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Abstract

A method is proposed herein to build beam equations for materials fea-
turing higher-grade elasticity. As it is based on the minimization of the con-
stitutive equation gap, static admissibility conditions are taken into account
so that it naturally converges to the usual beam equations resulting from
Cauchy elasticity when the beam dimensions are large enough. The method
is exemplified, for Euler-Bernoulli beams, on first-strain gradient and second-
strain gradient elasticity, which yield local and non-local beam equations,
respectively. The solutions of these equations are computed for tensile and
bending loads over a wide range of beam dimensions in order to assess the
role of the different grades on the global behavior of simple mechanical struc-
tures. Under first-strain gradient elasticity, the proposed approach extends
the validity of the equations obtained previously for tensile or bending load-
ings. Considering second-strain gradient elasticity, this additionally allows
to distinguish two different regimes, depending on whether the elasticity is
driven by the surface (it is proposed to denote this regime as the ecto-elastic
regime) or by the bulk. It may also model the chemo-mechanical couplings.

It finally suggests that second-strain gradient elasticity and first-strain gradi-
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ent elasticity may affect the bending stiffness in the same dimensional range,
so that both should always be considered simultaneously when analyzing
experimental results.
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1. Introduction

Since the emergence of integrated circuits at the end of the 1950s as
a response to the ”tyranny of numbers”, miniaturization has been a con-
cern for the electrical engineering community, namely, being able to produce
solid-state transistors was useless without the possibility to connect them
efficiently and reliably. The wires between transistors were all soldered by
hand, thus limiting both the increase in complexity and the reliability of the
final device. The groundbreaking idea was to integrate the circuitry to the
semi-conductor piece holding the transistors. It allowed the mass-production
of reliable devices, and has been the starting point for successive technolo-
gies, all described by the ”integration-level”, measured as the number of
transistors per chip, they allow: from small-scale integration (early 60s) to
very-large-scale integration (80s). The technology was at that time mature
enough to allow for other communities to benefit from the miniaturization
possibilities. Non-electronic functions thus started to be integrated to the
chips, and restricting to mechanical applications, this yielded devices such as
pressure sensors, accelerometers, gyroscopes, microphones or ink-jet printer

cartridges that are now on the market. The motivation was then mainly the



same as for electronic devices, namely, integration (all the above-mentioned
mechanical devices are electrically read or driven), reliability and mass pro-
duction.

These devices do not make use of any scale effect on the mechanical behavior
of the fabricated objects, so that there is still room for innovative products
making the most of the miniaturization capabilities. This however requires
the development of modeling frameworks to pave the way for the engineering
of these scale effects. Focusing on the mechanical behavior of solids, such
scale effect encompass both size-dependent elasticity and surface couplings.
Only few experimental results demonstrating size-dependent elasticity have
been reported in the literature, mainly because of the difficulty to keep the
experimental errors low enough whereas the probed objects are more and
more difficult to handle when they scale down. Materials such as epoxy-
based materials [1, 2], pure metals [3] and ceramics [4] have been shown to
display such size-dependent elasticity. On the other hand, surface couplings
at the micrometer-scale have been shown to be rather easy to implement
since the mid 90s [5], and this triggered the development of micromechanical
sensors [6]. Such developments clearly call for some dedicated frameworks
to describe such scale effects for solids, and it is worth noting that most of
these experimental results have been obtained on one-dimensional objects,
thus stressing the need for tractable beam theories able to render these scale
effects. This also holds true for (large scale) beams made of architectured
materials [7, 8].

An extremely vast number of such beam models has already been proposed

in the literature [9]. To the best of the author’s knowledge, they all fall into



two categories. Most of them, forming the first category, follow from the de-
velopments by Gurtin and Murdoch [10, 11] : the surface is considered as a
membrane material withstanding “surface stresses” with its own mechanical
properties , the membrane eigenstrain (and thus the surface energy) being
possibly discarded. Such an approach has been shown to efficiently render
size-dependent elasticity [3] and the thermodynamics of the involved chem-
ical system can be used to set the properties of the surface when dealing
with surface couplings [12, 13, 14] (also see [15] in the context of capillary
actions). The question of the connection between both the properties and
the mechanical state of the bulk and surface materials remains open, making
the role of the material itself in the observed effects somehow unclear.

The second category gathers models which rely on different types of non-
local formulations of the driving equations. Strongly non-local formulations
[16] appear as the introduction of regularization operators whose physical
meaning is sometimes questionnable [17]. Alternatively, weakly non-local for-
mulations rely on generalized continua, among which higher-grade continua
feature a lower complexity, and as such have been preferentially considered to
build simplified theories describing the behavior of one-dimensional objects.
The constitutive equations then make coefficients scaling as stiffnesses mul-
tiplied by characteristic lengths to the various powers appear : first-strain
gradient (FSG) elasticity [18] thus naturally renders size-dependent elasticity,
whereas second-strain gradient (SSG) elasticity further introduces a cohesion
modulus which has been shown to rigorously define the equivalent of surface
tension for solids [19]. Interestingly, modeling surface tension effects in solids

has recently (and rather independently) become an issue in the soft matter



community together with the definition of a cut-off length able to smooth
stress singularities [20]. Several contributions focused on the assessment of
the equivalence between membrane-based descriptions and higher-grade elas-
ticity [21, 22]. These frameworks are thus particularly suited to describe scale
effects in elasticity [23, 24|, so that some efforts have been made to translate
them to one-dimensional structures.

Focusing on beams, the vast majority of these attempts actually starts from
one-dimensional analogues of the three-dimensional equations describing the
continua [21, 25, 26, 27, 28, 29, 30]. This allows to introduce simplifications
and adjust the complexity to the effects the authors wish to describe, but the
link to the parameters in the three-dimensional constitutive laws is lost and
so for the underlying thermodynamics, so that paradoxes may appear when
comparing formulations [31, 32]. An alternative approach in such a complex
situation consists in starting from the three-dimensional constitutive law to
derive the beam equations. Even though the number of material parameters
is rather large (18 elastic parameters are for instance necessary to describe an
isotropic centrosymmetric material in SSG elasticity), the complexity is then
kept reasonable by making a direct use of the three-dimensional constitutive
law : the (higher-order) stresses in the beam are assumed to be obtained by
applying it to the (higher-order) strain fields derived from the chosen beam
kinematics [33, 34]. Static admissibility conditions are discarded, so that the
resulting beam equations are shown to inherit some deficiencies from this
construction, such as their inability to render Poisson’s effect and the right
tensile stiffness without a somehow arbitrary stiffness correction [33, 35].

This holds also true when simplified constitutive laws [36] are considered



[37]. Because the constitutive equations under scrutiny herein are too com-
plex to allow for a direct asymptotic analysis [38], an alternative route has
to be found, but the quantitative character of the available beam theories
thus seems limited by the trade-off between complexity and thermodynamic
groundings.

This contribution therefore intends to overcome this difficulty by proposing
an approach to build beam equations for materials featuring higher-grade
elasticity. It is aimed to include the static admissibility conditions, which are
derived in Sect.(2) and which are missing in the above-mentioned approaches.
The complexity is kept rather simple by making use of the constitutive equa-
tion gap [39] in Sect.(3). This approach is then applied to SSG elasticity in
Sect.(4), for which all the involved terms are expressed as closed-forms and a
variational formulation is derived. The resulting equations are finally solved
for tensile and bending loadings in Sect.(5) in order to assess the role of the
different grades and provide a base for the experimental identifiability of the
constitutive parameters. The reader interested in applying these constitu-
tively optimal governing equations to its own problem may directly jump to
this Sect. and Appendix B for the closed-form expressions of the involved

coefficients.



2. Problem statement

2.1. Geometry and kinematics

Considering a beam lying along x direction and using the Euler-Bernoulli

assumption, the displacement d for a plane loading in the (x,y) plane reads

do(x)
I (1)

d, = o) 2)

d, = u(xr)—y

Following Mindlin [19], the free energy is assumed to depend on the classical
infinitesimal strain €', as well as on the triadic €2 = VVd (symmetric in
the first two positions) and on € = VVVd (symmetric in the first three

positions). €' has therefore a single non-vanishing component

d?v  du

The non-zero components of € read

3 2

€rar = —y% + % (4)

Coyr = —% = €yar (5)

o = (6)

The components of € read

oo =yt 4 O )

€yzze = —% = €zyzz = €azyz (8)

S o



2.2. Second-strain gradient elasticity

Let us assume that all the material parameters are uniform all over the
cantilever beam. The approach proposed herein will be illustrated through-
out the manuscript considering the second-strain gradient elasticity (SSG)
of a centrosymmetric, isotropic material [19]. The free energy density

therefore reads

v = %anjj + pi€ij€i;
+Q1€55€ikk + A2€iik€Lkj; T A3€4k€ ik T A4€ijk€ijk + A5€ikEkji
+1€5ij5€kkn + ba€ijrr€iju + D3€iijrn€irn + Da€isjr€ur;
+bs€iijk€uin + bo€ijri€ijrr + Or€ijri€inii

+C1€i€5jkk + C2€35€ijkk T C3€i5€kkij

+b0€iijj (10)
where A and p are Lamé’s coefficients, whereas the other parameters

2
Ap, Cny by o plg

by o pls

make characteristic lengths o [g appear. The presence of the linear term
proportional to €;;; is to be highlighted. Without any external loading, it

makes the free energy non-zero

= b—;A (diva)



and by, which is denoted as the cohesion modulus, defines the equivalent of

surface tension for solids [19]. Defining the associated generalized stresses as

el
Oe?
o
o= 53 (11)

, the virtual work principle reads, Vd* (admissible)

/ W(d*)dV = / (Th € (d) + 72 E(d) + 702 (dY) AV = Wem(d*)

v 1% 12)
Restricting to the derivation of beam equations, d* derives from the chosen
kinematics (Euler-Bernoulli, Timoshenko...). 7¢ and ¢ are not necessarily
associated through Eqs.(10) and (11), so that a choice has to be made. As
already outlined in the introduction, the literature assumes, for the sake
simplicity, that 7¢ and € are associated through the 3D laws, so that the
equations recalled in Appendix A hold [33, 34]. It should actually be high-
lighted that the usual (Cauchy) elastic beam theories make use of 0., = Fe,,
at the local scale, where E is the Young’s modulus, which differs from the
coefficient A\ + 2p obtained from the three-dimensional law. It is well known
this difference arises from the static boundary conditions. The purpose of
the next sections is thus to define the static admissibility conditions which
have been discarded so far and which should be taken into account to correct

such a deficiency.



2.3. Static boundary conditions

Denoting

0
n = cos o (13)

sin «

the normal at the cross-section boundary, one assumes, for classical beam

theories, that the tractions at any beam boundary vanish :
'n = 0 Va (14)

which is imposed by simultaneously ensuring

y'r'n = 0Va (15)
z'7'n = 0Va (16)
x't'n = 0Va (17)

Eqs. (15-16) are usually ensured by setting (using the symmetry of 71) :
Tyy = Toz = Tyz =0 (18)

for all points P within the cross-section S, whereas Eq.(17) has to be satisfied
at the boundary B. This set of conditions defines the statically admissible
stress fields when using Cauchy elasticity. This section intends to extend

such approach to second strain gradient elasticity.
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2.8.1. Third-order traction
The general form of boundary conditions is given in [19], Eq.(18). Eq.

(18¢) reads (using symmetry relationships):

t3 = cosPa | +3cos’asina | 7 +3cosasin’a | 7
yyyy yyzy Yyzzy
7—ZZZZ'
.3
tsma | 7, (19)
7—ZZZZ

Similarly imposing y - t3 = 0 Vo and z - t3 = 0 Vo for all points within the

beam cross-section yields

Tyyyy = Tyyzy = Tyzzy = Tzzzy =

0
VP eS (20)

Tyyyz = Tyyzz = Tyzzz = Tzzzz — 0

Hgs .

Further imposing x - t3 = 0 Va at the boundary yields

3

Hap 1 0 = cos” aTyyye+3 cos? o sin QOTyy2z+3 COS sin? aTyzzx+sin3 OTypme VOVP € B

(21)

2.3.2. Second-order traction
Expanding Mindlin’s L operator, Eq. (18b) in [19] reads (using symmetry
relationships)
t2 :nn:(72—V-73)+2(%~n)t3—n~ {%(nw’?’)} —%~(nn:7'3) (22)
One thus has to satisfy, for all points of the cross-section :
y-t?> = 0Va (23)

z-t> = 0Va (24)



where t2 expands as

S
t? = 2(V-n)t?
—9cost — 2sin?
COS™ O Tyyzk 2 SIN™ Qv Tyzaky
3 .
+2 cos” asin a (Tyyyk,» + Tyyeky — 2Tyzzk.z)
—2 cos? arsin? —2 -2 + )
m- « (Tyyyk,y Tyyzk,z Tyzzk,y T Tzzzk,z
.3
—2cosasin® a (27yyeky — Tyzzk.s — Tozzky)
2
+ cos” o (Tyyk — Tiyyki — 2Twyyk.s)
+2 cos asin o (Tyzk — Tiyzk, ) — 2Tuyzk,)
.2
—+ s1in” « (Tzzk — Tlzzk,l — 27—90zzk,m)
+3fe (co8” @ Tyyop + €OS SN (Tyoal — Tyyy) — SIN° @ Tyyar,)
c yyzk yzzk yyyk yyzk

+3fs (C082 Q Tyzzk + COS A SIN Tz — Tyyek) — sin? a Tyzzk) (25)

with
0 0
fe = sina caosa —cosa (g)s “ (26)
0 0
fs = sina Y cosand (27)
Y 0z
Assuming that the condition H3, is satisfied, Eqs.(23-24) yield :
Tyyk = 3 Teyyk,x
Hos 1§ Tyok =3 Tuyoke VP ES, k=york=z (28)

Tazk = 3 Tezzk,x

The condition x - t2 = 0 Vo VP € B has also to be satisfied, and has to be

examined for any particular loading and geometry.
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2.8.3. First-order traction
Expanding the L operator, Eq. (18¢) in [19] reads (using symmetry rela-
tionships)

t' = n- (TI—V-72+VV:T3)+(%-H) [tz—(%-n)ﬁ]
V- |n- (r* =V —%-(n-f?’)—(%n)-(nn:T?’)] (29)
Imposing, at any point of the cross-section

y-t' = 0Va (30)

z-t' = 0Va (31)
yields, assuming that both Hs, and H,, are satisfied :

Tyk — 2 Taykz + 3 Teaykee = 0
Hiyy vk o VPEeS k=york=2z (32)

Tzk — 2 Tezk,x +3 Teazk,oa — 0

Similarly, the condition x - t* = 0 Vo VP € B should be examined for the

considered loading and geometry.

2.4. Statically admissible (higher-order) stress fields

Extending the approach used for classical beam theories, one defines the
statically admissible (higher-order) stress fields as those simultaneously sat-
isfying conditions Hss, Hos and His. This set of conditions thus defines
a space of statically admissible stress fields ©. The vector T gathers the

13



involved stress components :

Tt - Ty Tyys T2z, \/§Tyza \/§sza \/ﬁTxya
Texas Tyyrs Tzzaxs \/§Tyzxa \/57-1‘21‘7 \/§Txyxa
Taxy, Tyyys Tzzy; \/§Tyzy= \/§Twzyv \/iTmyyv
TZE[EZ? Tyyzu TZZZ7 \/§TyZZ7 \/§TIZZ7 \/§T$y27

Trzxxs Tyyyzy Tzzza \/gTyzz:ca \/gTyyzxa \/ngyzxa \/ngzzxa \/ngxzxa \/ngxy:ca \/ngyym
Trzays Tyyyyr Tzzzy) \/gTyzzya \/gTyyzya \/éTxyzya \/ngzzya \/ngxzya \/ngxyya \/ngyyya
Texxzs Tyyyzs Tzzzzs \/gTyzzm \/gTyyzzw \/ngyzm \/ngzzm \/gT:v:vzm \/ngmym \/ngyyz]

so that
O : {T/His} N{T/Has} N {T/Hss} (34)

The stresses resulting from an Euler-Bernoulli displacement field through
the three-dimensional constitutive law are detailed in Appendix A (see Egs.
A.8-A.24). Tt is straightforward to note that these stresses do not belong to
the © subspace. There exists a gap between the stresses obtained from the
displacement field and those belonging to the admissible space ©. A direct
comparison of the conditions Hs,, Has and H, with the stress values obtained
from the three-dimensional constitutive law thus brings to the conclusion that
all conditions (Euler-Bernoulli kinematics, three-dimensional constitutive law
and free-boundaries conditions) cannot be met simultaneously, and one has

to somehow relax the constrains.
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3. Optimal constitutive equations for beams

It is actually proposed to make the constitutive equation accommodate
both the kinematic and free-boundaries conditions. As the static and kine-
matic fields cannot be related through the three-dimensional constitutive
law, the latter has to be replaced. The challenge is then to rigorously de-
fine the constitutive law to be used when writing the virtual work principle
(12) instead of the three-dimensional law. This Section details the use of the

so-called constitutive equation gap [39] for that purpose.

3.1. Constitutive equation gap
The free energy density v formally reads (see Eq.(10))

w(E):%E-c-Eﬂa-E (35)

where E is the vector gathering the kinematic variables :

Et = €xa, Eyy, €22, \/§€yzu \/§€mza \/ﬁemyv
€xax; Cyyx, €z \/ﬁeyzxa \/ﬁexzxa \/ﬁexyxa
Cazy, Cyyys €22y \/ieyzy’ \/ﬁemy’ \/§€xyy>
€xazy Cyyzy €222, \/§€yzza \/E‘Swzza \/E‘Swym

€Cxaxrs Cyyyr, €zzzas \/geyzzaca \/§€yyzm \/éemyzaca \/gemzzma \/gemmzmu \/g‘fmcyma \/§€wyyw7
€xxxys Eyyyys €zz2ys \/geyzzya \/geyyzya \/éescyzya \/gexzzya \/gex:czya \/gesc:cyya \/gexyyya

€rzxzs Cyyyzy €22229 \/geyzzza \/geyyzza \/éexyzza \/gexzzza \/gexxzza \/gexxyza \/gexyyz
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and B is the vector rendering the cohesion modulus effect :

\/3’

B! = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,bp,0,0,0,0,0, —=
bo b(] b(] bO bO
—,O,b,0,—,0,0,0,0,—,0,0,0,b,O,—,0,0,—,0,0
V3B V3 "B B

C is built from Eq.(10). The Legendre-Fenchel transform defines the conju-
gate potential *(T)

v(T) =sup{T-E~ (B)} = 5 (T~ B)-C""-(T-B) (3

and the corresponding residual 7, (T, E)
(T, E) = ¢(E) +¢*(T) - T-E (39)

It is easily checked that 7,(T,E) > 0 V(T,E) and that n,(T,E) = 0 if the

constitutive equation is satisfied :
ny(C-E+B,E)=0VE (40)

ny(T,E) is also quadratic with respect to T. ny(T,E) is denoted as the
constitutive equation gap in the following. As its properties make it adequate
to measure the distance between T and E (i.e., the gap exposed at the
end of Sect. 2.4), it is used hereafter in order to account for the static
admissibility conditions when building the governing equations for beams.

The Euler-Bernoulli assumptions on the displacement field define the space

16
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of kinematically admissible fields :

= = {Et: {em,ooooo  0,0,0,0, V22 2 10,0,0,0,0,
Ox oy’ Oy
82 Z‘Z‘ 8265050 8265050
0,0,0,0,0,0, 0,0,0,0,0,0,0, 0
) Y ) Y ) a 2 Y \/_a a 7 ajjay? Y

2
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] , € = —yd—v + d_u
dz?2  dz

(41)
As recalled in Sect.2.2, it is usually chosen in Eq.(12) [33, 34] to set W (d*)

as

W(d) = (C ExatB) B(d)
Exa € =

E(d") € = (42)

thus assuming the three-dimensional constitutive law is satisfied, without
any consideration for any (free) boundary condition. Such a choice is known

to yield deficient governing equations :

e In the context of Cauchy elasticity, it is recalled in Appendix C that
it results in an incorrect tensile stiffness and unbalanced stresses at
the cross-section boundary, because the static admissibility conditions

(and thus the Poisson effect) are not taken into account.

e In the context of second-strain gradient elasticity, this makes the gov-
erning equations converge towards equations exhibiting the same defi-
ciencies. The longitudinal stiffness is then arbitrarily rescaled to match
the Young’s modulus when the beam dimensions are large enough, but

this choice is definitely not unique and lacks a justification [33, 34].
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The key to fix these deficiencies is to account for the static admissibility
conditions, and the challenge is to keep it rather simple, even for complicated

constitutive equations. It is thus suggested to replace Eq.(42) by

W(d*) = Tga-E(d)
TSA = Arngllel(raln¢(T7EKA>
Exa € =

Ed*) e = (43)

T4 is thus the statically admissible stress state satisfying at best the three-
dimensional constitutive law for Euler-Bernoulli displacement fields. The
constitutive equation gap has been initially proposed to assess the quality of
finite-element analysis by measuring the distance between statically admissi-
ble fields and kinematically admissible ones [39]. It is proposed herein to use
it to define the constitutive equations making the kinematically admissible
and statically admissible fields correspond, while keeping the “distance” to
the three-dimensional constitutive law minimal in the sense of the chosen

norm. Such constitutive equations are denoted as optimal is the following.

3.2. Optimal constitutive equations

Ny (T, Ek4) is a quadratic function of the stress components, so that the
minimizer Tg4 is defined by a set of linear equations obtained by expressing
the stationarity of 7, (T, Ex4) with respect to the components of T € ©.

This latter condition is enforced by setting

T = PoTo (44)

18



where Tg is the vector

t
T@ - [TIE:E7 Tezy Tays Texxs Tyyxs Tzzas Tyzas Teza, Teyxs
Texys Tazys Tayys Texzy Tezzy Toyz)
Texxaxs Tyyyxs Tzzzey Tyzzay Tyyzas Teyzes Tezzes Teazae, Texyxs Toyyss

Taxxys Teyzys Tezzyy Teaxzys Teayys Teyyys Texxzs Tayzzy Tezzzy Teazz, Texyzy Teyyz)

Teyy,xs Tezz,xs Teyz,xy Teyzy,ay Tezzy,xs Teyyy,xy Tayzz,xy Tezzzxs Teyyz,xs Teayy,axs Teezz,za, Tmmyz,xw]

and Pg is the 54 x 49 operator defined from the conditions (20), (28) and
(32). The stationarity of 7, (PeTe, Exa) with respect to the components of
Te thus defines the optimal Te

(PEC'Pe) To = Ph (Exa+C'B) (46)

The procedure to easily solve Eq. (46) is detailed in Appendix B. The

resulting constitutive equations are formally denoted as

Tss = CEPEg, + BEP (47)

opt opt

The detailed expressions of the optimal constitutive law are also given in Ap-
pendix B, and the local constitutive equation gap nw(CfprKAjLpr?, Exa) >
0 may be expressed as a function of the local kinematic variables. The same
construction is detailed for Cauchy materials in Appendix C and is shown

to yield the classical beam equations.

4. Application to second-strain gradient elasticity

The expression of the T's4 components have been obtained as closed forms

in Appendix B for second-strain gradient elasticity. It should be outlined
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that these closed forms have been obtained using the general constitutive
law as formulated by Mindlin [19], so that simplified forms resulting from
specific choices of the constitutive parameters [36, 37, 40, 41] can easily be
derived. Similarly to the residual constitutive equation gap analysis provided
in Appendix C, it can be shown that the remaining error is solely located
on (higher-order) strain components within the cross-section plane, so that

the other components may be considered as accurate.

4.1. Comparison to 3D law for stresses involved in Fuler-Bernoulli equations

The differences with stresses obtained when discarding the static admis-
sibility conditions (see Appendix A) are now examined. Focusing on the
derivation of an Euler-Bernoulli beam theory with a uniform cohesion mod-
ulus, the optimal stresses T,., Towz, Tayzs Tozy, Tozeer Tzaye a0 Typpe, above

should be compared to their 3D counterpart summarized in Appendix A.

e = O+ CF e, 4 OO b
Lo ( / " rnme ()T — / ' emxm)eamdn)w&)
Towz = Coos€rpr = 2(a1 + ag + az + ag + a5)€ppp (49)
o = Ctplesy, + g (50)
Towy = CTeyp + CT20 82”;” (51)

T TTXT 0
Teazx — C €xa T C €xzar T C

TXXTT TXXTIT TXXTIT

+C (% [ nnstie1an = [ evnnsmiernan) 62

bo

1
Tmmyw = C;:;:Z;Z(/{Exxxy = —§(4b2 -+ b3 — 2b4 + 2b5 -+ 6b6 + 2b7)€mmmy (53)
Txxxy = C’fffgexxxy = —(bg + 2b4 — 2b5 — 266 + 2()7)€xmcy (54)

20



a7 results from the material parameters and is defined as

a2 _ 2 (()\ + M)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1) — (03 + Cco + 201)2)
7 (Cg + 201)(367 + 3b6 + 2b3 + 4b2) — 02(465 + 4b4 + 2b3 + 8b1)

(55)
As the Euler-Bernoulli kinematic assumptions impose that €;4p0 = —€z20y,
it should first be noticed that 7,., Tzzys and 7.z, remain unchanged by
the optimization procedure. Contrarily, 7,,, and 7,,, now also depend on
the local variations on the (higher-order) strain field. Changes in the beam
equations are thus to be expected. T, is significantly modified by an ad-
ditional, non-local term depending on the higher-order strains. 7., is also
altered by a similar non-local term. It should be emphasized that these non-
local terms result from the optimization procedure. The exponential weight
function results from the differential constrains and the characteristic length
o' now results from the constitutive parameters (Eq.(55)) instead of being
postulated as for Eringen-like elasticity [16].
Tee and T,u.p are furthermore modified by a new term proportional to the
cohesion modulus, which directly results from the optimality conditions. The
beam equations describing a chemical surface modification are thus expected
to be greatly modified by this direct contribution of the cohesion modu-
lus to the Cauchy stress tensor, which is absent from the equations derived
without consideration for the static admissibility conditions [33]. This di-
rect coupling between the Cauchy stress and the surface energy through the
cohesion modulus is a clear indication that the present approach paves the
way to description of the chemo-mechanical couplings at stake in cantilever
sensors. It should finally be outlined that these differences prove that the

remaining constitutive equation gap minree 7y(T, Ex4) # 0 in general.
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4.2. Special case : First strain gradient

Setting the second strain-gradient components to zero still makes some

higher-order stress components different from those deduced from the 3D law

— TTY
X
Teyz C o €y 56
— TTY
X
Tazy C o oy 57

(56)
(57)
Toez = %mem (58)
(59)
(60)

Tyye = (a'2 + 2a3)€:c:c:c = Tzzx

60

Tyyy = Tazy =10

: Ty Iy
The coefficients C7% and C77Y are such that the stresses 7.y, and 7., now

differ from those resulting from the 3D constitutive law. The other stress

components are left unmodified.

4.3. Special case : Cauchy materials

Setting by = 0 and neglecting higher-order strains yields
Tex — C;E;Exx
Toy = 0
Ter = 0

Ty = 0=y

(61)
(62)
(63)
Tyy = 0 (64)
(65)
(66)

In addition,
3A+2
lim C** = pBA+2p) - E (67)
ei—0 (A+n)
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so that the usual relations for Cauchy materials are recovered.

4.4. Virtual work principle for a beam featuring a uniform by

One considers in the following a cantilever beam (length L) with a rect-

angular cross-section (thickness ¢ and width b). Assuming that by is uniform
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along the beam, the virtual work principle reads Vd* :

L r3 r%
b_lt_I/ / W(d*)dydzdx =
0

_bJ_t
2 2

g d®u d*u Pudl g &
_ rrrr = TTTT rr _ oyrzxy rxr ir T LT T * d

i ds a3 d 7 A
L 0

TTTT ] 1.5 TTTT zzz) 1.3 2T 1 TTTL ]2
[ du*(z) d*u u . dL\1"
o orrre— = c%r  _ oerey 4 e 0%
i dx ( TTTT J.4 + ( TTTT :c:r::r:) da2 + Crzzz dx o
[d?u*(z) d3u du _ \1*
Correr— o cwr 7 CO b cw T
+ I dx2 ( TTTL {3 + Crran dr t Crreat0 T Crpan ):| o
+ /L C££££t2 ds_v + 2 C;:;:xx + C;:;:xx — C;;; _ 9(ErTTY | (OBTTTY | JOTTTY _ (TTTY @
0 12 dz® 192 TYT zTY TTYT zzzy | .6
Tx Tx Tx t2 d4,U i d4l/x i d2fx *
* C££££t2 d"v 2 C;:;:xx + C;:;:xx — C;C;;C rTTT rTTT rTT TTT d’v
, , L
2\ d3v o d’I - dl
crry _ 9wy Ccrx__ )~ _¢| o= T ok 'l
+ ( zTY TYT + O 12) A3 ( TTTT " J-3 + O dl’)) .
dv*(z) [ CTzrr2 45y 2\ d*v &2 o
rrTT Ccrwy _ ooy 4 e\ Z = 4| i o=,
+ [ dx < 12 dz + zTY TYT + Gz 12 /) dz2 TTTL ]2 + Coz
Crrre + Crr (e d4'U L
< 12 Y Y Y Y ) dxd 0
d2o*(z) [ Craang2 g co G a3 ar,\1"
v (z TTTT v Tx __ (lzTx v )
i rrTT 2 Jzzan TTT 3oy _ c@waey | T yovie  TTT
[ d? ( 12 o | ( 2 T my) dg3 ~ Tmmer gy )L
dBo*(x) (Crrzzedty C22 ¢ d%v AN
¢ rTITT rrTT —C" T 68
- { e ( 12 dot 12 dg2 | Cwe )} . (68)
where



It should first be noticed that the tension and bending problems are de-
coupled, as for Cauchy elasticity. Two differences are to be highlighted in
comparison to the variational principles derived from the 3D constitutive

laws (see [33]) :

e Every term is altered by

Ly =" / €aaaa(n)e” T dy — €77 / €xaan ()€1 (70)

or one of its derivatives. This corresponds to a non-local term result-
ing from the optimal choice for the constitutive equation. The terms
deriving from I, are easily evaluated if the form of the sought solution

is chosen. Looking for u(x) as exponentials :

u(z) = A,e™® (71)
yields
T arx ’ d3u —a —arx ! d3u a
I, = e / @(77)6 Mdn — e / @(77)6 dn
2Auaia7 anx > arx _ _—arx
= Wa " +Auai (K+€ ™ Kme 7 ) (72)

where K™ and K~ are to be determined. Similarly, setting
v(zr) = A,e™” (73)

yields

—12 arx ‘ d4U —a —arx ‘ d4,U o

— 1, = &7 / @(7})6 My —e™ / @(7})6 dn
24,0 , ,

7%0;7 e + Aol <K+ea7m — K‘e‘o‘”) (74)

2 _
ay Qi

and the Eq.(68) can be treated as usual.
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e Compared to the equation obtained by a purely kinematic approach
[33], the equation is also modified by the new C?, term, which also
results from the optimality conditions. It links the surface energy to
the Cauchy stress tensor through the cohesion modulus, and as such,
represents a chemo-mechanical coupling. It thus modifies boundary

conditions for the tension problem under chemical loading.

5. Solutions for purely mechanical problems

Two mechanical problems of practical interest are now solved using Eq.(68)
in order to exhibit the size-dependent elasticity rendered by the beam theory

under scrutiny.

5.1. Tension stiffness
5.1.1. Governing equations

One first focuses on the tension problem, for which the general solution

u(x) has to satisfy

d®u d*u
(Ot O CFx  _ (oFEay T
TTTT .6 + ( TT + TTTT mmm) drt
d*u o dl, . AL

rr >~ T 1T a— L

It should be outlined that this equation clearly departs from an analogue of
the 3D constitutive laws [21], and this results from the static admissibility
conditions. Looking for solutions of the form (71) yields the characteristic
equation
20"« 20" o
0 = {(omm e XY oty (v cin, - a0 ol Czza e

2 _ _
o Qg u Qg

+a? oy (C’;fc + a2 ) (K+e“7x + K‘e‘a”) (76)

TXXTT
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It is clear from Eq.(76) that o? = 0 is a trivial solution, and that the equation

obtained by multiplying Eq.(76) by aﬁa—za$7 has solutions if K- = K+ = 0.

u

One thus obtains

Cmmmmaﬁ + (C;v;vxx + cFx (e + 202x ay — a?cxwxw) Oéi‘i‘

TTXT U XTI Trxr XTI XTI

(2C% a7 — a2 (C2250 4 C22,, — C202) 4 C22) o2 — a2C2 = 0

(77)
The solutions therefore read
o = {EA 1, A5, £0,5,0} (78)

where A, 1, Ay 2 and A, 3 are generally complex numbers scaling as lengths.

The general solution u(x) therefore reads

1 3
i T _ x

u(r) = Zqi:)s + Zvj exp <—)\ ) + 75 exp (—)\ ) (79)
i=0 j=1 wd e

{qi,v;r,vj_}, are the 8 constants to be set from the boundary conditions.
However, only 6 boundary conditions are obtained from Eq.(68). Assuming

the beam is clamped at z = 0, these boundary conditions read

u(0) = 0
TTXT d4u T TTX d2U T dI_ﬂC
TTXT d3u T du T T

Extending to second-strain gradient elasticity the terms coined in [42], this
would correspond to a singly clamped beam at x = 0. A tensile force F' is

applied at x = L, the work of external forces reads {W* = Fu*(x = L) so
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that

Crzm L) 4 ez v oo, - oz R
ez s ennn +on, ey = £
crm L) 1 (cm, - oz D4 + 02, ) = o
Crmm L) 4 0, 1) 4+ OB L) = 0

These conditions would actually be denoted as triply free if one extends the
nomenclature in [42]. These 6 conditions are obviously not sufficient to yield

a unique solution. It is evident this results from the non-local terms in the

optimal constitutive equations. Denoting

VA2 L+
S o Trxrxr Trxrxr u,) Trrxr Trxrxr Trxrxr TIXTT u,)
J

CZBLBLBLE

TrIrT

)\i,j (047)\%]' — 1) (Oé7>\u7j + 1)
a%cxz )\4 + (Q%C:{:xa‘x _ C:c:c _ 2a7Cix ))\2 o C:c:c:c:c

T o TXTrIT u,j TXTT TXXTT XTI u,] TXTT
j =

)\27]- (Oé7)\u7j — 1) (Oé7)\u,j + 1)

the linear system to be solved reads

1 0 1 1 1 1 1 1
0 0 Sl Sl SQ 52 53 S3
0 com T -7 T T T, T
0 Cc= 0 0 0 0 0 0
L L L L L L
0 0 Spetut Sie tul Soe .2 Soe Mu2 Szetus Sze Aus
L L L L L L
0 Csfgxx Tleku 1 —Tie Au,1 Tge’\u 2 —The Au2 T36A“ 3 —Tie Au,3

Ut = [q07q177f771_77;772_77§_773_:|
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The full solution space for U reads
U=U,, +UsPg (82)

where the columns of Ug span the nullspace of the matrix in Eq.(80). This

solution space corresponds to the displacement fields :
e Locally satisfying the static admissibility,
e Locally minimizing the constitutive equation gap,
e Globally satisfying the static admissibility.

As the constitutive equations obtained in Sect.(3.2) differ from the 3D laws,
the remaining constitutive equation gap is nonzero (see Sect.(4.1)), so that
the fields defined by Eq.(82) are obviously not equivalent regarding the con-
stitutive equation gap at the global (structure) scale. Accounting for the
non-local terms in the constitutive equations thus requires to define the so-

lution Py for Pf as the minimizer of the global constitutive equation gap
Pp= Arg TgiEn/W(CifEKA(U) + Bf;fa Erxa(U))dV (83)
As a consequence of Eq.(82), Exa formally reads

EKA(x) = Em(x) + ME(SL’)PE (84)

which is built explicitly and solved to yield the solution P under the con-
strain of real-valued displacement fields. The components of the displacement
field are thus obtained

U="U,, +UsPg (85)
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It is worth noting that the solution here depends on by. This results from
the fact that tension modifies the total amount of surface of the sample, by
being the equivalent of surface tension for solids [19]. The normalized tensile

stiffness
Sssa FL

SCauchy B btu(L) ng
may thus be computed to illustrate the scaling effect. It should be first

(86)

mentioned that the equations of first-strain gradient are easily obtained in
the present case by canceling all the SSG-related terms in Eq. (75). One
obtains (in the absence of distributed loading)

crrr dty  d2u
TTT _ — L
Cor dat  da? 0Vz €0, L] (87)

which is formally similar to the equation obtained using a purely kinematic

approach [42] with a simplified constitutive equation [43] :

du  d*u

2

R [

g 1 3 0Vz €0, L] (88)

The main outcome of the proposed approach is thus the definition

Crre
9= (89)

e
thus relating the parameters of the 3D constitutive law to the parameters of
the equations governing the beam behavior. Using this first-strain gradient
theory with the chosen boundary conditions yields exactly the same solution
as for Cauchy materials for the tension problem. The sole effect of second-
strain gradient elasticity is thus probed by this tensile test if second-strain

gradient elasticity is used.
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5.1.2. Application to the simulated materials

The quantities involved in the tension problem are now analyzed for a
large number of material parameters sets. 999 material parameters sets have
been obtained by generating parameters sets with lg = 1 x 1072 and keeping
those yielding a positive definite stiffness tensor. These parameters sets can

be scaled to physical ones by setting physical lg values [44, 45, 46].

|

90000000 8 o

Cumulative distribution function

05 e 1

Tx

Figure 1: Cumulative distribution function for CE’” .

TxT
cas

The cumulative distribution function for =£= is reported in Fig.1. The
obtained values are always such that C77 < E. It should be noted that 73%
of the tested materials yield C7% > 0.95 x E. The cumulative distribution
function for |a2| X I% is reported in Fig 2. As already mentioned, o2 is either
positive or negative (yielding real or pure complex values for az), and o2
may be considered to scale as l§2 since 61.5% of the tested materials yield
|| x 14 < 10. The cumulative distribution function for |\,|/ls is shown

in Fig. 3. It can be kept that |\,| scales as lg, since 98.5% of the tested
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Figure 2: Cumulative distribution function for || x [%.
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Figure 3: Cumulative distribution function for |A,|/ls.
materials yield |\,|/ls < 2. CZZ% is found to be always positive, and scales

as pu x (%, as seen in Fig. 4. €% and C%*® are contrarily found to be

either positive or negative. |C% | is found to scale as p x [%, as seen in Fig.
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Figure 4: Cumulative distribution function for C2% /1%.
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Figure 5: Cumulative distribution function for |CZ¥ |/I%.

5. Similarly, |C%***| is found to scale as y x [%, as seen in Fig. 6. CT7 ig

also found to be either positive or negative, and scales as u x I% (see Fig.
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Figure 7: Cumulative distribution function for

XTI

7 ). The products a;C% and ayC*

TxrxrxT

are found to be always real. Even

though its distribution is rather scattered, a;C% is considered to scale as

TXXTT

(see Fig. 8). Similarly, a;C™®

34

is found to scale as j x [% (see Fig. 9). Using



<
o

Cumulative distribution function

o, Cix 20

Figure 8: Cumulative distribution function for azC%% (zoom).

1

-

0

Cumulative distribution function

—6 a7 C ix -2 6

Xxxx .lg

Figure 9: Cumulative distribution function for azC% /1% (zoom).

all these coefficients, the tension stiffness of beams is computed following the
procedure detailed in Sect. 5.1.1, as a function of the beam’s length L and

of the cohesion modulus by.
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Figure 10: a) Normalized tension stiffnesses for ’blue’ and 'green’ materials (see Appendix
E) using a purely kinematic approach. b) Normalized tension stiffnesses for 'blue’ and
‘green’ materials and two different cohesion modulus values with the present approach :

solid lines are for by = 0, dashed lines are for by = l%.

Fig. 10a first shows two examples of the tension stiffness Sggq obtained
using a purely kinematic approach as described in [33], without any arbitrary
rescaling. The used constitutive parameters are gathered in Appendix E.
The beam’s length is here normalized with respect to Ag = [ > Ay jl. It
should be outlined that for L > Ag, Sssq does not converge to Scauchy. This
is another illustration of the deficiency inherited of the purely kinematic con-
struction already shown in [35]. The beam’s tension stiffness actually tends
to (A + 2u)S/L if the corresponding coefficient is not (arbitrarily) modified
(33, 35]. The purpose of the present approach is to correct for such a de-
ficiency and Fig. 10b displays two examples of the tension stiffness Sssa
obtained using the theory proposed herein, compared to the stiffness com-
monly obtained using Cauchy materials (Scauchy = CirS/L). The solid lines

are obtained by setting by = 0, that is by discarding any surface tension. It
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is first seen that for L > Ag, Sss¢ — Scauchy S0 that the usual behavior is
recovered. Using the approach proposed herein, the limit is actually shown
to read CZ%S/L (where the asymptotic behavior (67) holds). For L < g,
the tensile stiffness is driven by the higher-order elasticity parameters but
the order in magnitude is preserved. The dashed lines are obtained by set-
ting by = (4. This clearly affects the tensile stiffness in the L < \g region,
thereby highlighting the smaller beams are sensitive to surface elasticity in
addition to bulk elasticity. Ag may thus be used as the cross-over between
two regimes for the elastic behavior of the beam : for beam lengths smaller
than \g, the elasticity in tension is surface-driven, which it is proposed to
denote as ecto-elastic (from ancient Greek “ektos”, “outside”). If L > g,

the behavior is classically driven by the bulk.

Even though the cross-section dimensions do not appear explicitly in these
results, it should be recalled that the proposed equations hold if the stresses
fields belong to © (see Eq.(34)). The corresponding assumption could be
assessed for specific dimensions using a dedicated numerical scheme, see [23]

for instance.

5.2. Bending stiffness

5.2.1. Governing equations
One now focuses on the bending problem, for which the general solution

v(x) has to satisfy

2 q8 ds d 4, - d2],
Crwwr v +A v + K v —t (sz + ok

12 da® dab dat PEEE d T da?

) —0Vz € [0, L]
(90)
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with

t2
=205, " + Oy ™ + 305000 — Claay (91)
K = Coy—20m + =2 (92)

Looking for solutions of the form (73) yields the characteristic equation

t° 200t 7O + O
0 = 4 crzrzs 2 4 A 2 K vz v zrIx oy
@, { ( TrTT 12av + Qy + + 12 Oég - CM% €

2 2
t“az

+oor (Ol + a3Ci,) (Koo — K-emor) } (93)

It is clear from Eq.(93) that a! = 0 is a trivial solution, and that the equation

obtained by multiplying Eq.(93) by a%o;oc%’ has solutions if K~ = K+ = 0.

One thus obtains

t? o,
Cxxxx_a(i + (A o a%cxa}xaz_ + _a7cz:c ) O‘i_‘_

2
(K — Ao + €a7C;fc) o> —Ka?2 = 0 (94)

The t — 0 limit should be considered. For t = 0, the characteristic polyno-

mial simplifies as

Agalt + (Ko — Agad)a? — Koa2 =0 (95)

with
Ay = ROEE 4 O 4 30 — O (96)
Ko = Co— 20y (97)

and thus defines two finite solutions

2 —KO—FAQOé%:l: |K0+A00(%‘
o =
v 24,
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It is easily checked that the third solution reads

~ 99
T o )

for a vanishing thickness. In general, the solutions read
= {EA 1, £ 5, £A5,0} (100)

where A, 1, A\y2 and A, 3 are generally complex numbers scaling as lengths.
The general solution v(z) therefore reads

3 .3
qi (TN x _ T

:c):qo—l—Z?(E) +ny;rexp<)\ j)—l—”yj exp(—)\ j) (101)
i=1 j=1 v, v

{qi, vf, 7]-_}, are the 10 constants to be set from the boundary conditions.

However, only 8 boundary conditions are obtained from Eq.(68). Assuming

the beam is clamped at z = 0, these boundary conditions read

v(0) = 0
dv
@(O) = 0
2 d5v d3v df
C’““—— 0+ 52 0)—tcr 2y = o
t d*v t d2 /
with
t2
J = (Cﬁm Cran) + 304 — Cory (102)

Again extending to second-strain gradient elasticity the terms coined in [47]
for first strain-gradient elasticity, this would correspond to singly clamped

beam at x = 0. A bending force F' is applied at = L, the work of external
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forces reads dW* = Fv*(x = L) so that

(L))

t2 d d®v dv . & 2 A
rrITT ~ A L K L) —¢ T i L LT d
t? dSv d*v d?v a2 .

mont (L) + —— (L) + K— (L) —t | Ci%,,—= (L) + Ci2 (L

2 d5v dv dl
wrxr - = T (PN 4 J— (L) — tCE I
t d*v t d%w o,

These boundary conditions would be denoted as free if one extends the propo-

sition in [47]. These 8 conditions are obviously not sufficient to yield a unique

solution. This again results from the non-local terms in the optimal consti-

tutive equations. Denoting

S

U)

M1 0
o Lt
0 0
0 0
0 0
0 0
0 0
0 0

where

T T TTITIT
2 22 2 4
6A2,(1—a2)2)) ' 12)2; ' 12X,
T 2 TrrT42
3 3 2\ 2 5
A6 (1-aZN)) 1208,
2 T T TrrT42
3 5 2 2\2 . 3 7
Nog o Aug o BN —ardiy) Ndws A 12A0
the linear system to be solved reads
0 1 1 1 1 1
0 A1 “ALh Aoz Aoz Aos
2713 T —T Ty ~Th T
0 Sh S S S S3
L __L L _ L
2K L3 Uye vl —Uje vl Use Mv:2 —Use *v.2 Usge *v.3
L __L _L __L I
2KL™2 Uiy el Uprgie 01 Usdyoe @2 Usdyge 92 Ugh, ze w3
L _ L __L L
2JL~3 T'le>‘“v1 —The Av,1 T'ge>‘”12 —The Av,2 T},ek“v3
zx L _ L _ L L
Caéuzmzzt SleA”J S'le Av,1 5'26 Av,2 5'26 Av,2 S'SeAv,S
(106)
t_ + A= At A At oA
V= [q0, a1, %, 837171 %5 V2 5> V5 | (107)
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The full solution space for V reads
V=V, +VeRg (108)

where the columns of Vg span the nullspace of the matrix above. A unique
solution for V is again obtained as the minimizer of the total constitutive
equation gap in the beam (see Eq.(83)). The linear system provided by the
stationarity condition is again built explicitly and solved to yield the solution
R under the constrain of real-valued displacement fields. The components

of the displacement field are thus obtained
V=V, +VsRg (109)

The main difference is that for the bending of a beam with a symmetric
cross-section, the by related terms are found to vanish. This is the expected
behavior : in such case, the total amount of beam’s surface remains un-
changed by the deformation, so that the solution is always insensitive to the

surface elasticity. The normalized bending stiffness

K§5¢ 4RI}
KGmehy bt o(L) Coz

(110)

may thus be computed to illustrate the scaling effect, which can be compared
to the one predicted by first-strain gradient elasticity (see Appendix D) or
Cauchy elasticity.

5.2.2. Application to the simulated materials
Reusing the material parameters sets generated in Sect.(5.1.2), the quan-
tities involved in the bending problem are analyzed. The scale effect is then

assessed in two steps of increasing complexity : the results for the present
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theory applied keeping only Cauchy and first-strain gradient terms are first
analyzed, and then serve as a reference when analyzing the results obtained

when including second-strain gradient elasticity.

First-strain gradient elasticity. The solution for the bending problem in first-
strain gradient elasticity is derived in Appendix D. The key parameters

are now reviewed. Fig. 11 displays the cumulative distribution function

|

Tl

Cumulative distribution function

2
0 (2008 6
Figure 11: Cumulative distribution function for (Cy7¥ — 2C57Y) x 152

for (Croy — 2057Y) X I5%. Tt may be seen in particular that this term is

always positive. The consequence is that K is always positive, so that the
characteristic length Ay, which depends on the material and on the beam
thickness (see Appendix D), is always a real positive number. It converges
to a constant value

crx

Hm Ay = ¢ 2222 = A% (111)

t—+o00 Czz
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for large thicknesses and is proportional to the beam thickness in the van-

ishing thickness limit

(jmmm N
A t ks = Mt 112
V2 \/ 12(Coy —20mmy — 7° (112)

1 ‘ ‘ TE——

Cumulative distribution function

0 wil 6

Figure 12: Cumulative distribution function for AP x l;l.

> is shown to scale as lg (see Fig. 12 ) and Xy scales as unity (see Fig.

13). In the sequel, the investigated thickness range is defined with respect to

12(Cias — 20557
tT:\/< — (113)

so that t > tp implies that K C%tQ, whereas t < tp corresponds to

12
K o« Crry — 2072 (see Eq. 92).

Ty Tyx

Fig. 14 thus illustrates these two regimes on the Ay value for two partic-

ular materials. Fig 15 illustrates the effect of both the cantilever’s thickness
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Figure 13: Cumulative distribution function for Xo-
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Figure 14: Ay x I as a function of log,,(t/tr) for the materials of Fig. 10.

and length on the normalized bending stiffness for the “blue” material of Fig.

10. As the beam geometry imposes that L > t, the normalized bending stiff-
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Figure 15: log,o(KESY /K5 as a function of log,q(t/t) and log,o(L/t) for “blue”

material of Fig. 10.

ness is shown for lengths L such as 5t < L < 100¢. As a single characteristic
length (Ay) is involved, it is clear that the cantilever’s thickness is the main
parameter driving the size-dependent elasticity. This is further illustrated on
Fig. 16 on which log,,(K{5¢ /K™Y is plotted as a function of log,(t/tr)
for L = 10 x t for blue material of Fig. 10. t > t; corresponds to a regime

where the size-effect vanishes, whereas the domain ¢ < t7 is characterized by

K(/auchy tr

KESG -2 . . . .
v X <i> . Decreasing the cantilever’s thickness is always found to
\%

yield an apparent stiffening of the beam. The beam’s length has a negligible
role : in the probed lengths range, its impact on the flexural beam stiffness

is below 1%.
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Figure 16: log;o (K5 /K ™) as a function of logyo(t/tr) for L = 10 x ¢ for “blue”

material of Fig. 10.

The results for the first-strain gradient elasticity are rather simple and
thus provide a first step to further elaborate on results obtained with higher-
order elasticity. As for bars, the proposed approach extends the validity range
of the differential equations obtained with a simplified constitutive equation

(see Appendix D).

Second-strain gradient elasticity. It is chosen for the sake of robustness to
obtain V,, by removing the two columns of the matrix in Eq.(106) corre-
sponding to the \,; with the smallest norm, thus avoiding to make use of
the A,; vanishing when ¢ goes to 0. It should actually be noted that for ¢
much larger than t7, about 57% of the materials are found to result in at least
one pure imaginary A, ;. This means that the displacement field may possibly
be ’decorated” with a sinusoidal term all along the beam, provided that the

beam length and the loading allow this deformation mode to develop.
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Figure 17: a) log,o (K559 /K™M) as a function of log,(t/tr) and log,o(L/t) for blue
material of Fig. 10 using a purely kinematic approach. b) log;o(K&5¢ /K{*") as a

function of log,(t/tr) and log,,(L/t) for the same material using the present approach.

Fig. 17a displays the normalized bending stiffness log,,(K{°¢/ Kgauc}ly)
obtained using second-strain gradient elasticity for the material of Fig. 15
and a purely kinematic approach [33]. The computed stiffness is barely dis-
tinguishable from the one in Fig. 15, thereby suggesting a limited impact
of second-strain gradient elasticity on the stiffness. In the large thickness
regime (t > tr), this stiffness however does not converge to 1, as a result
of the deficiency already analyzed in Sect. 5.1.2. As it may be seen on
Fig. 17b, the normalized bending stiffness log, (K35 /K™) obtained
using the present approach is mainly governed by the thickness value and
converges to 1 for large thicknesses. This proves again that the built higher-
grade beam theory is consistent with the usual beam theories, without any
rescaling of the stiffness parameters to render the Poisson effect. It can also
be seen that both the cantilever’s length and thickness play a role in the beam

bending stiffness, even though the thickness is the main driving parameter.
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Figure 18: log,(K$5¢ /K5""“") (computed using a purely kinematic approach : dots,
computed using the present approach : dashed line) and log,, (K¢ /KS““Chy) (solid

line) as a function of log;,(¢t/tr) for L = 10 x ¢ for “blue” material of Fig. 10.

The dependence of the normalized bending stiffness to the thickness is
now non monotonic, as it may be seen on Fig. 17 and more precisely on
Fig. 18, where both the normalized stiffnesses obtained for first and sec-
ond strain-gradient elasticity (computed using a purely kinematic and the
present approach) have been reported for the same material and the same
dimensional range. The key result is that both grades affect the bending
stiffness in the same dimensional range. This is clearly missed if one uses
a purely kinematic approach, as the stiffness is then always very close to
the one obtained using the first-strain gradient elasticity. This is however of
major importance, since most of the reported experimental results regarding
size-dependent elasticity deal with cantilever bending. The consequence is
that both should always be considered simultaneously when analyzing ex-

perimental results, and that second-strain gradient elasticity should not be
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considered, in general, as a correction to first-strain gradient elasticity which
would be significant only for the smallest dimensions. This results from the
fact that second-strain gradient introduces a coupling (through the ¢; param-
eters) between second strain-gradient and Cauchy elasticity, which is absent

from first-strain gradient elasticity.

6. Conclusion

Starting from the constitutive equation, beam equations have been de-
rived for higher-grade elastic materials. The originality of this contribution
stems from the fact that the static admissibility conditions are taken into
account, so that these equations naturally converge to those classically ob-
tained from Cauchy elasticity when the beam dimensions are large enough.
The obtained equations thus benefit from the thermodynamic grounds of 3D
elasticity and overcome the deficiencies resulting from a purely kinematic
construction of the beam equations. The resulting material parameters are
expressed as closed-forms, so that the resulting beam equations are kept very
simple.

This approach has been exemplified on second-strain gradient elasticity with
an Euler-Bernoulli kinematics, which is shown to result in non-local beam
equations, whose shape function and characteristic length result from the 3D
elastic parameters and are expressed as closed-forms. Second-strain gradient
elasticity is of particular interest since it makes a cohesion modulus (i.e., the
equivalent of surface tension for solids) naturally appear. Such a framework
is thus perfectly suited to describe scale effects one could wish to exploit for

the design of innovative MEMS devices, and the rather simple approach pro-
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posed herein allows for extensions to more complicated beam kinematics. In
addition, applying the present approach to first-strain gradient elasticity for-
mally confirms the differential equations obtained using a purely kinematic
approach and a simplified constitutive equation. This extends their validity
range and further provides the definition of the involved parameters.
Having a robust set of equations at hand to describe the behavior of higher-
grade elastic beams allows to assess the role of the different grades on the
size-dependent elasticity. As the tension problem only activates second-strain
gradient elasticity, it is proposed to use it to define two elastic regimes.
Namely, it allows to distinguish a regime (which it is proposed to denote as
‘ecto-elastic’) for which the tensile stiffness is driven by the cohesion modulus
instead of being dominated by bulk elasticity. The beam length separating
these two regimes has been defined as a function of the elastic parameters
of the material under consideration. These governing equations for beams
made of second strain-gradient elastic beams also suggest that second-strain
gradient elasticity and first-strain gradient elasticity potentially affect the
bending stiffness in the same dimensional range, so that both should always
be considered simultaneously when analyzing experimental results.

This work is also expected to trigger some key developments for those inter-

ested in exploiting scale effects in solids :

e As outlined in Sect.4.4, and besides the effect on stiffness illustrated
in Sect.5.1, the equations derived herein render the effect of a cohesion
modulus change as an external loading. Equations obtained by follow-
ing the proposed approach are thus expected to provide a framework

which is adequate to model the chemo-mechanical couplings exploited
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in micro-mechanical sensors. Even though this is out of the scope of
this contribution, it is clear that this framework provides some cru-
cial advantages for the understanding of the conversion phenomena at
stake in cantilever-based sensors. Contrary to the widely used Stoney’s
equation, the role of the cantilever material in the chemo-mechanical
transduction is here clearly described, and may explain the discrepan-

cies observed in the literature [6].

e As it has been exemplified in Sect. 5, the solutions obtained using
second-strain gradient elasticity involve responses at different scales,
corresponding to the different grades. These are thus a starting point to
devise experimental procedures aimed at identifying the higher-grade
elastic parameters of materials. As such, this me paves the way to
the experimental identification of the higher-order elastic parameters
involved in the equations derived herein and defines a new challenge

for experimental mechanics.

Appendix A. Euler-Bernoulli beam using 3D second-strain gradi-

ent elasticity

As recalled in the introduction, most of the beam equations derived in
the literature for higher-grade elasticity are obtained by applying the 3D
constitutive law to the (higher-order) strains derived from the chosen beam
kinematics. The stresses obtained in this way are recalled hereafter for the

sake of comparison with the optimal stresses derived in this contribution.
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Solely using C

Tee = (A4 2u) €z + (1 + 2 + €3) €rnae (A1)
Teew = 2(a1 + Gy + a3+ a4 + a5) €pan (A.2)
Toye = (@1 + 2a4 4 a5) €190 + (% + a5> €y (A.3)
Towy = (G2 +205) €4ys + 2 (a3 + a4) €44y (A.4)

Towze = 2 (01 + ba + b3+ by + bs + b6 + b7) €rpan

+% (€zaye T €zaay) + (c1 + 2 + ¢3) €22 + bo (A.5)
Toays = % (2bg + b3 + bs + 3bs + 2b7) €4ys

+% (bs + 204 + 2b7) €pay (A.6)
Tozay = (b3 + 2bs + 2b7) €400 + 2 (b5 + b6) €222y (A.7)

, so that without any consideration for static admissibility, the 7! components

in the beam therefore read :

d®v  du dv  dPu

3D

Ty = ()\ + 2#) (—y@ + @) + (Cl + co + 03) (—y@ + @)Aéﬂ)
d3v
Tj,’yD = —Cg—dx3 (A9>
d®>v  du dv  dPu

3D

Tyy = A\ (—y@ + @) + (Cl + 02) (—y@ + @) (AlO)
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Appendix B. From the constitutive equation gap stationarity to

the optimal stresses

The procedure to solve Eq. (46) is detailed hereafter. The vectors Ny,

Ny and N3 span the nullspace of Pg :

N{ = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3 2
7anaoa07ana0a0707070a07—70a07070707070a07—7070
Vi3 NiF
N; = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3 2
707070707070707070707070707—70707070707070707—70
Vi3 iz
N; = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

3 2
707070a070a0707070a070a07070a—a070a0707070a0707—
V13 \/13]

, as a result of the conditions (32). These vectors are concatenated in the
49 x 3 matrix N. Solving directly Eq. (46) for Te requires the symbolic
inversion of the 54 x 54 matrix C and the subsequent inversion of the 49 x 49
matrix PLC~'Pg, which may be extremely tedious. It is thus proposed to
solve Eq. (46) for Te by making use of the singular value decomposition
(SVD) of Pg [48]:

Po = Use Ve (B.1)

which is easily obtained from Pg. Because of both the non-square nature
of the matrix Pg and the discrepancies resulting from the conditions (32),
there are 5 4+ 3 = 8 columns of Uy corresponding to null singular values of
Po. These columns are thus concatenated in the 54 x 8 matrix ¢, which

satisfies

U Py =0 (B.2)
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It should however be noted that Eq. (46) results from the stationarity con-
ditions with respect to all the components of Tg, including the last 12 ones
which are derivatives of the others and are thus not independent (see defini-

tion (45)). One actually has to solve
P4 (C_lperf@ —Ega— C_lB) =0 (B.3)

Po is the restriction of Pg to its 37 first columns. Similarly to Pe, the SVD
of Pg is easily obtained

Po = UooV}, (B.4)
There are 54 — 37 = 17 columns of Ug corresponding to null singular values

of Po. These columns are thus concatenated in the 54 x 17 matrix ¢, which

satisfies

U Po =0 (B.5)

Eq. (B.3) is then rewritten

C'PoTo —Exa—C'B = UE,

C(EKA‘I‘Z/?J_EJ_)‘I‘B = P@T@ (B6)

where the vector E| is to be determined together with Te. Multiplying Eq.
(B.6) by U* yields

UL (C(Exka+UEL) +B) =U PeTe =0 (B.7)

This linear system is under-determined (U!CU, is a 8 x 17 matrix), so that

the solution reads

E, = EJ_,O + NeQ (B.8)
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E 1,0 is obtained by inverting a 8 x 8 linear system, which is thus much smaller
than the initial one (49 x 49) and does not require the inversion of C. E| o
formally reads

E o=E0B+EExa (B.9)

N is a 17 x 9 matrix which is easily built from the operator U CU, , so that
E | is easily obtained as a function of the 9 components of the vector Q.
The latter are to be determined. Defining 5(:; ! as the inverse of £g providing

minimal norm solutions [48], Eq. (B.6) also yields the full solution space as
To = Nt + Volg' Ul (C (Exa+U, (ELo+NpQ)) +B)  (B.10)

The solution Tg is thus easily obtained and the constrains to be satisfied
between the components of the result vector may be examined. Satisfying
the 12 differential constrains between the components of Te (see definition
(45)) is presumably possible by setting the three components of t and the
nine components of Q. One assumes hereafter that the material parameters
are uniform. The solution obtained for the optimal constitutive equation
after solving the differential equations resulting from Eq.(B.10) are given

hereafter.

Tor = COp + O %%, n + CO by (B.11)

Lo ( [ it = [ emw)ew"dn)

o7



where

Trr
CZCSC

XTI
QuaCiy

Trr

T
Cgcgc

,u(3)\ + 2,&) (3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1) - )\(Cg + 03)2

N ()\ + M)(?)b? + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8[)1) — (Cg + Cco + 201)2
N —2u((cs + o + 2¢1)? + 2¢2) (B.12)
(A + 1) (3b7 + 3bg + 4bs + 4by + 4bs + 4by + 8b1) — (c3 + c2 + 2¢1)? '
= —A(6(bg + 20y + 2b1) (b7 + bg) + 8(bs + 2bs) (b5 + by + bg + by + 3b1))
+(462(b4 + b5) — 3(b7 + 66)(03 + 201))(01 + Co -+ Cg)
+2(bg + 2b2)(0§ + 50103 + 60%) + 4(62 — 261)0263 — 2(63 + 461)03
"‘2(3()3 + 8b2)0102 (B13)
_ 2(MN(es 4+ ca) — 2c1p) (B.14)
()\ + M)(?)b? + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8[)1) — (Cg + Cco + 201)2 ’
o 6G6 ()\(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 462 + 861) — 201(03 + o + 201)) (B 15)
B 20(7va .
. 2 2a1 + as 3 4b103 + 4b102 - <3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2)01
3 2 13 3b7 + 3bg + 4bs + 4by + 4bs + 4bs + 8by
_93b3by + 6babr + 6b1by + 3bsbg + Gbabs + 6b1bg + 4b3bs + 8bsbs + 4b3by
7 3(3by + 3bg + 4bs + 4by + 4bg + 4by + 8by)
_a28b264 + 4b3 + 1209b3 + 12b1b3 + 8b3 + 24b1by
T 3(3b; + 3bg + 4bs + 4by + 4bs + 4by + 8by)
_a_2 i ((3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8[)1))\ - 20103 - 20102 — 40?)
" \13 (37 + 3bg + 4bs + 4by + 4bs + 4by + 3b;)
_'_i (3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8[)1))\ - 20103 - 20102 — 40% (B 16)
39 3b7 + 3bg + 4bs + 4by + 4bs + 4bs + 8by ’
= (03 + 201)(3b7 + 3b6 + 2b3 + 4b2) — 02(4b5 + 4b4 + 2b3 + 8b1) (Bl?)
0=1, =7, (B.18)
C;nyexxxy = —Co€gaxy (Blg)

2

TZZ

zyy zzyy rryy) Cozza

Crayy (em/ €anaa ()€ Tdn — 77" / E%rr(n)e“”dn)
(B.20)

58



TZ‘Z‘Z‘

Tyyx

Tryz

Tayy

TZ‘ZZ

Teyx

Tarxy

TXrIT
O e = 2(a1 4+ ag + az + a4 + a5)€ry

rrT
nyw €rxx — (0,2 + 20'3)6:0:0:0 = Tzzx

0= Tyze = Tazy = Teza = Tz

a9 + 2@1 o C:v:c:c

ay + 20,1
9 €xax = Tayy

Oe
TTY TTTTY TTTY
nym 650503/ + nym ax

Oe
TTY TTTTY TTTY
Cxxy 650503/ + Cxxy ax

59



with

—2D345C0Y

Tyx

4D345 rrazy

YT

—2D345C7Y

TTYy

4D345 @hsiidd

Ty

and

4a4a§ — agag + 2a1a§ — 4aia5 + 9asagas + 2a;a4a5

+4arazas — azas — 8aj — 16aza; — 6aza; — 16a,a;
—28ayazaq + Tasay (B.28)
Rajasbs — 8asasbs — 8ayasbs — 8aiasbs + 8asasby

+8ajasbs + asasbs — 2a1a5b3 + 2asa4b3 — 4ajasbs

+asbs — 8agazby — 8ajasby + S8agagby + 24a;a,by

+32a,a3by — Sazby (B.29)
4a} — 8aqai — dazai + 10aqai + 4ayai — dajas — 12azayas
—18asasas — 16a;asas — 28a,as3a5 + 7a§a5 + 8ai + 24@;1,@?1
+dasai + 12a,a; + 36a,asa4 — a3ay (B.30)
Sasasbs — 32asa4bs — 8asasbs — 32aja3bs + 8a§b5 — 8asasby
+32asa4bs + 8asasbs + 32a1a3by4 — 8a§b4 + dasasbs — 2asa5b3
+8aszasbs + 12a1a3b3 — 3a§b3 — 32azasby — S8asasbs
+32asa4by + 24asa4by (B.31)

ag — asas + 2asas + ajas — QaZ —4dasas — 209204 — 3G104

—4ayas + a3 (B.32)
Tyyy = 30;;;5690909090@/ (B33)
Tooy = 3051000y (B.34)
Tyzy = 0= Tyyz = Tzzz (B35)
Tyzz = 3C§Z§3€xxxxy (B.36)

60



Texyy — Taxzz (B37)

= Crpyy€oz + ngyybo
+C:Z;:fcyy (eam / S (ﬁ)e_a7"d77 —e T / Crrrx (U)eamdﬁ)
(B.38)
with
e . ()\03 — 2#01)(3[)7 + 3b6 + 2b3 + 4b2) — Cg)\(4b5 + 4b4 + 263 + 861)
ey 6 (()\ + ,U) (3b7 + 3b6 + 4b5 + 4b4 + 463 + 462 + 861) — (03 + o+ 261)2)
T ()\ + ,U) (6b7 + 6b6 + 8b5 + 8b4 + 863 + 862 + 16b1)
26 (A + 12)(3b7 + 3bg + 4bs + 4by + 4bg + 4by + 8by) — (3 + 3 + 2¢1)?)
1o —2(03 + co + 201)(03 “+ co + 301) /B 39)
6 (A + p)(3by + 3bg + 4bs + 4by + 4bs + 4by + 8by) — (c3 + ¢2 + 2¢1)2)
0
Cmyy =
()\ -+ u)(3b7 + 3bg + 2b3 + 462) — 02(03 + co + 261) (B 40)
3 (()\ + ,U)(3b7 + 3b6 + 4b5 + 4b4 + 4[)3 + 462 + 861) — (03 + o+ 261)2) ’
- G
w = - B.41
C:Emyy 20(7 ( )

+Cfgfcm (eaﬂ/ Emm(n)e_amdn_ e—am/ Emm(n)eamdn>

61



where

Tr  ww _ ()\ + M) (02 + 03)(367 + 3bg + 4bs + 4by + 4bs + 4by + 861)

‘|‘,u01 (3b7 + 3b6 + 4b5 + 4b4 + 463 + 462)
+(Cg + 02)(4b1>\ — (03 + co + 201)(03 + co + 301)) (B43)
Qxxxxcxxxx = 203 ((b7 + b6)(3b7 + 3b6 + 3b5 + 3b4 + 5b3 + 7b2 + 3b1)

TXXL ~ TXTT

+2(bg + 2bs) (b5 + by + b3 + by + 3by))
+2¢1(by + bg ) (6by + 6bg + 6bs + 6by + Ths + 8by)
—4cy ((br + bg)(2bs + 2by + by + 4by)
+(bs + by + b3 + by + 3b1)(2b5 + 204 + b3)) (B.44)
0 = (B.45)

(A + 1) (3b7 + 3bg + 4bs + 4by + 4bs + 4by) — (3 + ) (3 + o + 2¢1)
()\ + ,U)(367 + 3b6 + 4b5 + 4b4 + 463 + 462 + 861) — (03 + o + 261)2
Crose = (B.46)
—6G. (4b1(c3 + c2) — c1(3b7 + 3bg + 4bs + 4by + 4bs + 4b2))
2a7 ((e3 4+ 2¢1)(3by + 3bg + 2b3 + 4bg) — co(4bs + 4by + 203 + 8D1))
e = (B.47)

TXXT

()\ + ,u) (3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1) — (Cg + Co + 201)2
s — (B.48)

TXXT

(63 -+ 201)(3b7 + 3bg + 2b3 + 462) — Co (4b5 + 4by + 2bs + 861)

Teyze — Taxzy — Tzoyz — 0 (B49)

Toyzy = Tazzz = Tayyz = 0 (B.50)

62



2bs — 2by — by bo

Tezzy — fexmcy + g = C;;ijyExxxy (B51)
2
Toyyy = g(bg) — by — 2b2>€xmcy = ngm;é%mcxy (B52)
2
Teyzz — _§b2€x:c:cy - Cg;fgexxxy (B53)

+C5ea (6“” / €xara ()" Tdn — €77 / emm(ﬁ)eamdn)

and

Teyyx — Cor €aor + Con e € +CY bo (B.55)

TYyyx TYyTr TYYT

+Co e <€‘m / €aara()e” " Tdn — €77 / E:r::c:c:c(n)ea?ndn)

63



with

CZ‘Z‘

CZ‘Z‘Z‘Z‘

Cix

C(E(E

TZZXT

CZ‘Z‘Z‘Z‘

TZZX

TZZX

Ci:c

TZZXT

)\(03(6137 + 6b6 + 8b5 + 8b4 + 10b3 + 12b2 + 24b1) - 02(3b7 + 3b6 + 4b5 + 4b4 + 2b3))

6 (()\ + M)(3b7 + 366 + 4b5 + 4b4 + 463 + 4b2 + 8b1) — (03 + co + 261)2)

M(03(6b7 + 6b6 + 8b5 + 8b4 + 8b3 + 8b2 + 16b1) + 1 (6b7 + 6b6 + 8b5 + 8b4 + 4b3))

6 (()\ + M)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8[)1) — (03 + Cco + 201)2)

203(03 + o + 201)(63 + o+ 361)

6 (A =+ 11)(3br + 3bg + 4bs + 4by + 4bs + 4by + 8by) — (3 + €5 + 2¢1)?)

(B.56)

03((265 + 2by + b3 + 2[)1)(367 + 3bg + 2b3 + 462) + 2(63 + ng)(bg + 2by + 461))

3 ((03 + 261)(367 + 366 + 2b3 + 4b2) — 202(2b5 + 2b4 + bg + 461))

—Cg(?)(bg + 2b2 + 2b1)(b7 + bﬁ) + 4(2b5 + 2b4 + b3)(b5 + b4 + bg + b2 + 3b1))

3 ((e3 + 2¢1)(3b7 + 3bg + 205 + 4bg) — 2¢9(2b5 + 2by + by + 4b1))
12(65 + b4 - bg)(b7 + bﬁ)Cl
3 ((c3+ 2¢1)(3br + 3bg + 2b3 + 4bg) — 2¢9(205 + 2by + b + 4b1))
()\ + ,u)(367 + 3bg + 4bs + 4by + 2b3) — 03(03 + o + 201)
3 (()\ + ,U)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 8b1) — (03 + o + 261)2)
— G (c3(2bs + 4by + 8by) — (ca + 2¢1)(3by + 3bg + 4bs + 4by + 2b3))
2Oz7 ((Cg + 201)(367 + 3b6 + 2b3 + 4b2) — 02(465 + 4b4 + 2b3 + 8b1))
2Xc3(bs + 2by + 4by) + (2110 — X)) (3b7 + 3bg + 4bs + 4by + 2b3)
6 (A + 1)(3b7 + 3bg + 4bs + 4by + 4bs + 4by + 8b1) — (c3 + 2 + 2¢1)?)
63()\ + ,U) (6b7 + 666 + 865 + 8b4 + 863 + 8b2 + 1661)

+

+

6 (()\ + ,U)(3b7 + 3b6 + 4b5 + 4b4 + 4b3 + 4b2 + 861) — (03 + o+ 261)2)
203(03 + o + 201)(63 + o+ 361)

6 (A 1) (3br + 3bg + 4bs + 4by + 4bg + 4by + 8by) — (¢35 + €5 + 2¢1)?)

03(3(b7 + b6>(2b5 + 2b4 + bg -+ 2b1) -+ 4(b3 -+ 2b2)(b5 -+ b4 -+ b3 + bg -+ 3b1))

3 ((Cg + 201)(3b7 + 3b6 + 2b3 + 4b2) — 02(4b5 + 4b4 + 2b3 + 8[)1))

—c9(3(by + bg) (b3 + 2by + 2b1) + 4(bs + by + b3 + by + 3b1)(2bs + 2b4 + b3))

3 ((Cg + 201)(3b7 + 3b6 + 2b3 + 4b2) — 02(4b5 + 4b4 + 2b3 + 8b1))
1261(b5 + b4 - bg)(b7 + 66)
3 ((03 + 201)(367 + 3b6 + 2b3 + 4b2) — 02(465 + 4b4 + 2b3 + 8b1))
CO
TYYT

—GE (03(2b3 + 4b2 + 8b1) - (02 + 201)(3b7 + 3b6 + 4b5 + 4b4 + 2b3))
20(7 ((03 + 201)(3b7 + 3b6 + 2b3 + 4b2) — Co (4b5 + 4b4 + 2b3 + 8b1))

_l_

64

(B.57)
(B.58)

(B.59)

(B.60)

(B.61)



Tzzze = 0= Tyyze = Tozze — Tzaxz (B66)

Tyyyx = C;;;gExxxy = —(bg — 264 + 265)€xxxy (B67)
3bs — 24/6by + 24/6b

Tyzzx — nyzxzxxyfxxxy = — 3 \/37\/46_'_ \/_ 565(::(::(:3/ (B68)

1
Txxy:c = Cgﬁpggexxxy = —5(462 + bg — 264 + 265 + 666 + 267)6969696&]369)

waxy = mevyemmmy = —(b3 + 2b4 — 2b5 — 2b6 -+ 2b7)€xmpy (B?O)

TTITY

Appendix C. Optimal constitutive equations for Cauchy materials

This appendix details for the sake of clarity the approach proposed in
Sect.3 when applied to Cauchy materials. The Euler-Bernoulli kinematic

assumption reads

d?v  du
wr = —Y=—— + — C.1
‘ Va2 * dx (C.1)
and the static admissibility conditions impose that
Tyz = Tyy = Tzz — 0 (CQ)
The stresses resulting from the 3D law read :
Ty = Tz = Ao (C.4)

Using the 3D constitutive law thus makes the tensile stiffness wrong and
violates the static admissibility conditions (C.2), thereby making the need

for a modified constitutive law explicit. Under the assumptions (C.1) and
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(C.2), ny(T,Eka) satisfies

Eny(T,Exa) = 7o+ 200+ 0)(75) + 7) + o (220 — DA —4p) - (C.5)

€2 (A +20) (N + 2p — 20A) + 201 + v) — v(3X + 2u)))

The stationarity of 1, (T, Exa) with respect to the stress components (see

Eq.43) Tuw, Tay, Tee yields :

Tex = Eexx
Toy = 0

so that the constitutive equations usually considered for beam equations are
recovered instead of the 3D constitutive law. The equations (C.6) yield Tg4.

The minimal constitutive equation gap reads

202
Engy(Tsa,Exa) = Eé2
nlﬁ( SA, KA) €ra (1 + I/)(]_ — 21/)

>0 (C.7)
As a consequence of the constitutive equation gap, the strain energy may be
assessed either using the kinematic fields or the static ones, yielding different

values. The quality of the solution (C.6) may be approached by the scaled

residual constitutive equation gap :

Ny(Tsa, Exa) _ V2 (C.8)
Exa-C-Egg+Tgy-C1-Tgyu (1—V)—V2 )

which is found to be rather large when v — % The residual constitutive

equation gap may be further analyzed by defining a modified constitutive

equation gap 7y (T, E)
n(T,E)=(T-C-E)-c'C-C"'"-(T-C-E) (C.9)
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where C is the stiffness operator in which all the components related to the
strain components in the cross-section have been zeroed. It can be checked
that

Ny(Tsa, Exa) =0 (C.10)
thereby proving that the residual constitutive equation gap is solely located
in these in-plane deformation components. The other strain components may
thus be considered as accurate, even though the global error indicator (C.8)

turns to be rather high.

Appendix D. First strain gradient elasticity for the bending prob-

lem

Neglecting any term related to the second-strain gradient in Eq. (90)

yields the characteristic equation
t20wxw dG'U d4

TXT v
S T K =0ve e (0,1 (D.1)

One should first outline that as for bars, this differential equation is formally

similar to the one obtained from a purely kinematic approach [47] in the

absence of distributed loading :

dSv g*\ d*v
2 —
935~ (1 +ct2) i 0Vz e [0, L] (D.2)

and the this work provides the definition

12(Ceey — 2020y

Trxr

, again extending results obtained with a simplified constitutive equation

[47, 43]. Looking for solutions of the form (73) yields

Trxr

2
O:aﬁ{—%agjLK} (D.4)
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whose non-trivial solutions read

T (D.5)
with
(rzx
Ay =t === D.6
v i (D.6)
As seen in Fig.4, C777 is found to be always positive, as well as C77¥ —2C77

(see Fig. 11). The term K defined in Eq.(92) is thus always positive, so that

Ay is always a real number. The displacement field therefore reads

x x
—%+Zqz<. >+7FSG6XP ()\ )+7FSGQXP( Av) (D.7)

6 boundary conditions are therefore necessary to set the solution. These
are obtained from Eq.(68). Assuming the beam is clamped at x = 0, these

boundary conditions read

v(0) = 0
dv
—(0) = 0
dx( )
PC di
12 dx3(0) =0

A bending force F' is applied at x = L, the work of external forces reads

IW* = Fv*(z = L) so that

tQme d®v d3v F
J Trxw - L — _
12 dx5( )+ K bt
tzC;”ﬁ d4 d?v
0 dh
12 dIS(L) =0

68



Solving the linear system above yields the tip displacement

btoFSG ([ 1222 (L W1 /A L2Cawe
\%

F Crzr | 6t2 exv 1 \2t? 24K \y
(D.8)
It can be checked that
. btS4(L) 413
which corresponds to the solution for Cauchy materials :
KFSG 4F L3
C‘chhy YE FSG(L) Cre (D.10)
and
KFSG
lim —o e =1 (D.11)
t—-+oo FrGauchy
It is also worth noting that
: Cite oo
tkinoo Ay = oo = Ay (D.12)

Considering the vanishing thickness limit, it is straightforward that Ay then

scales as the thickness :

Cxwx
A t Lre D.1
v \/ T2(CE - 2050) (D-13)

Appendix E. Material parameters for the reported results
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