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Abstract

Metamaterial thermal energy devices obtained from transformation optics have recently attracted wide atten-
tion due to their vast potential in energy storage, thermal harvesting or heat manipulation. However, these
devices usually require inhomogeneous and extreme material parameters which are difficult to realize in large-
scale applications. Here, we demonstrate a general process to design thermal harvesting devices with available
natural materials through optimized composite microstructures. We first design a cross-shaped microstruc-
ture and apply two-scale homogenization theory to obtain its effective properties. Optimal Latin hypercube
technique, combined with a genetic algorithm, is then implemented on the microstructure to achieve opti-
mized geometrical parameters. The optimized microstructure can accurately approximate the behavior of
transformed materials. We design such devices and numerically characterize good thermal energy harvesting
performances. To validate the wide application range of our approach, we illustrate other types of microstruc-
tures like split rings and rectangles, and show that they mimic well the required constitutive parameters. The
approach we propose can be used to design novel thermal harvesting devices available with existing technol-
ogy, and can also act as a beneficial vehicle to explore other transformation opticcs enabled designs.
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1. Introduction

Transformation optics was first proposed to per-
form cloaking on electromagnetic waves, based on
form-invariance of the governing equations after co-
ordinates transformation [1]. Since then the concept
was promoted in various physical fields [2–7], creat-
ing miscellaneous devices, like invisible cloaks [8],
carpets [9], invisible sensors [10], illusion devices
[11–13] or hyperlenses [14, 15]. Transformation
thermodynamics, a counterpart of transformation-
optics, has been proposed to guide heat flux in ther-
mal manipulation and generate novel thermal meta-
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devices, such as heat cloaks, thermal energy harvest-
ing devices, thermal sensors, etc [16–24]. Thermal
energy harvesting devices, which can focus and har-
vest ambient thermal energy without severe pertur-
bations to the heat profile outside the devices, have
vast potential in improving the energy-conversion ef-
ficiency of existing technologies [25].

A challenge for thermal meta-devices is that they
often require inhomogeneous and anisotropic consti-
tutive parameters which are difficult to realize es-
pecially for large-scale applications. As the het-
erogenous constitutive profile is position-dependent
and continuous, some form of discretization is re-
quired. Moreover, anisotropic materials can be ap-
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proximated by structures of thin and alternating lay-
ers based on effective medium theory [26]. Ther-
mal devices following this principle were fabricated
and experimentally characterized [21, 27]. In these
works, step-wise approximation of the ideal parame-
ters were made, which sacrificed the performances
to reduce fabrication difficulty. Other researchers
realized thermal meta-devices with bulk isotropic
materials using the scattering-cancellation approach
[28–32]. Following this approach, a class of solar-
shaped thermal harvesting devices were demon-
strated, which could manipulate and concentrate the
heat flux using natural materials without singulari-
ties [33, 34]. However, these meta-devices are al-
ways shaped as regular profiles (cylinder, sphere or
ellipse), as the scattering-cancellation method is non-
trivial for irregular or complex shapes. In some
works, topology optimization method is applied to
design thermal meta-devices, where the optimized
structures always occupy irregular shapes that im-
pose high requirements on fabrication [35–37].

Except for the mentioned strategies, do we have
methods that can both offer good performance and
fabrication simplicity? The answer is positive. Re-
searchers [38, 39] demonstrated that the constitu-
tive medium can be approximated by microstructures
in the context of acoustic metamaterials. Thanks
to similarities between the governing equations for
acoustic and thermal fields, a similar approach can
be implemented for thermal metamaterials. Then the
key problem is to determine the effective property of
the built microstructure and find the proper param-
eters of the microstructure to mimic desired trans-
formed parameters. Ji et al. [40] achieved thermal
concentration using fiber reinforced microstructures
based on simplified effective medium theory. Pomot
et al. [41] realized acoustic cloaking by microstruc-
tures with several types of perforations, combined
with a genetic algorithm. We note that the partial
differential equations (PDEs) therein have the same
structure to the heat equation in the static limit, in
which case one simply has to replace the density by
the conductivity and all the asymptotic analysis car-
ries through. Moreover, PDEs in Ref. [41] are sup-
plied with homogeneous Neumann boundary condi-
tions that stand for rigid walls in acoustics, and insu-
lating walls in thermodynamics. It is thus tempting

to implement homogenization and effective medium
theories similar to those already used in acoustic
metamaterials, however bearing in mind that in the
dynamic regime the acoustic wave (elliptic) PDE and
the heat diffusion (parabolic) PDE are very different
in nature.

In our work we focus on the thermal field and
establish a general design road map to obtain re-
alizable thermal harvesting devices utilizing micro-
structures. We apply two-scale homogenization
theory to determine the equivalent thermal proper-
ties and employ the Optimal Latin-Hypercube tech-
nique to obtain desired design parameters. Be-
yond this problem, the process is applicable to other
microstructures and to wave problems (such as in
acoustics). We stress that because of their complex-
ity, the microstructures we investigate here would be
challenging to achieve otherwise. Finally we numer-
ically characterize such thermal harvesting devices
with natural materials and verify their harvesting ef-
ficiency by finite element simulations.

2. Methods

2.1. Concept design

We recall the heat conduction equation without
heat sources

∇ · (k∇T ) − ρc
∂T
∂t

= 0, (1)

where ∇ is the gradient, T is the temperature, ρc is
the product of density by heat capacity and k denotes
the heat conductivity. Following the theory of trans-
formation optics [1] and thermodynamics [4], the
governing equation will remain unchanged under a
coordinate transformation when the transformed pa-
rameters satisfy

k′ =
JkJT

det(J)
and (ρc)′ =

ρc
det(J)

, (2)

where J =
∂(x′,y′,z′)
∂(x,y,z) is the Jacobian of the geometric

transformation from (x, y, z) to (x′, y′, z′) coordinates
(i.e. from virtual to physical space), JT its transpose
and det(J) its determinant. We first consider steady-
state case where parameters ρc vanish. The trans-
formed conductivity k′ derived by Eq. (2) is usually

2



anisotropic and position dependent, which is difficult
to achieve in practice. To remove the singularities
and make the proposed device simpler to realize, we
choose the following nonlinear transformation that
maps virtual space Ω(r) onto physical space Ω′(r′):

r′ = r2

(
r
r2

)C

, (3)

which yields constant radial (k′r) and tangential heat
conductivity (k′θ) in cylindrical coordinates as

k′r
kb

= C and
k′θ
kb

=
1
C
, (4)

where kb denotes thermal conductivity of the back-
ground medium and C is a constant with C > 1.
Here, r1 and r2 are the inner radius and the outer ra-
dius of the designed shell region, respectively (see
details in the supplemental material).

In stark contrast to the material parameters ob-
tained from rigorous linear transformation, such a
device is homogeneous in materials composition and
its performance is only determined by the thermal-
conduction anisotropy (characterized by constant C;
see details in the supplemental material). We em-
ploy this geometric transformation as it avoids the
need for extreme spatially-varying parameters and
thus the transformed medium will be much easier to
implement in practice. Moreover, it is enough for the
proof-of-concept demonstration. We stress that the
method we describe is indeed also applicable to the
design of more complex transformation-based ther-
mal devices.

For clarity, we outline the design process for the
general case with a specific example. Assume that
we create a cylindrically symmetric thermal harvest-
ing device with inner radius r1 = 0.01 m and outer
radius r2 = 0.04 m (see Fig. 1). The proposed de-
vice can harvest thermal energy from the surround-
ings and concentrate it into the inner domain r′ < r1.
Heat energy density in the inner domain is thus sig-
nificantly increased. In our design, the thermal con-
ductivity of the background is kb = 132 Wm−1K−1.
We set C = 2, which implies that for the shell region
we have k′r = 264 Wm−1K−1 and k′θ = 66 Wm−1K−1.
Now we turn to the realization of shell region pa-
rameters by two natural materials A and B through
optimized microstructures.

Fig. 1. Schematic representation of a possible realization of the
thermal harvesting device. The shell displays some periodicity
along the azimuthal direction, which is a hallmark of a concen-
trator. Such a device can harvest thermal energy from its sur-
roundings. Heat flows are concentrated into the inner domain
r′ < r1 thanks to the designed shell region r1 ≤ r′ ≤ r2.

2.2. Homogenization of the heat conduction equa-
tion

The material distributions in Eq. (4) need to be
mapped onto a microstructure exhibiting prescribed
constitutive parameters. We build a medium with
identical elementary cells repeating periodically in
space (see Fig. 2 ). Generally, the well-established
effective medium theory plays a prominent role in
determining effective properties and is easy and di-
rect for simple geometries. When designing meta-
devices with complex-shaped structures, however, it
would be far from trivial to evaluate the equivalent
properties. Here we apply instead two-scale homog-
enization theory [42] to determine effective parame-
ters with an asymptotic approach.

We consider a two-dimensional periodic medium
with square elementary cells [0, η]2 of side-length
η � 1. The solution Tη of the steady-state heat equa-
tion with fast oscillating parameters Aη = k(x/η, y/η)

∇ ·
(
kη∇Tη

)
= 0 (5)

two-scale converges [43], when η tends to zero, to
the solution Thom of the homogenized heat equation

∇ · (khom∇Thom) = 0. (6)

The effective property of the periodic medium is
3



Fig. 2. Schematic illustration of 2D periodic lattices defined
by 2 parameters (area fractions f1 and f2). We choose this mi-
crostructure to mimic the desired medium of the shell region
through homogenization and optimization.

given by

khom =

[
〈k〉 − 〈k∂xV1〉 −〈k∂xV2〉

−〈k∂yV1〉 〈k〉 − 〈k∂yV2〉

]
, (7)

where ∂x := ∂/∂x, ∂y := ∂/∂y and < . > denotes
the mean operator over the periodic cell. V1(x, y) and
V2(x, y) are solutions defined up to an additive con-
stant of auxiliary problems of thermostatic type on
the periodic cell [42]:{

∇ ·
[
k(x, y)∇(V1 − x)

]
= 0

∇ ·
[
k(x, y)∇(V2 − y)

]
= 0 . (8)

We solve the auxiliary problems in weak form by
using COMSOL Multiphysics, which sets up the fi-
nite element problem with periodic conditions im-
posed to the field on opposite ends of the elemen-
tary cell. We note in passing V1 and V2 are unique
solutions of Eq. (8) up to additive constants, but
these constants do not affect the homogenized con-
ductivity, as one can see that in Eq. (7) only the
partial derivatives of V1 and V2 are involved. The
potentials V1(x, y) and V2(x, y) of an illustrative case
( f1 = 0.6576, f2 = 0.0835) are shown in Fig. 3,
where we obtain the effective conductivity as

khom =

[
66.01 3.3 10−11

−1.2 10−11 263.97

]
≈

[
k1

k2

]
. (9)

It is noticed that in Eq. (9) the off-diagonal com-
ponents are almost negligible and originate from
numerical errors. The resulting spurious artificial
anisotropy can be safely ignored. We emphasize

Fig. 3. Potentials V1(x, y) and V2(x, y) of the illustrative case
where f1 = 0.6576, f2 = 0.0835.

that with the finite element method, the effective ten-
sor can be obtained for any periodic composite and
that the same technique was implemented before in
acoustics [41] and electromagnetism [42], in which
case the effective density and permittivity tensors re-
spectively can be deduced from the same annex prob-
lems as in our thermal case.

The effective properties of the medium can be
tuned by several design parameters such as geomet-
rical (here we use area fractions f1 and f2) and ma-
terial properties (thermal conductivities kA and kB).
We restrict our attention here to predefined mate-
rial properties and set the geometrical parameters as
variables. Our goal is to find the set of geometri-
cal parameters which properly mimic the homoge-
nized medium. Therefore, the geometry of elemen-
tary cells should be tuned to obtain desired equiv-
alent properties. Considering the heavy workload
of the trial-and-error method, we implement an Op-
timal Latin hypercube technique to solve the prob-
lem. We note here that the two-scale homogenization
technique has been already used to design a thermal
concentrator similar to the one shown in Fig. 1 and
to show that a concentrator consisting of concentric
layers would require some complex valued conduc-
tivities with sign-shifting imaginary parts [44]. In the
present case, we investigate doubly periodic designs
and thus we do not face such pitfalls.

2.3. Optimal Latin Hypercube Design

Optimal Latin Hypercube Sampling (OLHS) tech-
nique is applied to optimize the spatial positions of
control points. The aim of this process is to design
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a matrix where the sample points spread as evenly
as possible within the design region. This method
is efficient and robust due to its enhanced stochas-
tic evolutionary algorithm and significant reduction
in matrix calculations to evaluate new/modified de-
signs during searching [45]. In this work, we pre-
define the two materials as air (kA = 0.026) and cop-
per (kB = 400) in units of Wm−1K−1 and select the
geometrical (area fraction) parameters f1 and f2 as
design variables. The ranges of these variables are
defined as 0.5 < f1 < 0.8 and 0.05 < f2 < 0.1 af-
ter initial estimation. We generate one hundred sam-
ple points by OLHS technique, and calculate corre-
sponding effective thermal conductivity of the peri-
odic medium for each sample point using the two-
scale homogenization theory. Details of the gener-
ated sample points and calculated results are listed in
Table S1. We emphasize the importance of choos-
ing proper ranges of the variables. If, for instance,
we use much larger ranges for f1 and f2, the derived
values can be less accurate unless a more refined dis-
cretization (more sample points) is chosen.

We then create an approximation surrogate model
from the obtained one hundred space samples [46].
The surrogate model is built by the Elliptical Ba-
sis Function Neural Network technique which estab-
lishes a relation between design targets (k1 and k2)
and variables ( f1 and f2), as shown in Fig. 4 (a-b).
We use two estimators to evaluate the reliability of
the surrogate model, the coefficient of determination
(R2) and the root mean square error (RMSE). These
are defined as

R2 = 1 −
∑m

i=1(yi − ŷi)2∑m
i=1(yi − ȳi)2 , (10)

RMSE =

√∑m
i=1(yi − ŷi)2

m
, (11)

where yi and ŷi are respectively the real value and
the predicted value of the objective function over the
same sample points, ȳi is the mean value of all objec-
tive functions and m is the total number of sampling
points. The closer R2 is to 1 and RMSE is to 0, the
more accurate the model. In Fig. 4 (c-d), we can
observe that the predicted values (values obtained by
the surrogate model) are in good agreement with the
actual values (values on the sample points).

The calculated R2 and RMSE are listed in Table
1. The average error and the maximum error among
all samples are also shown. In the constructed sur-
rogate models, R2 is larger than 0.99997 and RMSE
are smaller than 0.00012. The maximum error re-
mains close to 0, which demonstrates that the surro-
gate model is accurate.

Table 1
Accuracy of the constructed surrogate model.

Error type k1 k2

RMSE 1.2 10−3 4.88 10−5

Average 6.45 10−4 3.52 10−5

Maximum 5.47 10−3 1.88 10−4

R2 0.9997 1

Now we proceed with the inverse homogenization
problem, that is, we want to find the particular set of
design parameters which best mimic the transformed
medium [47]. The optimization problem amounts to
minimizing the objective function:

E(k1, k2, α, β) = α
∣∣∣k1 − k′r

∣∣∣ + β
∣∣∣k2 − k′θ

∣∣∣ , (12)

where α and β are positive weighting factors for the
two objective sub-functions such that α + β = 1.
The function E(k1, k2, α, β) measures the overall dif-
ference between obtained and objective values. We
define α = β = 0.5, i.e. equal weights for the di-
agonal tensor elements k1 and k2. The principle is
to obtain a global minimum within the discrete so-
lution space. We solve this inverse problem by us-
ing a Non-Dominated Sorting Genetic Algorithm ap-
proach [48]. The one hundred random structures,
corresponding to the parameter space samples ob-
tained by the OLHS method, form the first genera-
tion. During the search process, the population size
and the number of generations are defined as 12 and
200, respectively. New generations are created us-
ing crossover and mutation processes. We set the
mutation distribution index and crossover distribu-
tion index as 20 and 10, respectively. The crossover
probability is set as 0.9. For the sake of clarity, we
do not detail the well-established genetic algorithm
approach. In short, the Non-Dominated Sorting Ge-
netic Algorithm performs well enough in our case
and enables us to determine efficiently the desired
design parameters.
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Fig. 4. Panels (a) and (b) show the relation between design targets (heat conductivities k1 and k2) and design variables (geometrical
parameters f1 and f2). The results are obtained basing on the chosen sample points and using two-scale homogenization theory.
Panels (c) and (d) show good agreement between actual values and predicted values of the heat conductivities, demonstrating the
reliability of the surrogate model. The indices k1 and k2 denote heat conductivity of the elementary cell in the x and y directions,
respectively.

Following this approach, we obtain the desired set
of parameters as f1 = 0.6576 and f2 = 0.0835 for
C = 2. We then implement the microstructure and
calculate the corresponding heat conductivities. The
result are listed in Table.2. It can be seen that the
obtained parameters closely mimic the desired trans-
formed medium.

3. Scheme validation and discussion

3.1. Recipe for experimental realization
We now turn to the theoretical recipe for realiz-

ing thermal harvesting based on optimized compos-
ite microstructures. Note that the heat conductivity

Table 2
Comparison of predicted value and targeted value for the de-
rived set of parameters.

Predicted Targeted
Relative

difference
k1(Wm−1K−1) 263.97 264 0.01%
k2(Wm−1K−1) 66.01 66 0.02%

in Eq. (4) is expressed in (r, θ) polar coordinates
while the microstructure is designed in (x, y) Carte-
sian coordinates. To build a cylindrical thermal har-
vesting device, we discretize the shell region into
numerous units and transplant microstructures with
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matched geometrical parameters into each unit. We
design in this paper a discrete thermal harvesting de-
vice with 15 radial layers and 45 tangential sectors.
Similarly to what has been done in Ref. [41], we
could have considered an increasing number of lay-
ers and sectors to very accurately approximate the
idealized thermal concentrator parameters. However,
we focus here on a practically implementable design.
The materials constituting the microstructure are nat-
urally available materials: copper (material A) and
air (material B). It is understood that the device could
be built from other materials. We use copper and air
here considering their applicability for realistic ex-
periments.

Numerical calculations were conducted, where
temperatures at the left and right boundary are re-
spectively imposed as 1 K and 0 K, for easiness in
normalization. We apply Neumann (perfect insula-
tor) conditions at other boundaries. As indicated in
the scheme (Fig. 5), iso-thermal lines are signif-
icantly compressed to the inner domain (r ≤ r1).
Hence, heat flux density in the inner domain is en-
larged, implying that more heat energy is concen-
trated into the central region. In addition, iso-thermal
lines in the background are uniform with little per-
turbations. That is, the heat energy is harvested and
concentrated into the central region without much
perturbation of the external thermal field. We empha-
size that similar computations would also hold for
time-harmonic acoustic and electromagnetic equa-
tions.

We further conduct a quantitative analysis of the
thermal harvesting behavior of the proposed scheme.
Two measurement lines are defined. An horizontal
line (y = 0) is selected to reveal perturbations of the
external thermal field whereas a vertical line (x = r2)
is chosen to illustrate the heat harvesting efficiency,
as shown in Fig. 6. We also build an additional con-
trast plate that occupies the same area as the harvest-
ing device but that is composed only of a homoge-
neous background medium. The following index η is
defined to evaluate the energy harvesting efficiency
as

η =

∣∣∣∣∣∣Tx=r1 − Tx=−r1

Tx=r2 − Tx=−r2

∣∣∣∣∣∣ . (13)

An index MV is introduced to characterize the pertur-

Fig. 5. Temperature fields in the steady state for (a) the ideal
case and (b) the proposed thermal harvesting device. In both
cases, heat flows are concentrated to the inner domain without
much perturbations to the external thermal field.

bations to external fields (i.e. the thermal neutrality
of the concentrator)

MV =

∫
Ω
|T (x, y, z) − Tr(x, y, z)| dΩ∫

Ω
dΩ

, (14)

where Ω denotes the probe domain of external ther-
mal fields and Tr represents the temperature field of
the homogeneous medium. The index MV reveals all
perturbations to the external heat profile [49].

It is apparent in Fig. 6(a) that thermal energy is
significantly concentrated into the inner domain, as
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Fig. 6. Comparison of temperature profiles between the harvesting device and the contrast plate along the measurement lines (a)
y = 0 and (b) x = r2. All results are obtained in the steady-state and the insets denote positions of measurement lines. We define
∆T = |T (x, y, z) − Tr(x, y, z)| to quantitatively demonstrate the heat harvesting performances. Significant heat-focusing in the inner
domain (−r1 < x < r1) and minor fluctuations in external domain (along x = r2) are both oberved, demonstrating good heat
concentrating performances.

a tight focusing with a local heat-intensity increase
is observed. We list thermal gradients inside the in-
ner domain (characterized by ∆Tin =

∣∣∣Tx=r1 − Tx=−r1

∣∣∣)
and harvesting efficiencies for different cases in Tab.
3. The results indicate that thermal gradients in the
central region are almost twice as large as in the
contrast plate. The concentration efficiency is sig-
nificantly lifted. Both results reach nearly theoreti-
cal values, demonstrating that the heat concentrating
scheme is both effective and accurate.

Table 3
Thermal harvesting performances for different cases.

Index Ideal Proposed Bare plate
∆Tin (K) 0.4 0.39 0.2

η 0.5 0.49 0.25
MV (K) 0 0.0025 0.0003

It can be observed in Fig. 6(b) that temperatures
along the vertical measurement line are almost uni-
form, indicating that the external thermal field is only
slightly influenced. We notice some minor perturba-
tions in Tab. 3 which are mainly due to the discretiza-
tion process and to numerical errors.

Thus far, all that has been achieved for heat can
be directly translated to airborne acoustics (with
rigid inclusions) and electromagnetism (with per-

fectly conducting inclusions, in the case when the
magnetic field is polarized perpendicular to the xy-
plane), since governing equations are identical in the
static limit, and so results in Fig. 6 and 7 hold for
the acoustic and electromagnetic counterparts of the
thermal concentrator. We would like to investigate
now the diffusive nature of heat conduction. We de-
fine same boundary conditions as the steady state
case and focus here on the evolution of thermal har-
vesting performance over time. Temperature distri-
butions at different time steps t are shown in Fig. (7),
where thermal gradients and perturbations are also
plotted as a function of time. It is observed that per-
turbations of the external thermal profile increase and
then decrease after a certain lapse of time, whereas
the thermal gradient of the object increases gradually
toward its maximum value. Generally, the proposed
design performs well for harvesting thermal energy,
with significant heat flux concentrated in the inner
domain and little perturbation to the outside thermal
field, once the permanent regime has been reached.
We stress that the design process proves feasible as
the created device works efficiently and converges
to almost the same harvesting performance as in the
ideal case.

The heat concentration efficiency is directly deter-
mined by the constant C [34], which in turn can be
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Fig. 7. Thermal harvesting performances of the concentrator
in the transient regime. (a) Temperature fields are illustrated at
different times t. The performances get gradually better after a
certain lapse of time. (b) Thermal gradients of the inner domain
(∆Tin =

∣∣∣Tx=r1 − Tx=−r1

∣∣∣) and perturbations to external thermal
field (MV ) are plotted as functions of time. The quantitative
results agree well with those revealed in (a).

approached by the material properties and the geom-
etry of the microstructures. To gain more insights
into the underlying mechanism of the microstructure,
we derive and show in Fig. 8 the relation between de-
sign variables (area fraction f1 and f2) and the heat
concentration efficiency. For comparison, we further
assume two other materials C and D to substitute for
material B, with heat conductivity kC < kB < kD. It
is observed that higher concentration efficiency re-

quires larger f1 and smaller f2 which directly in-
dicates larger geometrical anisotropy. Besides, we
notice that smaller design variables are needed to
achieve a given efficiency for a larger conductivity of
the second material (for constant material A). Larger
material anisotropy also allows for a larger maximum
concentration efficiency.

Fig. 8. Relation between design variables (area fractions f1
and f2) and the concentration efficiency. The inset shows the
studied elementary cell where one material is pre-defined as
kA = 0 and another material is varied. In addition to mate-
rial B (kB = 400 Wm−1K−1), we also considered material C
(kC = 300 Wm−1K−1) and material D (kD = 600 Wm−1K−1) for
a comparison.

3.2. Additional microstructures
Note that the microstructure we employed in Fig.

2 is not the unique choice. One can use other elemen-
tary cells as long as they are appropriate to obtain the
required anisotropy. To validate the wide-range ap-
plication of our approach, we further present several
other elementary cells and build corresponding de-
vices. Steady state simulations are conducted with
same boundaries with the aforementioned case. In
Fig. 9(a), we set material properties as design vari-
ables and recover the widely used solar-shaped de-
vice. In Fig. 9(b), we obtain the same design as
in Fig. 1 but based on a different elementary cell
obtained by a sub-lattice translation. Besides, we
show in Fig. 9(c) a split ring element cell for which
it seems unlikely that the effective medium theory
could be easily applied. Good harvesting perfor-
mance is again achieved without much perturbations
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to the external field. As a note, the symmetry of the
split ring element cell is reduced compared to the
other cases, but the effective tensor remains diago-
nal. The strength of our approach becomes apparent
when dealing with such more complex geometries,
where the application of effective medium theory is
far from trivial.

We stress that using the optimization approach in
this paper high-performance thermal-harvesting de-
signs can be obtained that meet given external con-
straints, such as maximum or minimum values for
material properties and geometrical parameters. We
can search for the best solution among materials
properties, microstructures and geometrical param-
eters within the full available range, providing a sub-
stantial flexibility and many degrees of freedom in
practical applications.

We considered in this paper two-dimensional (2D)
harvesting devices as fabrication and measurement
are presumably simpler than in 3D. The proposed op-
timization method, however, is also well suited to the
design of 3D thermal harvesting devices. A major
difference is that more design variables are required
in 3D, and thus more computational resources would
be required to undertake such a study, for which the
theoretical part of the present work would apply mu-
tatis mutandis.

4. Conclusion

We proposed a general method to design thermal-
energy harvesting devices from naturally available
materials. We designed composite microstructures
and calculated their effective conductivity by the
two-scale homogenization technique. We then im-
plemented the Optimal Latin hypercube method to
obtain design parameters that can best mimic the
transformed medium. We built a harvesting device
model based on the obtained optimized microstruc-
tures and demonstrated good thermal harvesting per-
formance, thereby validating the effectiveness of our
design method.

The optimization method adds great flexibility to
the constraints that can be imposed on devices, which
allows one to find the best possible solutions with
different geometrical structures and component ma-
terials. We stress that the flexibility and simplicity of

Fig. 9. Additional optimized microstructures and correspond-
ing thermal harvesting performance. (a) Laminar structures de-
fined by two material parameters (k1 and k2) if L1 = L2 and two
additional geometrical parameters if L1 , L2. The optimized
parameters are k1 = 0.26782 and k2 = 3.7328 if we impose
L1 = L2. (b) Elementary cell defined by two geometrical pa-
rameters f1 = 0.34238, f2 = 0.91675. (c) Split ring structure
defined by five geometrical parameters. The optimized param-
eters are f1 = 0.1037, f2 = 0.1261, f3 = 0.4799, f4 = 0.2614,
and f5 = 0.0994. In panels (b,c) the materials used are the
same as those in Fig. 2. Following the proposed design process,
we have considered different microstructures and have obtained
the same thermal conductivities, i.e. k′r = 264 Wm−1K−1 and
k′θ = 66 Wm−1K−1.

the method is a good addition to existing heat manip-
ulation techniques, including other thermal function-
alities, i.e. cloaking and illusion. It also paves a path

10



for novel optical, acoustic and electromagnetic de-
vices based on form-invariant governing equations.
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