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Abstract

Metamaterials are rationally designed composites made of building blocks which
are composed of one or more constituent materials. Metamaterial properties can
go beyond those of the ingredient materials, both qualitatively and quantita-
tively. In addition, their properties can be mapped on some generalized contin-
uum model. We present the general procedure of designing elastic metamaterials
based on masses and springs. We show that using this simple approach we can
design any set of effective properties including linear elastic metamaterials, —
defined by bulk modulus, shear modulus, mass density — and non linear meta-
materials, — with instabilities or programmable parts. We present designs and
corresponding numerical calculations to illustrate their constitutive behavior.

Finally, we discuss the addition of a thermal stimulus to mechanical metamate-
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rials.
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1. Introduction

For the last 50 years, a huge deal of effort has been made to design novel
materials by chemical synthesis (graphene [I} 2, 3], carbon nanotubes [4, 5]), by
structuration (composites, fibrous materials, multilayers)[6l [7, [§], or by topol-
ogy optimization in quasi-static conditions [9] or for dynamical Bloch waves
(phononic crystals)[10]. The ultimate goal has been to reach an improvement
in stiffness or toughness, increase or decrease in the mass density, or to ab-
sorb/reflect or transmit energy [9] 1T}, 12]. Indeed, in aeronautics and the auto-
motive industry for instance, it was necessary to decrease the weight of all parts
leading to a fundamental change from metals to only aluminum, alloys and com-
posites. It is, for example, almost impossible to find a car bumper made of metal
today thanks to composites (mainly fibrous). The quest for a dynamical design
response (sound and vibration absorption), firstly questioned by Brillouin, was
deeply expanded after pioneering works by Yablonovitch [I3][14], Monkhorst[15],
and Bloch[I6]. Later, the introduction of functionalities designed by transfor-
mational elastodynamics and the wish of mapping more complex media onto
generalized continua motivated the expansion from Cauchy elasticity to mi-
cropolar, micromorphic or Cosserat models (an effort started in the sixties by

Eringen, Maugin and other precursors [I7, [I8]) led to the higher order gradient
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theories of elasticity [19] and to the modification of the Newton’s second law by
Willis and Milton [20].

In this paper, we revisit these innovations from the perspective of metama-
terial designs taken from the literature. First, we summarize for newcomers the
different models used in elasticity. Second, we focus on linear elasticity and
show that using masses and spring all mechanical properties can be indepen-
dently designed. Third, we present an extension of linear metamaterials toward

their use for non-linear wave absorption.

2. Elasticity equations

In this section we review the complexity of the description of mechanical

materials and of their constitutive laws [2I].

2.1. Hooke’s spring law

In the seventeenth century, Robert Hooke formulated the first constitutive
law in mechanics that states that the force, F', needed to extend or compress a
spring by a distance d is given by F' = k d , where k is a constant (the stiffness).
This law can obviously be generalized to a vectorial force F connecting a general
vector elongation in 3D space d = (dj,ds,ds) by a matrix of spring constants
k as F = k d. It is well known that in the general case, the spring constant
is a constant scalar (or a constant matrix), but that its magnitude can change
depending on the load in a non linear way (either monotonically or not; see
the section on non linear mechanics). In Figure [1| we illustrate the principles of

linear and non-linear springs and continua, a concept that we will more clearly
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describe later on. The scalar Hooke’s law primarily relates linearly the tension
of an homogeneous spring to its elongation (Fig. a)). If the spring is made
inhomogeneous along its length, such as in Fig. b), then the relationship
becomes non linear. Similarly, the homogeneous cube of Fig. c) can often be
modelled with the linear Hooke’s law, but a structural spring such as depicted in
Fig. d) must be described using a non linear stiffness under large deformations.
In the figure, the color scale represents the local vertical displacement with
respect to the static equilibrium position under zero tension. The elongation d is
the difference of the top displacement and the bottom displacement. Whereas in
the first three cases the displacement field is basically a simple vertical gradient,
in the structural spring case the displacement field varies in a more complex
fashion.

Clearly, Hooke’s approach can be justified only for simple spring-like geome-
tries and for long bars. When all dimensions (pushing and lateral) of a material
are comparable then this approach does not reflect properly the deformation of
the body. Thus, a more general theory is required. It is called Cauchy elastic-
ity from the contribution of Louis Cauchy to the definition of the stress tensor
replacing the simple applied force by a quantity homogeneous to a force per
surface area (thus with the units of pressure). Figure [2| illustrates the differ-
ent components of the Cauchy stress tensor exerted on an infinitesimal cubic
volume.

The stress tensor defined graphically in Fig. [2[obeys the fundamental law of

conservation of linear momentum. Combined with the conservation of angular
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Figure 1: Under uniaxial tension, the deformations of (a) a linear spring, (b) a non linear
spring, (c) an homogeneous cube, and (d) a geometrically non linear spring are depicted,
respectively. The color scale measures the vertical displacement, from blue (no displacement)
to red (maximum displacement). For the finite element computations, the bottom surface is
clamped and a force F' directed upward is applied at the top surface. The thin lines are for

the structures at rest. Under each panel, a schematic force-elongation curve is displayed.

momentum, the stress tensor takes a symmetric form with only six independent

parameters, rather than nine, and may thus be written:

011 012 013 01 0¢ 05
021 022 023 = 0g 02 04 (1)
031 032 033 05 04 O3

where the diagonal entries o1, 03 and o3 are the normal stresses, and the off-
diagonal entries 012 = 0g, 013 = 05 and o33 = 04 are the orthogonal shear

6s stresses.
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Figure 2: Illustration of the elements of the Cauchy tensor and of the orientation conven-
tion. In a Cartesian coordinate system, the stress vectors applying on each elemental plane,
T(e1) T(e2) and T(e3) can be can be decomposed into a normal component and two shear

components measured along the three principal axes.

Next, the infinitesimal strain tensor for a displacement field u is defined by:
1 T
€= i[Vu + (Vu)'].
By construction this tensor is also symmetric. In component form, it writes as

1 .o
iy = i,J j,i) s yJ = L, 4,9,
€ij 2(u”—i—uﬂ) i,7=1,2,3

aui
(‘)QZJ'

and the notation u; ; = . Therefore, the displacement gradient can alterna-

tively be expressed as

Vu=e+~

with a skew symmetric tensor « also called the rotation tensor:
1 T
v = §[Vu— (Vu)'].

Finally the constitutive equation between stress and stain tensors is given by
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the generalized Hooke’s law as
o=C:eg,

with o Cauchy’s stress tensor, € the infinitesimal strain tensor, and C a fourth-
order elasticity tensor. The latter must obey certain properties of tensors such
as symmetries and positive definiteness.

Sometimes it is difficult to model lattice metamaterials with continuum me-
chanics, especially if bars get very thin and numerous. For this prupose, it is
important to note that simplified theories exist, e.g. Timoshenko’s and Euler-
Bernouilli beam theories. However, in the quest of an efficient implementation
they are not practical compared to finite element models. Anyway, an extensive
and specific literature exists and has been used for the design of metamaterials

[22, 23, 24, 25| 26].

2.2. Navier’s equation
Once a rigid or deformable body is in motion, Newton’s second law can be

written as follows (omitting possible external forces):

0%u

V'U:Pﬁ (2)

with p the mass density and ¢ the time variable. If the elastic body is isotropic,

then

Cijrt = A0ijOrt + 245, (3)
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where Lamé’s parameters A and p can be expressed in terms of Poisson’s ratio

v and Young’s modulus F as

B Ev  E(l-v)
A AT a- )t T v a-o (4)

In the time-harmonic regime Navier’s equation at angular frequency w is

V-o=—pwu. (5)

3. Linear Mechanical metamaterials

3.1. Isotropic metamaterials

In the isotropic case, the effective elasticity tensor that describes the elastic
properties of a solid metamaterial is very simple and in fact can be decomposed
a form with only two eigenvalues (see Milton [27] and Banerjee [28]). Here, we
describe how to design the most simple isotropic mechanical metamaterial (as
a remark, isotropy in mechanics is not as simple as in crystallography, since
space groups must be considered instead of point groups in order to describe
symmetry). We start from the ideal pentamode metamaterials introduced by
Milton and Cherkaev [27], as shown in Fig. [3| Pentamodes are expected to avoid
the coupling of compression and shear waves due to their extremely large bulk
modulus, B, in comparison with the shear modulus, G [27, 29]. However, it
is almost impossible to fabricate such ideal pentamodes due to infinitely small
connections between cones. In 2012, Kadic et al. realized pentamodes exper-
imentally by modifying the diameter of thin and thick ends of double cones

[29]. They investigated the effect of the overlap volume on the ratio B/G. They
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found that increasing the overlap volume stabilizes the structures, yet at the

same time decreasing the ratio.

a)

Figure 3: a) An ideal periodic unit cell of a pentamode metamaterial with constant length
a and a modified pentamode with a smaller diameter, d, at connecting parts of the double-
cone strut, and a bigger diameter, D, of the middle part. 3D view (b) and magnified front
view (c) electron micrograph of a pentamode truss micro-lattice metamaterial fabricated by
dip-in three-dimensional direct-laser-writing (DLW) optical lithography. Front view electron
micrograph (d) of an unit cell of the metamaterial part which is highlighted with a red square

in (c). The samples chosen reproduce those discussed originally in Ref. [29].

Figs. [3| (b) and (c) show 3D view and magnified front view electron micro-
graphs of an optimal pentamode truss micro-lattice metamaterial fabricated by
dip-in three-dimensional direct-laser-writing (DLW) optical lithography. These
structures are experimentally validated to possess an extremely large B/G ratio
which can be also observed in Fig. [f]a). Fig. [{] and Fig. [f] b) illustrate how
to independently control the bulk modulus B by connecting the middle part

of double cones with soft loose springs. One can also fulfill the goal to control
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Figure 4: Illustration of optimal pentamodes with (a) a larger diameter D and additional loose
springs, (b) additional loose springs, (c) a larger diameter d and additional dense springs and

d) a larger diameter d and additional loose springs.

density by using parallel springs while enlarging the diameter d. By replacing
loose springs with dense springs, it is easy to keep the bulk modulus B and to
enhance the capacity to resist shear loading.

Actually, we can make pentamode metamaterials isotropic by adapting the
optimal method presented by Buckmann et al. [3I]. We can relate the elas-
tic modulus, the shear modulus and Poisson’s ratio to three phase velocities
v of the pentamode material, which are chosen either purely longitudinally or

transversely polarized, in the F M direction or [110] direction. We thus get a suf-

10
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Figure 5: Milton’s maps of (a) pentamode metamaterials and (b), (c) optimal pentamode
metamaterials with different geometrical parameters. Ashby’s map (d) of optimal pentamode

metamaterials. This figure is inspired by Ref. [30].

ficient condition for isotropy as v¥, = v;75”. This condition can be undertood

as follows: the phase velocity of the longitudinal wave along the crystallographic
direction [110] equals the phase velocity of the transverse wave along the same
direction. The condition can be achieved by adjusting geometrical parameters
or by adding additional springs. All in all, we obtain a possible way to control
the 3 independent mechanical parameters and to make pentamodes isotropic by

adjusting different parts of the periodic unit cell.

11
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4. Nonlinear mechanical metamaterials

In the regime of large deformations, the stress-strain response of mechanical
metamaterials [32] [33] [34] always goes through a sequence of increases [35, [36] or
decreases [37, [38], and steady [39, [40l [41] or damping [42] 43] variations. Glob-
ally, the part of the graph extending beyond the initial elastic region describes
the mechanical nonlinearity. Scientists usually pay much attention to the elastic
region for load-bearing mechanical metamaterials [38] 43], whereas nonlinearity
is important for energy absorption mechanical metamaterials [39, 43] and pro-
grammable metamaterials [44] [TT]. Nonlinearity arises from two aspects, either
geometrical (structural) nonlinearity or the nonlinearity of the parent materi-
als used for building the metamaterial [45]. Geometrical nonlinearity, which
is mainly determined by the topological structure and geometrical parameters,
exists in systems that sustain large deformations. Geometrical structures, such
as truss lattices [35], 40], shell lattices [42] [43] and plate lattices [46] [47] have
to abide by two different deformation criteria: stretching dominated or bend-
ing dominated [48]. Different geometrical parameters will yield different failure
modes, including stiffening or softening plastic yield [38], plastic collapse [35],
linear and nonlinear buckling [39, 43], and so on. In a similar way, the me-
chanical properties, especially in the nonlinear region, of the parent materials
also affect the failure modes of mechanical metamaterials. Material nonlinear-
ity works only after the deformation of the parent materials has gone beyond
the elastic region. Plastic yield will dominate the failure of most metals and

polymers. However, brittle failure will be most common for ceramics, composite

12



materials, and other ceramic-like materials. Material properties and the topo-
logical structure together with geometrical parameters decide the failure models,

that is the nonlinear response, of mechanical metamaterials.

a) b) ©)
E LE E, E,

=10

n

Figure 6: a) Maxwell, b) Voigt and c) the standard linear solid simplified elastic-viscous
models are depicted in analogy with equivalent electrical circuits. Young’s modulus E is
analogous to a real-valued admittance, whereas viscosity contributes a iwn admittance similar
to a capacitance. The resulting relationship between dynamic modulus and angular frequency

is depicted below each equivalent circuit model (see text for their expressions).

Viscous materials, for which the relationship between stress and strain de-
pends on time, provide another possibility to design energy absorption, energy
dissipation, and vibration suppression metamaterials. Their energy dissipation
capacity highly depends on the angular frequency. Several mathematical models
have been proposed to describe such dispersive relationships. The Maxwell loss
model [49] [50] is probably the oldest viscoelastic model and can be represented

by a purely viscous damper and a purely elastic spring connected in series, as

13



shown in Fig. [6] (a). The dynamic modulus E*(w) = E’ + iE” is obtained fol-

lowing the rules for admittance in equivalent circuits. In the case of the Maxwell

model,
1 1 1

B T 6
E* FE * wn (6)

which yields

7202 TW

F=———F FE =———F 7
2?41 T2 +17 M

with 7 = n/E. If we connect elastic and viscous elements in parallel, as in Fig.

[6] (b), we get the generalized Kelvin-Voigt model [49, 50]
E* = E +iwn. (8)

Then obviously £/ = E and E” = wn. Combining a serial Maxwell branch in
parallel with a purely elastic branch, the more realistic model of the standard
linear solid is obtained, as depicted in Fig. |§| (¢). The model contains two
independent elastic elements, F;, and Fs, and a viscous element 7, and is also

known as the Zener model[49] 50, [5I]. The complex dynamic modulus is

B*(w) - ( ! +1)_1 \ By, (9)

Ey  iwn
leading to
20,2
£ =——F +F 10
(W) 202 + 1 1+ Lo, ( )
E'w) = ——— P, 11
(w) 202 + 1 ° (11)

Fig. [6] depicts the three previous elastic-viscous models and the correspond-
us  ing relationships between dynamics modulus and vibration frequency. The equa-

tions are simple enough but often prove insufficient. For instance, the Maxwell

14
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model successfully captures the evolution of the imaginary dynamic modulus as
a function of vibration frequency, but fails to describe the dependence of the
real part on frequency. It should be noted that any solid material must have a
non zero elastic modulus in the absence of vibrations, i.e. at the zero frequency.
Hence, the Maxwell loss model is not physical in the limit of low frequencies.
Finally, the Kelvin-Voigt model is too ideal to describe nonlinear variations of

the dynamic modulus.

4.1. Tailoring the stress-strain curve

A central issue of mechanical metamaterial design is indeed to tailor the
stress-strain curve to follow given shapes chosen in order to meet given re-
quirements [35, B9, 46]. As outlined in the previous section, the geometrical
structure is one of most important factors in metamaterial design. Here, we
will give three examples to illustrate how to tailor the stress-strain curve by
optimizing the structure.

Let us start from a conventional spring which is the most basic elastic element
in a mechanical metamaterial. When a conventional spring is compressed or
stretched from its rest position (strained), a stress distribution appears along
the length. Fig. a) illustrates the force versus elongation curve. The spring
constant is almost a constant as long as deformation does not go beyond spring
stoke. Under certain circumstances, however, a spring constant increasing with
applied strain is needed. In this case, replacing the constant spacing spring coils
with graded spacing spring coils, or replacing the constant major radius with

an increasing major radius, a progressive rate spring can be obtained, as Fig.

15
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[I(b) depicts.

Second, the simple cubic solid structure, that is a base element in 3D me-
chanical metamaterials, can be used to implement any geometrical structure
by periodic repetition of a unit cell. Fig. c) shows the deformation and the
corresponding stress-strain curve of an homogeneous cubic unit cell under ten-
sion. Clearly, Poisson’s ratio is positive and a conventional elastic-plastic tensile
response is obtained. However, the structure [32] shown in Fig. 1(d), which is
composed of several relatively small simple cubic elements, has a totally differ-
ent deformation behavior: it is auxetic (Poisson’s ratio is negative). Moreover,
the failure mode changes from elastic-plastic to plastic bending. Note that such
mechanical behavior is unusual in natural materials.

Third, we consider the control of the failure mode of mechanical metama-
terials. The body centered cubic (BCC) shell-lattice metamaterial depicted in
Fig. [7| has high stiffness, high strength, and large specific energy absorption at
low relative density [52]. The compressive failure mode of the metamaterial,
either dominated by plastic yield or buckling, is affected by the geometrical
parameters defining the structure, including the spherical node radius R, the
cylindrical strut radius r, the smooth connecting shell radius 7y, the cylindrical
strut length [y, the total length [, and thickness ¢;. These geometrical parame-
ters are not independent: we have 7y = 2R—7 and | = [y +2+/3(R—r). Further
fixing the total length of the shell strut and setting the relative density to 0.05,
only two independent parameters are left, for instance the spherical node ra-

dius R and the smooth connecting shell radius ry. After topology optimization,

16
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Figure 7: Body centered cubic (BCC) shell-lattice metamaterial. a) A unit cell is depicted
along with its geometrical parameters. b) Two different failure models can be observed for
the shell-lattice material, either plastic yield or buckling. The optimal designs obtained for c)

energy absorption and d) bearing load were fabricated by two-photon lithography.

we obtained two different functional shell metamaterials: a buckling dominated
metamaterial (R/r = 2.3 and /(I —lg) = 0.1) and a yield dominated metama-
terial (R/r = 2.5 and lo/(l — lp) = 0.2). The buckling dominated metamaterial
can almost recover 92% of its original shape after compressions in excess of 60%
strain, which makes it a good candidate for energy absorption. The yield domi-

nated metamaterial has higher stiffness, higher strength and better load bearing

17
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capacity. These examples encourage one to make possible the impossible.

4.2. Material non linearities and their use for energy absorption

Nonlinear metamaterials are widely used in our daily life for energy absorp-
tion [63, 54, 55 [56]. Aiming at absorbing as much energy as possible, nonlinear
metamaterials were usually designed to obtain a relatively large peak force with
large deformation [35 55, 57]. Most metamaterials utilize plastic deformation or
brittle fracture of micro-struts [37], shell [43] or plate [46] 47] to dissipate a large
amount of energy. Stretching dominated metamaterials [43] [46] [47], which are
maybe the most famous plastic yield metamaterials, have been proven to pos-
sess extraordinary loading bear capacity and energy absorption at high relative
density. In contrast, bending dominated metamaterials [35] 41], which make use
of plastic bending joint, allow for large deformation and provide relatively large
and nearly constant stress area in the nonlinear region at low relative density.
In addition, reusable energy metamaterials [568] [39, [59] were proposed to extend
their life span. By utilizing elastic buckling of shell, straight strut and curved
beam, reusable energy metamaterials were shown to present unusual features
including mechanical multi-stability [60, 61], close to 100 percent recovery after

unloading [39], 58|, 55], and controllable mechanical response [44].

5. Thermomechanical metamaterials

Systems placed in a thermal environment are sensitive to temperature changes

of their surroundings. An ambient temperature change AT will cause a thermal

18
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strain a;; AT in an elastic solid due to thermal expansion. Generally, thermal

expansion is described by a symmetric tensor of rank two

Q11 2 Q13
Qij = |z aop Qa3
Q13 Q23 (33
For isotropic solids, the thermal expansion tensor is proportional to the identity

matrix, a;; = o, where I is the rank-two identity matrix and «a is the thermal

length expansion defined by

10L

- — = 13
T Tor (13)
In the elastic stress-strain relation, thermal strain has to be subtracted from

total strain, leading to the relation
0ij = Cijii (ep — i AT) (14)
or, in the case of isotropic solids,
Oij = 2peij + Aeij0i; — (20 + 3X) AT 6. (15)

Note that the temperature dependence of the elastic constants was neglected in
the above equations.

Temperature variations can result both in thermal expansion and in geom-
etry changes, which can be problematic in temperature-sensitive applications
that require thermal stability like space frame trusses, satellite antennas and
space crafts [62] [63]. Alternatively, thermal expansion can also be tailored to

achieve some required thermal deformation and behavior. Material systems

19
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and structures can be deliberately designed to deform in a controllable manner
in response to a temperature stimulus. Applications based on this principle in-
clude morphing structures [64], large reversible shape changing components [65],
micro-actuators [66], self-assembly systems [67], grippers for soft micro-robotics
[68], biology devices [69], and so on.

Generally, those applications bring in demands on controllable coefficients of
thermal expansion (CTE), e.g. large, positive, negative or zero thermal expan-
sion materials and structures. Many efforts have been made to create architec-
tured materials with tunable CTE using two constituents with widely different
thermal expansion combined in space. Different concepts were proposed under
this approach and each has its working principle and specific advantages. One
major concept is utilizing the bending-dominated bi-material strip, based on
which some researchers proposed cellular solid structures with unbounded ther-
mal expansion [70, [7I]. Other concepts include stretch-dominated structures
composed of nested double-parallel units with large stiffness [71], flexure blade
structures with high CTE tunability [72], and tetrahedron structure combined
with sizable CTE tunability and large stiffness [73,[74]. Another major approach
is to generate CTE tunability via topology optimization [75} [76] [77]. Structures
obtained following this method are generally more complicated. Finally, using
3D printing technologies, researchers have managed to directly print metama-
terials with controllable thermal expansion and have achieved rather high but

negative thermal expansion coefficients [72] [78] [79].
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6. Conclusion

In this paper, we have presented general procedures to design mechanical
metamaterials in both the linear and the non linear regimes using an effective
medium approach based on simple mechanical models. We have emphasized
the complexity and the opportunities in the nonlinear case if one uses viscos-
ity or plasticity. Finally, we have summarized proposals aiming at using an
external stimulus (variation of temperature) to change the shape of designed

metamaterials.
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