be computed to illustrate the scaling effect, which can be compared

to the one predicted by first-strain gradient elasticity (see Appendix D) or

Cauchy elasticity.

5.2.2. Application to the simulated materials

Reusing the material parameters sets generated in Sect.(5.1.2), the quan-

tities involved in the bending problem are analyzed. The scale effect is then

assessed in two steps of increasing complexity : the results for the present
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theory applied keeping only Cauchy and first-strain gradient terms are first

analyzed, and then serve as a reference when analyzing the results obtained

when including second-strain gradient elasticity.

First-strain gradient elasticity. The solution for the bending problem in first-

strain gradient elasticity is derived in Appendix D. The key parameters

are now reviewed. Fig. 11 displays the cumulative distribution function

0 6
0

1

(C    -2C   ).lxyx
xxy -2

Sxxy
xxy

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u

ti
o
n
 f

u
n
c
ti

o
n

Figure 11: Cumulative distribution function for (Cxxy
xxy − 2Cxxy

xyx)× l−2

S .

for (Cxxy
xxy − 2Cxxy

xyx) × l−2

S . It may be seen in particular that this term is

always positive. The consequence is that K is always positive, so that the

characteristic length λV , which depends on the material and on the beam

thickness (see Appendix D), is always a real positive number. It converges

to a constant value

lim
t→+∞

λV =

√

Cxxx
xxx

Cxx
xx

= λ∞V (111)
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for large thicknesses and is proportional to the beam thickness in the van-

ishing thickness limit

λV ∝
t=0

t

√

Cxxx
xxx

12(Cxxy
xxy − 2Cxxy

xyx)
= λ̂0t (112)
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Figure 12: Cumulative distribution function for λ∞

V × l−1

S .

λ∞V is shown to scale as lS (see Fig. 12 ) and λ̂0 scales as unity (see Fig.

13). In the sequel, the investigated thickness range is defined with respect to

tT =

√

12(Cxxy
xxy − 2Cxxy

xyx)

Cxx
xx

(113)

so that t ≫ tT implies that K ∝ Cxx
xx t

2

12
, whereas t ≪ tT corresponds to

K ∝ Cxxy
xxy − 2Cxxy

xyx (see Eq. 92).

Fig. 14 thus illustrates these two regimes on the λV value for two partic-

ular materials. Fig 15 illustrates the effect of both the cantilever’s thickness
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Figure 13: Cumulative distribution function for λ̂0.

Figure 14: λV × l−1

S as a function of log10(t/tT ) for the materials of Fig. 10.

and length on the normalized bending stiffness for the “blue” material of Fig.

10. As the beam geometry imposes that L≫ t, the normalized bending stiff-
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Figure 15: log10(K
FSG
V /KCauchy

V ) as a function of log10(t/tT ) and log10(L/t) for “blue”

material of Fig. 10.

ness is shown for lengths L such as 5t ≤ L ≤ 100t. As a single characteristic

length (λV ) is involved, it is clear that the cantilever’s thickness is the main

parameter driving the size-dependent elasticity. This is further illustrated on

Fig. 16 on which log10(K
FSG
V /KCauchy

V ) is plotted as a function of log10(t/tT )

for L = 10× t for blue material of Fig. 10. t ≫ tT corresponds to a regime

where the size-effect vanishes, whereas the domain t≪ tT is characterized by

KFSG
V

K
Cauchy
V

∝
(

t
tT

)−2

. Decreasing the cantilever’s thickness is always found to

yield an apparent stiffening of the beam. The beam’s length has a negligible

role : in the probed lengths range, its impact on the flexural beam stiffness

is below 1%.
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Figure 16: log10(K
FSG
V /KCauchy

V ) as a function of log10(t/tT ) for L = 10 × t for “blue”

material of Fig. 10.

The results for the first-strain gradient elasticity are rather simple and

thus provide a first step to further elaborate on results obtained with higher-

order elasticity. As for bars, the proposed approach extends the validity range

of the differential equations obtained with a simplified constitutive equation

(see Appendix D).

Second-strain gradient elasticity. It is chosen for the sake of robustness to

obtain Vm by removing the two columns of the matrix in Eq.(106) corre-

sponding to the λv,i with the smallest norm, thus avoiding to make use of

the λv,i vanishing when t goes to 0. It should actually be noted that for t

much larger than tT , about 57% of the materials are found to result in at least

one pure imaginary λv,i. This means that the displacement field may possibly

be ’decorated’ with a sinusoidal term all along the beam, provided that the

beam length and the loading allow this deformation mode to develop.
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Figure 17: a) log10(K
SSG
V /KCauchy

V ) as a function of log10(t/tT ) and log10(L/t) for blue

material of Fig. 10 using a purely kinematic approach. b) log
10
(KSSG

V /KCauchy
V ) as a

function of log10(t/tT ) and log10(L/t) for the same material using the present approach.

Fig. 17a displays the normalized bending stiffness log10(K
SSG
V /KCauchy

V )

obtained using second-strain gradient elasticity for the material of Fig. 15

and a purely kinematic approach [33]. The computed stiffness is barely dis-

tinguishable from the one in Fig. 15, thereby suggesting a limited impact

of second-strain gradient elasticity on the stiffness. In the large thickness

regime (t ≫ tT ), this stiffness however does not converge to 1, as a result

of the deficiency already analyzed in Sect. 5.1.2. As it may be seen on

Fig. 17b, the normalized bending stiffness log10(K
SSG
V /KCauchy

V ) obtained

using the present approach is mainly governed by the thickness value and

converges to 1 for large thicknesses. This proves again that the built higher-

grade beam theory is consistent with the usual beam theories, without any

rescaling of the stiffness parameters to render the Poisson effect. It can also

be seen that both the cantilever’s length and thickness play a role in the beam

bending stiffness, even though the thickness is the main driving parameter.
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Figure 18: log10(K
SSG
V /KCauchy

V ) (computed using a purely kinematic approach : dots,

computed using the present approach : dashed line) and log10(K
FSG
V /KCauchy

V ) (solid

line) as a function of log10(t/tT ) for L = 10× t for “blue” material of Fig. 10.

The dependence of the normalized bending stiffness to the thickness is

now non monotonic, as it may be seen on Fig. 17 and more precisely on

Fig. 18, where both the normalized stiffnesses obtained for first and sec-

ond strain-gradient elasticity (computed using a purely kinematic and the

present approach) have been reported for the same material and the same

dimensional range. The key result is that both grades affect the bending

stiffness in the same dimensional range. This is clearly missed if one uses

a purely kinematic approach, as the stiffness is then always very close to

the one obtained using the first-strain gradient elasticity. This is however of

major importance, since most of the reported experimental results regarding

size-dependent elasticity deal with cantilever bending. The consequence is

that both should always be considered simultaneously when analyzing ex-

perimental results, and that second-strain gradient elasticity should not be
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considered, in general, as a correction to first-strain gradient elasticity which

would be significant only for the smallest dimensions. This results from the

fact that second-strain gradient introduces a coupling (through the ci param-

eters) between second strain-gradient and Cauchy elasticity, which is absent

from first-strain gradient elasticity.

6. Conclusion

Starting from the constitutive equation, beam equations have been de-

rived for higher-grade elastic materials. The originality of this contribution

stems from the fact that the static admissibility conditions are taken into

account, so that these equations naturally converge to those classically ob-

tained from Cauchy elasticity when the beam dimensions are large enough.

The obtained equations thus benefit from the thermodynamic grounds of 3D

elasticity and overcome the deficiencies resulting from a purely kinematic

construction of the beam equations. The resulting material parameters are

expressed as closed-forms, so that the resulting beam equations are kept very

simple.

This approach has been exemplified on second-strain gradient elasticity with

an Euler-Bernoulli kinematics, which is shown to result in non-local beam

equations, whose shape function and characteristic length result from the 3D

elastic parameters and are expressed as closed-forms. Second-strain gradient

elasticity is of particular interest since it makes a cohesion modulus (i.e., the

equivalent of surface tension for solids) naturally appear. Such a framework

is thus perfectly suited to describe scale effects one could wish to exploit for

the design of innovative MEMS devices, and the rather simple approach pro-
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posed herein allows for extensions to more complicated beam kinematics. In

addition, applying the present approach to first-strain gradient elasticity for-

mally confirms the differential equations obtained using a purely kinematic

approach and a simplified constitutive equation. This extends their validity

range and further provides the definition of the involved parameters.

Having a robust set of equations at hand to describe the behavior of higher-

grade elastic beams allows to assess the role of the different grades on the

size-dependent elasticity. As the tension problem only activates second-strain

gradient elasticity, it is proposed to use it to define two elastic regimes.

Namely, it allows to distinguish a regime (which it is proposed to denote as

’ecto-elastic’) for which the tensile stiffness is driven by the cohesion modulus

instead of being dominated by bulk elasticity. The beam length separating

these two regimes has been defined as a function of the elastic parameters

of the material under consideration. These governing equations for beams

made of second strain-gradient elastic beams also suggest that second-strain

gradient elasticity and first-strain gradient elasticity potentially affect the

bending stiffness in the same dimensional range, so that both should always

be considered simultaneously when analyzing experimental results.

This work is also expected to trigger some key developments for those inter-

ested in exploiting scale effects in solids :

• As outlined in Sect.4.4, and besides the effect on stiffness illustrated

in Sect.5.1, the equations derived herein render the effect of a cohesion

modulus change as an external loading. Equations obtained by follow-

ing the proposed approach are thus expected to provide a framework

which is adequate to model the chemo-mechanical couplings exploited
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in micro-mechanical sensors. Even though this is out of the scope of

this contribution, it is clear that this framework provides some cru-

cial advantages for the understanding of the conversion phenomena at

stake in cantilever-based sensors. Contrary to the widely used Stoney’s

equation, the role of the cantilever material in the chemo-mechanical

transduction is here clearly described, and may explain the discrepan-

cies observed in the literature [6].

• As it has been exemplified in Sect. 5, the solutions obtained using

second-strain gradient elasticity involve responses at different scales,

corresponding to the different grades. These are thus a starting point to

devise experimental procedures aimed at identifying the higher-grade

elastic parameters of materials. As such, this me paves the way to

the experimental identification of the higher-order elastic parameters

involved in the equations derived herein and defines a new challenge

for experimental mechanics.

Appendix A. Euler-Bernoulli beam using 3D second-strain gradi-

ent elasticity

As recalled in the introduction, most of the beam equations derived in

the literature for higher-grade elasticity are obtained by applying the 3D

constitutive law to the (higher-order) strains derived from the chosen beam

kinematics. The stresses obtained in this way are recalled hereafter for the

sake of comparison with the optimal stresses derived in this contribution.
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Solely using C

τxx = (λ+ 2µ) ǫxx + (c1 + c2 + c3) ǫxxxx (A.1)

τxxx = 2 (a1 + a2 + a3 + a4 + a5) ǫxxx (A.2)

τxyx = (a1 + 2a4 + a5) ǫxyx +
(a2
2

+ a5

)

ǫxxy (A.3)

τxxy = (a2 + 2a5) ǫxyx + 2 (a3 + a4) ǫxxy (A.4)

τxxxx = 2 (b1 + b2 + b3 + b4 + b5 + b6 + b7) ǫxxxx

+
b3
2
(ǫxxyx + ǫxxxy) + (c1 + c2 + c3) ǫxx + b0 (A.5)

τxxyx =
2

3
(2b2 + b3 + b5 + 3b6 + 2b7) ǫxxyx

+
1

3
(b3 + 2b4 + 2b7) ǫxxxy (A.6)

τxxxy = (b3 + 2b4 + 2b7) ǫxxyx + 2 (b5 + b6) ǫxxxy (A.7)

, so that without any consideration for static admissibility, the τ 1 components

in the beam therefore read :

τ 3Dxx = (λ+ 2µ)

(

−y d
2v

dx2
+

du

dx

)

+ (c1 + c2 + c3)

(

−y d
4v

dx4
+

d3u

dx3

)

(A.8)

τ 3Dxy = −c2
d3v

dx3
(A.9)

τ 3Dyy = λ

(

−y d
2v

dx2
+

du

dx

)

+ (c1 + c2)

(

−y d
4v

dx4
+

d3u

dx3

)

(A.10)
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τ 2 :

τ 3Dxxx = 2 (a1 + a2 + a3 + a4 + a5)

(

−y d
3v

dx3
+

d2u

dx2

)

(A.11)

τ 3Dyxx =
(

a1 −
a2
2

+ 2a4

)

(

−d2v

dx2

)

(A.12)

τ 3Dyyx = 2a3

(

−y d
3v

dx3
+

d2u

dx2

)

(A.13)

τ 3Dxxy = (−a2 + 2a3 + 2a4 − 2a5)
d2v

dx2
(A.14)

τ 3Dyxy =
(

a1 +
a2
2

)

(

−y d
3v

dx3
+

d2u

dx2

)

(A.15)

τ 3Dyyy = 2 (−a1 + a3)
d2v

dx2
(A.16)
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τ 3 :

τ 3Dxxxx = 2 (b1 + b2 + b3 + b4 + b5 + b6 + b7)

(

−y d
4v

dx4
+

d3u

dx3

)

+ (c1 + c2 + c3)

(

−y d
2v

dx2
+

du

dx

)

+ b0 (A.17)

τ 3Dyxxx =
1

3
(−4b2 − b3 + 2b4 − 2b5 − 6b6 − 2b7)

d3v

dx3
(A.18)

τ 3Dyyxx =
1

3
(2b1 + b3 + 2b4 + 2b5)

(

−y d
4v

dx4
+

d3u

dx3

)

+
1

3
(c1 + c3)

(

−y d
2v

dx2
+

du

dx

)

+
b0
3

(A.19)

τ 3Dyyyx = (−b3 + 2b4 − 2b5)
d3v

dx3
(A.20)

τ 3Dxxxy = (−b3 − 2b4 + 2b5 + 2b6 − 2b7)
d3v

dx3
(A.21)

τ 3Dyxxy =
1

3
(2b1 + 2b2 + b3)

(

−y d
4v

dx4
+

d3u

dx3

)

+
1

3
(c1 + c2)

(

−y d
2v

dx2
+

du

dx

)

+
b0
3

(A.22)

τ 3Dyyxy =
1

3
(−4b2 − b3 − 2b4 + 2b5)

d3v

dx3
(A.23)

τ 3Dyyyy = 2b1

(

−y d
4v

dx4
+

d3u

dx3

)

+ c1

(

−y d
2v

dx2
+

du

dx

)

+ b0 (A.24)
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Appendix B. From the constitutive equation gap stationarity to

the optimal stresses

The procedure to solve Eq. (46) is detailed hereafter. The vectors N1,

N2 and N3 span the nullspace of PΘ :

Nt
1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3√
13
, 0, 0, 0, 0, 0, 0, 0, 0,

2√
13
, 0, 0]

Nt
2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3√
13
, 0, 0, 0, 0, 0, 0, 0, 0,

2√
13
, 0]

Nt
3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3√
13
, 0, 0, 0, 0, 0, 0, 0, 0,

2√
13

]

, as a result of the conditions (32). These vectors are concatenated in the

49 × 3 matrix N . Solving directly Eq. (46) for T̂Θ requires the symbolic

inversion of the 54×54 matrix C and the subsequent inversion of the 49×49

matrix P t
ΘC−1PΘ, which may be extremely tedious. It is thus proposed to

solve Eq. (46) for T̂Θ by making use of the singular value decomposition

(SVD) of PΘ [48]:

PΘ = UΘEΘV tΘ (B.1)

which is easily obtained from PΘ. Because of both the non-square nature

of the matrix PΘ and the discrepancies resulting from the conditions (32),

there are 5 + 3 = 8 columns of UΘ corresponding to null singular values of

PΘ. These columns are thus concatenated in the 54 × 8 matrix U⊥ which

satisfies

U t
⊥PΘ = 0 (B.2)
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It should however be noted that Eq. (46) results from the stationarity con-

ditions with respect to all the components of TΘ, including the last 12 ones

which are derivatives of the others and are thus not independent (see defini-

tion (45)). One actually has to solve

P̄ t
Θ

(

C−1PΘT̂Θ − EKA − C−1B
)

= 0 (B.3)

P̄Θ is the restriction of PΘ to its 37 first columns. Similarly to PΘ, the SVD

of P̄Θ is easily obtained

P̄Θ = ŪΘĒΘV̄ tΘ (B.4)

There are 54− 37 = 17 columns of ŪΘ corresponding to null singular values

of P̄Θ. These columns are thus concatenated in the 54×17 matrix Ū⊥ which

satisfies

Ū t
⊥
P̄Θ = 0 (B.5)

Eq. (B.3) is then rewritten

C−1PΘT̂Θ − EKA − C−1B = Ū⊥Ē⊥

C
(

EKA + Ū⊥Ē⊥

)

+B = PΘT̂Θ (B.6)

where the vector Ē⊥ is to be determined together with T̂Θ. Multiplying Eq.

(B.6) by U t
⊥
yields

U t
⊥

(

C
(

EKA + Ū⊥Ē⊥

)

+B
)

= U t
⊥PΘT̂Θ = 0 (B.7)

This linear system is under-determined (U t
⊥
CŪ⊥ is a 8× 17 matrix), so that

the solution reads

Ē⊥ = Ē⊥,0 + N̄EQ (B.8)
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Ē⊥,0 is obtained by inverting a 8×8 linear system, which is thus much smaller

than the initial one (49 × 49) and does not require the inversion of C. Ē⊥,0

formally reads

Ē⊥,0 = ĒB⊥,0B+ ĒE⊥,0EKA (B.9)

N̄E is a 17×9 matrix which is easily built from the operator U t
⊥
CŪ⊥, so that

Ē⊥ is easily obtained as a function of the 9 components of the vector Q.

The latter are to be determined. Defining ˇE−1

Θ
as the inverse of EΘ providing

minimal norm solutions [48], Eq. (B.6) also yields the full solution space as

T̂Θ = N t+ VΘ
ˇE−1

Θ
U t
Θ

(

C
(

EKA + Ū⊥

(

Ē⊥,0 + N̄EQ
))

+B
)

(B.10)

The solution T̂Θ is thus easily obtained and the constrains to be satisfied

between the components of the result vector may be examined. Satisfying

the 12 differential constrains between the components of T̂Θ (see definition

(45)) is presumably possible by setting the three components of t and the

nine components of Q. One assumes hereafter that the material parameters

are uniform. The solution obtained for the optimal constitutive equation

after solving the differential equations resulting from Eq.(B.10) are given

hereafter.

τxx = Cxx
xxǫxx + Cxxxx

xx ǫxxxx + C0
xxb0 (B.11)

+C ix
xx

(

eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη

)
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where

Cxx
xx =

µ(3λ+ 2µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− λ(c2 + c3)
2

(λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2

+
−2µ((c3 + c2 + 2c1)

2 + 2c21)

(λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2
(B.12)

QxxC
xxxx
xx = −λ(6(b3 + 2b2 + 2b1)(b7 + b6) + 8(b3 + 2b2)(b5 + b4 + b3 + b2 + 3b1))

+(4c2(b4 + b5)− 3(b7 + b6)(c3 + 2c1))(c1 + c2 + c3)

+2(b3 + 2b2)(c
2
3 + 5c1c3 + 6c21) + 4(b2 − 2b1)c2c3 − 2(b3 + 4b1)c

2
2

+2(3b3 + 8b2)c1c2 (B.13)

C0
xx =

2 (λ(c3 + c2)− 2c1µ)

(λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2
(B.14)

C ix
xx =

6Gǫ (λ(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− 2c1(c3 + c2 + 2c1))

2α7Qxx

(B.15)

Gǫ =
2

3

(

2a1 + a2
2

+
2

13

4b1c3 + 4b1c2 − (3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2)c1
3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1

)

−α2
7

3b3b7 + 6b2b7 + 6b1b7 + 3b3b6 + 6b2b6 + 6b1b6 + 4b3b5 + 8b2b5 + 4b3b4
3(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)

−α2
7

8b2b4 + 4b23 + 12b2b3 + 12b1b3 + 8b22 + 24b1b2
3(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)

−α−2
7

(

3

13

((3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)λ− 2c1c3 − 2c1c2 − 4c21)

(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)

+
4

39

(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)λ− 2c1c3 − 2c1c2 − 4c21
3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1

)

(B.16)

Qxx = (c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1) (B.17)

τxz = 0 = τyz = τzy (B.18)

τxy = Cxxxy
xy ǫxxxy = −c2ǫxxxy (B.19)

τyy =
(

2Cxxx
xyy − 3Cxx

xxyy − 6α7C
ix
xxyy

)

ǫxxxx

−3α2
7C

ix
xxyy

(

eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη

)

= τzz (B.20)
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τxxx = Cxxx
xxxǫxxx = 2(a1 + a2 + a3 + a4 + a5)ǫxxx (B.21)

τyyx = Cxxx
yyx ǫxxx = (a2 + 2a3)ǫxxx = τzzx (B.22)

τxyz = 0 = τyzx = τxzy = τxzx = τxxz (B.23)

τxyy =
a2 + 2a1

2
ǫxxx = Cxxx

xyy ǫxxx (B.24)

τxzz =
a2 + 2a1

2
ǫxxx = τxyy (B.25)

τxyx = Cxxy
xyxǫxxy + Cxxxxy

xyx

∂ǫxxxy
∂x

(B.26)

τxxy = Cxxy
xxy ǫxxy + Cxxxxy

xxy

∂ǫxxxy
∂x

(B.27)
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with

−2D345C
xxy
xyx = 4a4a

2
5 − a2a

2
5 + 2a1a

2
5 − 4a24a5 + 9a2a4a5 + 2a1a4a5

+4a1a3a5 − a22a5 − 8a34 − 16a3a
2
4 − 6a2a

2
4 − 16a1a

2
4

−28a1a3a4 + 7a22a4 (B.28)

4D345C
xxxxy
xyx = 8a1a5b5 − 8a2a4b5 − 8a1a4b5 − 8a1a5b4 + 8a2a4b4

+8a1a4b4 + a2a5b3 − 2a1a5b3 + 2a2a4b3 − 4a1a3b3

+a22b3 − 8a2a5b2 − 8a1a5b2 + 8a2a4b2 + 24a1a4b2

+32a1a3b2 − 8a22b2 (B.29)

−2D345C
xxy
xxy = 4a35 − 8a4a

2
5 − 4a3a

2
5 + 10a2a

2
5 + 4a1a

2
5 − 4a24a5 − 12a3a4a5

−18a2a4a5 − 16a1a4a5 − 28a1a3a5 + 7a22a5 + 8a34 + 24a3a
2
4

+4a2a
2
4 + 12a1a

2
4 + 36a1a3a4 − 9a22a4 (B.30)

4D345C
xxxxy
xxy = 8a2a5b5 − 32a3a4b5 − 8a2a4b5 − 32a1a3b5 + 8a22b5 − 8a2a5b4

+32a3a4b4 + 8a2a4b4 + 32a1a3b4 − 8a22b4 + 4a3a5b3 − 2a2a5b3

+8a3a4b3 + 12a1a3b3 − 3a22b3 − 32a3a5b2 − 8a2a5b2

+32a3a4b2 + 24a2a4b2 (B.31)

D345 = a25 − a4a5 + 2a2a5 + a1a5 − 2a24 − 4a3a4 − 2a2a4 − 3a1a4

−4a1a3 + a22 (B.32)

and

τyyy = 3Cxxxy
xyyy ǫxxxxy (B.33)

τzzy = 3Cxxxy
xzzy ǫxxxxy (B.34)

τyzy = 0 = τyyz = τzzz (B.35)

τyzz = 3Cxxxy
xyzz ǫxxxxy (B.36)
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τxxyy = τxxzz (B.37)

= Cxx
xxyyǫxx + C0

xxyyb0

+C ix
xxyy

(

eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη

)

(B.38)

with

Cxx
xxyy = − (λc3 − 2µc1)(3b7 + 3b6 + 2b3 + 4b2)− c2λ(4b5 + 4b4 + 2b3 + 8b1)

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)

+c2
(λ+ µ)(6b7 + 6b6 + 8b5 + 8b4 + 8b3 + 8b2 + 16b1)

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)

+c2
−2(c3 + c2 + 2c1)(c3 + c2 + 3c1)

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)
(B.39)

C0
xxyy =

(λ+ µ)(3b7 + 3b6 + 2b3 + 4b2)− c2(c3 + c2 + 2c1)

3 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)
(B.40)

C ix
xxyy =

Gǫ

2α7

(B.41)

τxxxx = Cxx
xxxxǫxx + Cxxxx

xxxxǫxxxx + C0
xxxxb0 (B.42)

+C ix
xxxx

(

eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη

)
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where

Qxx
xxxxC

xx
xxxx = (λ+ µ)(c2 + c3)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)

+µc1(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2)

+(c3 + c2)(4b1λ− (c3 + c2 + 2c1)(c3 + c2 + 3c1)) (B.43)

Qxxxx
xxxxC

xxxx
xxxx = 2c3 ((b7 + b6)(3b7 + 3b6 + 3b5 + 3b4 + 5b3 + 7b2 + 3b1)

+2(b3 + 2b2)(b5 + b4 + b3 + b2 + 3b1))

+2c1(b7 + b6)(6b7 + 6b6 + 6b5 + 6b4 + 7b3 + 8b2)

−4c2 ((b7 + b6)(2b5 + 2b4 + b3 + 4b1)

+(b5 + b4 + b3 + b2 + 3b1)(2b5 + 2b4 + b3)) (B.44)

C0
xxxx = (B.45)

(λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2)− (c3 + c2)(c3 + c2 + 2c1)

(λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2

C ix
xxxx = (B.46)

−6Gǫ (4b1(c3 + c2)− c1(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2))

2α7 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1))

Qxx
xxxx = (B.47)

(λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)
2

Qxxxx
xxxx = (B.48)

(c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1)

τxyzx = τxxzy = τxxyz = 0 (B.49)

τxyzy = τxzzz = τxyyz = 0 (B.50)
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τxzzy =
2b5 − 2b4 − b3

3
ǫxxxy +

b0
3

= Cxxxy
xzzy ǫxxxy (B.51)

τxyyy =
2

3
(b5 − b4 − 2b2)ǫxxxy = Cxxxy

xyyy ǫxxxy (B.52)

τxyzz = −2

3
b2ǫxxxy = Cxxxy

xyzz ǫxxxy (B.53)

τxzzx = Cxx
xzzxǫxx + Cxxxx

xzzx ǫxxxx + C0
xzzxb0 (B.54)

+C ix
xzzx

(

eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη

)

and

τxyyx = Cxx
xyyxǫxx + Cxxxx

xyyx ǫxxxx + C0
xyyxb0 (B.55)

+C ix
xyyx

(

eα7x

∫ x

ǫxxxx(η)e
−α7ηdη − e−α7x

∫ x

ǫxxxx(η)e
α7ηdη

)
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with

Cxx
xyyx =

λ(c3(6b7 + 6b6 + 8b5 + 8b4 + 10b3 + 12b2 + 24b1)− c2(3b7 + 3b6 + 4b5 + 4b4 + 2b3))

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)

+
µ(c3(6b7 + 6b6 + 8b5 + 8b4 + 8b3 + 8b2 + 16b1) + c1(6b7 + 6b6 + 8b5 + 8b4 + 4b3))

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)

− 2c3(c3 + c2 + 2c1)(c3 + c2 + 3c1)

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)
(B.56)

Cxxxx
xyyx =

c3((2b5 + 2b4 + b3 + 2b1)(3b7 + 3b6 + 2b3 + 4b2) + 2(b3 + 2b2)(b3 + 2b2 + 4b1))

3 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− 2c2(2b5 + 2b4 + b3 + 4b1))

+
−c2(3(b3 + 2b2 + 2b1)(b7 + b6) + 4(2b5 + 2b4 + b3)(b5 + b4 + b3 + b2 + 3b1))

3 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− 2c2(2b5 + 2b4 + b3 + 4b1))

+
12(b5 + b4 − b2)(b7 + b6)c1

3 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− 2c2(2b5 + 2b4 + b3 + 4b1))
(B.57)

C0
xyyx =

(λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 2b3)− c3(c3 + c2 + 2c1)

3 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)
(B.58)

C ix
xyyx =

−Gǫ (c3(2b3 + 4b2 + 8b1)− (c2 + 2c1)(3b7 + 3b6 + 4b5 + 4b4 + 2b3))

2α7 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1))
(B.59)

Cxx
xzzx =

2λc3(b3 + 2b2 + 4b1) + (2c1µ− c2λ)(3b7 + 3b6 + 4b5 + 4b4 + 2b3)

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)

+
c3(λ+ µ)(6b7 + 6b6 + 8b5 + 8b4 + 8b3 + 8b2 + 16b1)

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)
(B.60)

− 2c3(c3 + c2 + 2c1)(c3 + c2 + 3c1)

6 ((λ+ µ)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1)− (c3 + c2 + 2c1)2)
(B.61)

Cxxxx
xzzx =

c3(3(b7 + b6)(2b5 + 2b4 + b3 + 2b1) + 4(b3 + 2b2)(b5 + b4 + b3 + b2 + 3b1))

3 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1))

+
−c2(3(b7 + b6)(b3 + 2b2 + 2b1) + 4(b5 + b4 + b3 + b2 + 3b1)(2b5 + 2b4 + b3))

3 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1))

+
12c1(b5 + b4 − b2)(b7 + b6)

3 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1))
(B.62)

C0
xzzx = C0

xyyx (B.63)

C ix
xzzx =

−Gǫ (c3(2b3 + 4b2 + 8b1)− (c2 + 2c1)(3b7 + 3b6 + 4b5 + 4b4 + 2b3))

2α7 ((c3 + 2c1)(3b7 + 3b6 + 2b3 + 4b2)− c2(4b5 + 4b4 + 2b3 + 8b1))
(B.64)

(B.65)
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τzzzx = 0 = τyyzx = τxxzx = τxxxz (B.66)

τyyyx = Cxxxy
yyyx ǫxxxy = −(b3 − 2b4 + 2b5)ǫxxxy (B.67)

τyzzx = Cxxxy
yzzx ǫxxxy = −3b3 − 2

√
6b4 + 2

√
6b5

3
√
6

ǫxxxy (B.68)

τxxyx = Cxxxy
xxyxǫxxxy = −1

3
(4b2 + b3 − 2b4 + 2b5 + 6b6 + 2b7)ǫxxxy(B.69)

τxxxy = Cxxxy
xxxy ǫxxxy = −(b3 + 2b4 − 2b5 − 2b6 + 2b7)ǫxxxy (B.70)

Appendix C. Optimal constitutive equations for Cauchy materials

This appendix details for the sake of clarity the approach proposed in

Sect.3 when applied to Cauchy materials. The Euler-Bernoulli kinematic

assumption reads

ǫxx = −y d
2v

dx2
+

du

dx
(C.1)

and the static admissibility conditions impose that

τyz = τyy = τzz = 0 (C.2)

The stresses resulting from the 3D law read :

τxx = (λ+ 2µ)ǫxx (C.3)

τyy = τzz = λǫxx (C.4)

Using the 3D constitutive law thus makes the tensile stiffness wrong and

violates the static admissibility conditions (C.2), thereby making the need

for a modified constitutive law explicit. Under the assumptions (C.1) and
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(C.2), ηψ(T,EKA) satisfies

Eηψ(T,EKA) = τ 2xx + 2(1 + ν)(τ 2xy + τ 2xz) + ǫxxτxx(2(2ν − 1)λ− 4µ) (C.5)

+ǫ2xx((λ+ 2µ)(λ+ 2µ− 2νλ) + 2λ(λ(1 + ν)− ν(3λ+ 2µ)))

The stationarity of ηψ(T,EKA) with respect to the stress components (see

Eq.43) τxx, τxy, τxz yields :

τxx = Eǫxx

τxy = 0

τxz = 0 (C.6)

so that the constitutive equations usually considered for beam equations are

recovered instead of the 3D constitutive law. The equations (C.6) yield TSA.

The minimal constitutive equation gap reads

Eηψ(TSA,EKA) = Eǫ2xx
2ν2

(1 + ν)(1− 2ν)
> 0 (C.7)

As a consequence of the constitutive equation gap, the strain energy may be

assessed either using the kinematic fields or the static ones, yielding different

values. The quality of the solution (C.6) may be approached by the scaled

residual constitutive equation gap :

ηψ(TSA,EKA)

EKA · C · EKA +TSA · C−1 ·TSA

=
ν2

(1− ν)− ν2
(C.8)

which is found to be rather large when ν → 1

2
. The residual constitutive

equation gap may be further analyzed by defining a modified constitutive

equation gap η̄ψ(T,E)

η̄ψ(T,E) = (T− C · E) · C−1C̄ · C−1 · (T− C · E) (C.9)
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where C̄ is the stiffness operator in which all the components related to the

strain components in the cross-section have been zeroed. It can be checked

that

η̄ψ(TSA,EKA) = 0 (C.10)

thereby proving that the residual constitutive equation gap is solely located

in these in-plane deformation components. The other strain components may

thus be considered as accurate, even though the global error indicator (C.8)

turns to be rather high.

Appendix D. First strain gradient elasticity for the bending prob-

lem

Neglecting any term related to the second-strain gradient in Eq. (90)

yields the characteristic equation

−t
2Cxxx

xxx

12

d6v

dx6
+K

d4v

dx4
= 0 ∀x ∈ [0, L] (D.1)

One should first outline that as for bars, this differential equation is formally

similar to the one obtained from a purely kinematic approach [47] in the

absence of distributed loading :

g2
d6v

dx6
−
(

1 + c
g2

t2

)

d4v

dx4
= 0 ∀x ∈ [0, L] (D.2)

and the this work provides the definition

c =
12(Cxxy

xxy − 2Cxxy
xyx)

Cxxx
xxx

(D.3)

, again extending results obtained with a simplified constitutive equation

[47, 43]. Looking for solutions of the form (73) yields

0 = α4
v

{

−t
2Cxxx

xxx

12
α2
v +K

}

(D.4)
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whose non-trivial solutions read

αv = ±λ−1

V (D.5)

with

λV = t

√

Cxxx
xxx

12K
(D.6)

As seen in Fig.4, Cxxx
xxx is found to be always positive, as well as Cxxy

xxy −2Cxxy
xyx

(see Fig. 11). The term K defined in Eq.(92) is thus always positive, so that

λV is always a real number. The displacement field therefore reads

v(x) = q0 +
3
∑

i=1

qi

( x

iL

)

+ γ+FSG exp

(

x

λV

)

+ γ−FSG exp

(

− x

λV

)

(D.7)

6 boundary conditions are therefore necessary to set the solution. These

are obtained from Eq.(68). Assuming the beam is clamped at x = 0, these

boundary conditions read

v(0) = 0

dv

dx
(0) = 0

−t
2Cxxx

xxx

12

d3v

dx3
(0) = 0

A bending force F is applied at x = L, the work of external forces reads

δW ⋆ = Fv⋆(x = L) so that

−t
2Cxxx

xxx

12

d5v

dx5
(L) +K

d3v

dx3
(L) = −F

bt

−t
2Cxxx

xxx

12

d4v

dx4
(L) +K

d2v

dx2
(L) = 0

−t
2Cxxx

xxx

12

d3v

dx3
(L) = 0
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Solving the linear system above yields the tip displacement

btvFSG(L)

F
=

12λ2V
Cxxx
xxx

{

L

6t2
(2L2 − 3λ2V ) +

e
L
λV − 1

e
L
λV + 1

(

λV
2t2

(4λ2V − L2) +
L2Cxxx

xxx

24KλV

)

}

(D.8)

It can be checked that

lim
t→+∞

btvFSG(L)

F
=

4L3

t2Cxx
xx

(D.9)

which corresponds to the solution for Cauchy materials :

KFSG
V

KCauchy
V

=
4F L3

b t3 vFSG(L)Cxx
xx

(D.10)

and

lim
t→+∞

KFSG
V

KCauchy
V

= 1 (D.11)

It is also worth noting that

lim
t→+∞

λV =

√

Cxxx
xxx

Cxx
xx

= λ∞V (D.12)

Considering the vanishing thickness limit, it is straightforward that λV then

scales as the thickness :

λV ∝
t=0

t

√

Cxxx
xxx

12(Cxxy
xxy − 2Cxxy

xyx)
(D.13)

Appendix E. Material parameters for the reported results
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