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Abstract

The propagation of waves in fluid-saturated porous periodic structures is

significantly affected by the interface condition between adjacent layers. We

consider in this paper the partial-open pore interface condition between ad-

jacent layers in a one-dimensional fluid-saturated porous phononic crystal. A

transfer matrix method is devised to obtain both the complex band structure

and the poroelastic Bloch waves of the crystal. Spectral transmission through

a finite structure is further computed by a stiffness matrix method. Attention

is restricted to normal incidence of longitudinal waves. The influence of the

pore blockage, a parameter of the partial-open pore interface condition, and

of porosity and viscosity are investigated. The value of the pore blockage is

found to influence significantly both the dispersion of poroelastic waves but
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also the partition of wave energy between solid skeleton and pore fluid. The

effects of porosity and viscosity in the case of the partial-open pore interface

condition are similar to what was previously obtained in the fully open pore

case.

Keywords: Fluid-saturated porous media, phononic crystals, interface

effects, complex band structures

1. Introduction

Phononic crystals [1] (PCs) are artificial periodic composites that can con-

trol the propagation of acoustic/elastic waves. They can possess bandgaps [2,

3] due to either Bragg scattering [1] or local resonance [4]. Strong disper-

sion may also be observed in the passing bands [5]. PCs can further exhibit

peculiar properties, such as a negative effective mass density [6, 7], waveg-

uiding [8, 9], negative refraction [10, 11], or focusing [12, 13].

In the frequent case that PCs are composed of different materials, there

are interfaces between the latter. Those interfaces between the same or differ-

ent material phases can be considered as perfect or imperfect. The influence

of interface boundary conditions on wave propagation in PCs is a growing

research direction [14]. Li et al [15, 16] computed the band structure and the

transmission of elastic waves for two dimensional solid/solid smooth-contact

interface PCs. Albuquerque and Sesion [17] studied acoustic wave propaga-

tion in solid/fluid superlattices. Xu et al [18] calculated the band structure

of two dimensional solid/air hierarchical PCs. Wang et al [19] showed that

the fluid/solid interface plays an important role in controlling elastic wave

propagation by local additions of a fluid. Wee et al [20] demonstrated the
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manipulation of surface guided modes at a solid/fluid interface. Zhen et

al [21, 22] examined the surface/interface effects on the propagation of trans-

verse waves in two-dimensional nanoscale PCs.

The works mentioned above focused mostly on single-phased media. Re-

cently, increasing attention has been paid to PCs composed of two- or multi-

phased materials. Alevizaki et al [23] extended the layer-multiple-scattering

method to PCs of poroelastic spheres immersed in a fluid medium. Jiang and

Huang [24] realized gradient sound absorbers with periodic macro void struc-

ture. Zhu et al [25] put periodic metamaterial resonators in a porous layer to

achieve broadband low-frequency sound absorption. Wang et al [26, 27] stud-

ied wave propagation in one-dimensional and two-dimensional fluid-saturated

porous metamaterials (FSPM). Shi et al [28, 29, 30] investigated the mitiga-

tion of vibrations in saturated soil with periodic pile barriers.

It is worth pointing out that the effect of different interface boundary con-

ditions has mostly been considered for a single interface, but not for multi-

phase PCs. The scattering of waves at the interface between different porous

media has indeed been studied extensively. Geertsma and Smit [31] demon-

strated that the slow longitudinal wave is generated at any interface between

a porous medium and another medium. Lovera [32] derived general bound-

ary conditions for interfaces with arbitrary shapes between porous media and

other media. Rasolofosaon [33] showed that fluid transfer at the interface be-

tween a liquid and a porous medium is important for the generation of the

slow longitudinal wave. Wu et al [34] and Denneman [35] investigated the

reflection and the transmission of elastic waves between a porous medium

and fluid. Vashisth et al [36] studied elastic wave propagation through the
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dislocation-like interface between an elastic solid and a porous medium. The

discussion was later extended to the reflection and the refraction of seismic

waves between elastic and porous half-planes [37]. Following Deresiewicz and

Skalak [38], Kumar and Miglani [39] discussed the effects of pore blockage on

surface wave propagation across the interface between two dissimilar porous

media. Sharma [40] investigated the influence of different sets of boundary

conditions on the energy partition across the porous-porous interface.

In this paper, we focus on poroelastic wave propagation in one-dimensional

fluid-saturated porous phononic crystals (FSPPC) with varying interface con-

ditions parameterized by the pore blockage parameter. By using a transfer

matrix method, complex band structures are obtained, as well as the eigen-

modes at selected points. Transmission through finite structures is calculated

by using a stiffness matrix method. The influence on wave propagation of the

pore blockage and of the material parameters of the pore fluid is discussed.

Only normal incidence is considered throughout the paper and attention is

limited to the two longitudinal waves of fluid-saturated porous media.

2. Problem statement and mathematical formulation

2.1. Interface conditions between two FSP media

Following Deresiewicz [38], the interface boundary condition between two

FSP materials can be simplified into one of the three models depicted in

Fig. 1. The interface boundary condition in Fig. 1(a) is the open pore

interface, for which the pores of the two FSP media are fully connected

at the interface, so that the fluid can flow in between them. This is the

case considered previously for FSP phononic crystals [26, 27]. The interface
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Figure 1: Schematic representation of different interfaces between two FSP media, seen at

the microscopic scale, adapted from Ref. [38]. (a) Open pore interface. (b) partial-open

pore interface. (c) Sealed pore interface. The yellow and green areas represent the solid

skeletons, and the blue areas represent fluid.

boundary condition in Fig. 1(c) is called the ‘sealed-pore’ interface. In this

case there is no connection between the pores of both FSP materials and the

fluid is sealed inside each of them. The interface boundary condition in Fig.

1(b) is the intermediate case where the pores of two FSP media are partially

connected. It is also termed the partial-open pore interface. The average area

at the interface where flow is possible is smaller than the intersection area of

the pores on either side of the interface. Considering homegenized quantities,

the flow through the interface produces a pressure drop or discontinuity,

which is translated in the interface boundary condition [38]

p(1) − p(2)=hẇn (1)

where h is the pore blockage coefficient representing the effect of the area

of the pore being blocked, with units Pa · s/m. ẇn is the relative particle

velocity in the fluid measured in the normal direction.

2.2. Solution of wave equations

In this paper, we consider a one-dimensional FSP periodic structure com-

posed of two materials A (yellow color) and B (grey color), as shown in Fig.
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2. Both materials are isotropic. The geometrical and physical parameters

of the present A-B system are the same as those considered in Ref. [26] and

the basic equations in this section were mostly given therein. In the present

work, we only consider normal incidence of waves. In this case, the shear

wave is uncoupled from the two longitudinal waves and is disregarded in the

analysis.

On the basis of Biot’s theory [41], the constitutive equations for isotropic

FSP media are expressed as

σ(j)
xx=(2B

(j)
1 +B

(j)
2 )e(j)xx +B

(j)
3 ξ(j),

p(j)x =B
(j)
3 e(j)xx +B

(j)
4 ξ(j), (2)

where j=1, 2 refers to the first and second layers of the unit-cell. σ
(j)
xx and e

(j)
xx

are the stress and strain of the solid skeleton. p
(j)
x is the pore pressure, and

y

x1
y1

x2
y2

{The d-th unit-cell
a1 a2

Incident wave
x

Figure 2: Schematic representation of a 1D fluid-saturated porous phononic crystal. The

lattice constant is a = a1+a2. Periodicity is along the x direction; the other two directions

are infinite. The alternating layers are considered as homogenized fluid-saturated porous

media.
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ξ(j) is the increment of the fluid content per unit volume. The displacement

components of the skeleton and of the fluid are denoted as u
(j)
x and U

(j)
x ,

respectively. The strain and the increment can be expressed as

e(j)xx=u(j)x,x, ξ(j)=w(j)
x,x, (3)

where w
(j)
x =φ(j)(U

(j)
i − u

(j)
i ); and φ(j) is the porosity of the materials. The

material coefficients B
(j)
1 and B

(j)
4 are spatially periodic and determined by

the materials properties of the solid skeleton and fluid [42]:

B
(j)
1 =C

(j)
44 ,

B
(j)
2 =C

(j)
12 +B

(j)
3 B

(j)
4 /B

(j)
4 ,

B
(j)
3 =−

(
1− C

(j)
11 + 2C

(j)
12

3K
(j)
s

)
B

(j)
4 ,

B
(j)
4 =

(
1− φ(j)

K
(j)
s

+
φ(j)

K
(j)
f

− C
(j)
11 + 2C

(j)
12

3K
(j)
s K

(j)
s

)−1

, (4)

where C
(j)
11 , C

(j)
12 and C

(j)
44 are the elastic constants of the solid skeleton.

K
(j)
s and K

(j)
f represent the bulk modulus of the solid skeleton and of the

pore fluid, respectively. The equations of motion can be expressed in local

coordinates as

σ(j)
xx=ρ(j)ü(j)x + ρ

(j)
f ẅ(j)

x ,

−p(j)x,x=ρ
(j)
f ü(j)x +m

(j)
11 ẅ

(j)
x + r

(j)
11 ẇ

(j)
x , (5)

where ρ(j)=(1− φ(j))ρ
(j)
s + φ(j)ρ

(j)
f , ρ

(j)
s and ρ

(j)
f are the mass densities of the

solid skeleton and of the pore fluid, respectively. m
(j)
11 and r

(j)
11 are coefficients

introduced by Biot. For isotropic FSP materials, we have m
(j)
11 = m(j) and

r
(j)
11 = r(j).
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Substituting Eq. (5) into Eq. (2), the wave equations of FSP media are

obtained as

(2B
(j)
1 +B

(j)
2 )

∂2u
(j)
x

(∂x(j))
2 −B

(j)
3

∂2w
(j)
x

(∂x(j))
2=ρ(j)ü(j)x + ρ

(j)
f ẅ(j)

x ,

−B(j)
3

∂2u
(j)
x

(∂x(j))
2 +B

(j)
4

∂2w
(j)
x

(∂x(j))
2=ρ

(j)
f ü(j)x +m(j)ẅ(j)

x + γ(j)ẇ(j)
x , (6)

For time-harmonic plane waves, we have

u(j)x =A(j)exp(iq(j)x(j))exp(−iωt),

w(j)
x =C(j)exp(iq(j)x(j))exp(−iωt), (7)

where i=
√
−1, x(j) ∈ (0, aj) and aj is the thickness of the j-th layer of the

unit cell. The lattice constant is a=a1 + a2. q(j) is the wavenumber along

the x direction.
[
A(j), C(j)

]
are coefficients to be determined. Substitution

of Eq. (7) into Eq. (6) leads to the following equations:

(ρ(j)ω2 − (2B
(j)
1 +B

(j)
2 )(q(j))2)A(j) + (B

(j)
3 (q(j))2 + ρ

(j)
f ω2)C(j)=0,

(B
(j)
3 (q(j))2 + ρ

(j)
f ω2)A(j) + (m̄(j)ω2 −B(j)

4 (q(j))2)C(j)=0, (8)

where m̄(j) = m(j) + iγ(j)

ω
. The existence of non-trivial solutions of Eq. (8)

requires that the determinant of the coefficient matrix is zero. Therefore, we

have ∣∣∣∣∣∣ρ
(j)ω2 − (2B

(j)
1 +B

(j)
2 )(q(j))

2
B

(j)
3 (q(j))

2
+ ρ

(j)
f ω2

B
(j)
3 (q(j))

2
+ ρ

(j)
f ω2 m̄(j)ω2 −B(j)

4 (q(j))
2

∣∣∣∣∣∣=0. (9)

Eq. (9) admits two solutions for (q(j))2. Hence, there are two pairs of roots
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they are opposite to each other

q
(j)
1 =− q(j)2 =ω

√√√√−G(j)
2 +

√
G

(j)
2 G

(j)
2 − 4G

(j)
1 G

(j)
3

2G
(j)
1

,

q
(j)
3 =− q(j)4 =ω

√√√√−G(j)
2 −

√
G

(j)
2 G

(j)
2 − 4G

(j)
1 G

(j)
3

2G
(j)
1

, (10)

with G
(j)
1 =(2B

(j)
1 +B

(j)
2 )B

(j)
4 −B

(j)
3 B

(j)
3 , G

(j)
2 =−(2B

(j)
1 +B

(j)
2 )m̄(j)−ρ(j)B(j)

4 −

2ρ
(j)
f B

(j)
3 , and G

(j)
3 =ρ(j)m̄(j)−ρ(j)f ρ

(j)
f . The positive (negative) value of a root

means that the wave propagates in the positive (negative) direction along

the x direction. q
(j)
1 and q

(j)
3 represent the coupled slow (P2) and fast (P1)

longitudinal wave, respectively. For each q
(j)
l (l=1 ∼ 4), the amplitude ratios

of the waves can be expressed according to Eq. (8) as

f
(j)
l =

C
(j)
l

A
(j)
l

=
(2B

(j)
1 +B

(j)
2 )(q

(j)
l )

2
− ρ(j)ω2

B
(j)
3 (q

(j)
l )

2
+ ρ

(j)
f ω2

. (11)

The displacement of the fundamental wave decomposes into slow and fast

longitudinal waves. According to Eqs. (7), (10) and (11), the general solution

for the displacement can be written as

u(j)x =
4∑
l=1

A
(j)
l exp(iq

(j)
l x(j))exp(−iωt),

w(j)
x =

4∑
l=1

f
(j)
l A

(j)
l exp(iq

(j)
l x(j))exp(−iωt). (12)

Substituting Eq. (12) into Eq. (2), the stress and pressure general solu-
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tion are obtained as

σ(j)
xx=

4∑
l=1

n
(j)
l A

(j)
l exp(iq

(j)
l x(j))exp(−iωt),

p(j)x =
4∑
l=1

g
(j)
l A

(j)
l exp(iq

(j)
l x(j))exp(−iωt), (13)

where g
(j)
l =iq

(j)
l

[
(2B

(j)
1 +B

(j)
2 )−B(j)

3 f
(j)
l

]
and n

(j)
l =iq

(j)
l (B

(j)
3 −B

(j)
4 f

(j)
l ).

2.3. Transfer matrix

We now consider the propagation of elastic waves in the isotropic FSP

periodic structure with partial-open pore interfaces. To calculate the transfer

matrix, we define the state vector as V=[ux, wx, σxx, px]
T. For the d-th unit-

cell, the state vectors at the left and right sides of the j-th layer can be

written as[
V

(j)
L

](d)
=
[
u(j)x , w(j)

x , σ(j)
xx , p

(j)
x

]T
x(j)=0

=P
(j)
L

[
A

(j)
1 , A

(j)
2 , A

(j)
3 , A

(j)
4

]T
exp(−iωt),[

V
(j)
R

](d)
=
[
u(j)x , w(j)

x , σ(j)
xx , p

(j)
x

]T
x(j)=aj

=P
(j)
R

[
A

(j)
1 , A

(j)
2 , A

(j)
3 , A

(j)
4

]T
exp(−iωt).

(14)

Here P
(j)
L and P

(j)
R are 4× 4 matrices whose elements are listed in Appendix

A.

For the interface between two layers of the d-th unit cell, we obtain the

following relationship using continuity conditions:
u1x

w1
x

σ1
xx

p1x



(d)

x(1)=a1

=


u2x

w2
x

σ2
xx

p2x + hẇ2
x



(d)

x(2)=0

. (15)
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Similarly, the continuity conditions at the interface between the (d−1)-th

and the d-th unit-cells can be expressed as
u1x

w1
x

σ1
xx

p1x



(d)

x(1)=0

=


u2x

w2
x

σ2
xx

p2x − hẇ2
x



(d−1)

x(2)=a2

. (16)

Substituting Eq. (14) into Eq. (15) and (16), we derive the following

relation:

P1
RΨ1

d=(P2
L − iωhY)Ψ2

d,

P1
LΨ1

d=(P2
R + iωhZ)Ψ2

d−1, (17)

where Ψj
d−1 and Ψj

d are the amplitude vectors for the j−th layer of the

(d− 1)-th and d-th unit-cells. From Eq. (17), we have the following relation:

Ψ2
d=(P2

L − iωhY)−1P1
R(P1

L)−1(P2
R + iωhZ)Ψ2

d−1. (18)

As a result, the transfer matrix of the adjacent cell can be expressed as

Td=(P2
L − iωhY)−1P1

R(P1
L)−1(P2

R + iωhZ), (19)

where Y and Z are 4 × 4 matrices whose elements are listed in Appendix

A. For periodic structures, Td (d = 1, 2, ..., s) are the same and are simply

denoted T. Because of periodicity along the x direction, Bloch’s theorem

implies

Ψ2
d=exp(ikxa)Ψ2

d−1. (20)
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Substituting Eq. (20) into Eq. (18), we get

(T− exp(ikxa)I) Ψ2
d=0. (21)

Finally, we obtain the following eigenvalue equation:

|T− exp(ikxa)I|=0, (22)

where kx is the Bloch wavenumber in the x direction and I is the 4×4 identity

matrix. For a given frequency, kx can be obtained by solving Eq. (21). As a

result, the complex band structure kx(ω) can be obtained.

2.4. Modal distribution

Combining Eqs. (17) and (21), we have

(T− exp(ikxa)I)
(
P2
R + iωhZ

)−1
P1
L[A1

1, A
1
2, A

1
3, A

1
4]

T
exp(−iωt)=0,

[A2
1, A

2
2, A

2
3, A

2
4]

T − (P2
L − iωhY)

−1
P1
R[A1

1, A
1
2, A

1
3, A

1
4]

T
=0. (23)

Solving Eq. (22), we obtain the amplitude ratio relations:

A1
2=Q1A

1
1, A

1
3=R1A

1
1, A

1
4=S1A

1
1,

A2
1=O2A

1
1, A

2
2=Q2A

1
1, A

2
3=R2A

1
1, A

2
4=S2A

1
1. (24)

The expressions of the proportionality coefficients are listed in Appendix B.

Substituting Eq. (22) into Eq. (12), the displacement can be written as

ux1=(exp(iq11x) +Q1exp(iq12x) +R1exp(iq13x) + S1exp(iq14x))A1
1exp(−iωt),

wx1=(f 1
1 exp(iq11x) + f 1

2Q1exp(iq12x) + f 1
3R1exp(iq13x) + f 1

4S1exp(iq14x))A1
1exp(−iωt), x ∈ [0, a1]

(25)

12



and

ux2=(O2exp(iq21x) +Q2exp(iq22x) +R2exp(iq23x) + S2exp(iq24x))A1
1exp(−iωt),

wx2=(f 2
1O2exp(iq21x) + f 2

2Q2exp(iq22x) + f 2
3R2exp(iq23x) + f 2

4S2exp(iq24x))A1
1exp(−iωt), x ∈ [0, a2].

(26)

The stresses and the pressure can be easily calculated in the same way.

2.5. Stiffness matrix method

The transfer matrix method may become unstable when the number of

layers is large [43]. Some researchers have proposed stable solution methods,

such as the stiffness matrix method [44]. In case our considerations were

generalized to oblique incidence or to surface waves, it may be worthwhile

considering scattering-matrix methods [45, 46]. In this work, the stiffness

matrix method is employed to calculate transmission spectra. In practice, the

stiffness matrix reflects the relationship between displacements and stresses.

Similarly to Ref. [47], we also assume that the generalized displacements and

stresses are [σ1,u1]
T at the left boundary of the first layer, [σ2,u2]

T at the

interface between the two sub-layers, and [σ3,u3]
T at the right boundary of

the second layer. According to the constitutive relation [44], we have the

following relationship: σ1

σ2

=

KA
11 KA

12

KA
21 KA

22

u1

u2

 ,
σ2

σ3

=

KB
11 KB

12

KB
21 KB

22

u2

u3

 , (27)
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where KAand KB is 4× 4 stiffness matrices of the first and the second layer.

Their expressions are

KA=E1
σ(E1

u)
−1
,

KB=E2
σ(E2

u)
−1
. (28)

We can easily write the local stiffness matrix of the unit cell by eliminating

σ2 and u2 of Eq. (27):σ1

σ3

=

KA
11+KA

12(K
B
11 −KA

22)
−1

KA
21 −KA

12(K
B
11 −KA

22)
−1

KB
12

KB
21(K

B
11 −KA

22)
−1

KA
21 KB

22 −KB
12(K

B
11 −KA

22)
−1

KB
21

u1

u3

 ,
(29)

When the periodic structure is composed of b unit cells, the KA and KB

matrices can be treated as the global stiffness matrix Kb−1 for the left (b− 1)

unit cells and the local stiffness matrix Kb of the b-th unit cell. In addition,

the stiffness matrix expression of the whole structure can be written

K=

Kb−1
11 +Kb−1

12 (Kb
11 −Kb−1

22 )
−1

Kb−1
21 −Kb−1

12 (Kb
11 −Kb−1

22 )
−1

Kb
12

Kb
21(K

b
11 −Kb−1

22 )
−1

Kb−1
21 Kb

22 −Kb
12(K

b
11 −Kb−1

22 )
−1

Kb
21

 .
(30)

It should be stressed that the above derivation assumes that the gener-

alized displacements and stresses are continuous at the interface. However,

there is a pressure drop at the interface for the partial-open pore interface.

Therefore, we should write down the equivalent pressure to keep continuous

generalized stresses at the interface. Substituting Eq. (1) into Eq. (28), we

can calculate the local stiffness matrix of the unit-cell.

For the first unit cell, we need to write the equivalent pressure at the

interface between two sub-layers. The elements of matrices E1
u1

, E1
σ1

, E1
u2

14



and E1
σ2

are listed in Appendix C. For the remaining unit cells, the pressure

is continuous not only at the interface of the two sub-layers, but also at the

interface of the adjacent cells. The elements of the matrix E2
σ1

are given

in Appendix C. The other matrices obey the following relations: E2
u1

=E1
u1

,

E2
u2

=E1
u2

, and E2
σ2

=E1
σ2

.

We assume that the periodic structure is placed between two semi-infinite

homogeneous media. The P2 wave is incident from the left. As a result, the

displacements of the incident wave field can be written as

ux0=exp(iq11x0)U0 + exp(iq12x0)RP2 + exp(iq14x0)RP1,

wx0=f
1
1 exp(iq11x0)U0 + f 1

2 exp(iq12x0)RP2 + f 1
4 exp(iq14x0)RP1, (31)

where U0 is the amplitude of the incident waves. RP2 and RP1 are the

amplitudes of the reflected waves. The subscript 0 represents the left infinite

structure. Similarly, we can write the transmitted displacement as

uxs=exp(iq21xs)TP2 + exp(iq23xs)TP1,

wxs=f
2
1 exp(iq21xs)TP2 + f 2

3 exp(iq23xs)TP1, (32)

where TP2 and TP1 are the transmitted amplitudes and the subscript s rep-

resents the right infinite structure. Therefore, the relation between displace-

ments and stresses at the boundaries can be expressed by using the stiffness

matrix as σ0

σs

=K

u0

us

 , (33)

where σ0=[σx0, px0]
T and u0=[ux0, wx0]

T are the stresses and the displace-

ments of the incident wave. σs=[σxs, pxs]
T and us=[uxs, wxs]

T are the trans-

mitted stresses and displacements. Substituting Eqs. (30) and (31) into Eq.
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(32), we obtain the transmission and reflection coefficients:[
RP2

U0

RP1

U0

TP2

U0

TP1

U0

]
=M−1NP2, (34)

where RP2/U0 and RP1/U0 are reflection displacement coefficients. TP2/U0

and TP1/U0 are transmitted displacement coefficients. The elements of ma-

trices M and Np2 are listed in Appendix D. When the incident wave is the

P1 wave, NP2 must be replaced by NP1. The elements of NP1 are also listed

in Appendix D.

3. Numerical results and discussion

In this section, we consider Bloch wave propagation in 1D FSP phononic

crystal with partial-open pore interfaces. Complex band structures, trans-

mission spectra, as well as eigenmodes are calculated by using the theory in

section 2 for the same material parameters as in Ref. [26]. The ratio of the

thicknesses of the two materials (saturated soil and concrete) is arbitrarily

chosen as 13 : 7, for definiteness. We have checked that the conclusions are

not significantly affected if this ratio is modified. For comparison with pre-

vious finite element results [26], the open pore case is considered first, before

moving to the partial-open pore case. The influence of porosity is considered

last.

3.1. Open pore interface

First, we consider the case of open pore interface by setting h=0 Pa · s/m.

There is no pressure difference at the interface, so the displacement, the stress

and the pressure are all continuous at the interface. As a note, we choose

αj(∞)=1.02 throughout this paper. The complex band structure is shown in
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Fig. 3(a). The black dots represent the results obtained by the finite element

method (FEM). They are fully consistent with the transfer matrix method.

The color scale represents the relative energy ratio of the kinetic-energy in

the solid skeleton to the total kinetic energy:

Ps=

∫
esdx

(
∫
es + ef )dx

, (35)

where es=(1 − φ)ρsω
2u2x/2 and ef=φρfω

2U2
x/2 represent the kinetic energy

densities for the solid skeleton and the pore fluid, respectively. The line

integration is along the unit cell. The consideration of the relative energy

ratio allows us to identify the relation of each band with the fast longitudinal

wave (P1 wave) and the slow longitudinal wave (P2 wave). The first two

bands are of almost pure relative energy ratio but undergo an anti-crossing

around a reduced frequency of 1000 m/s [26]. Note that the relative energy

ratio of Bloch waves is generally mixed with P1 and P2 components. In

the following, bands whose color is close to red are termed quasi-P1 (QP1),

whereas bands whose color is close to blue are termed quasi-P2 (QP2).

In addition, the transmission spectra of a finite structure with 50 unit

cells are calculated by using the stiffness matrix method and are shown in

Fig. 3(b). The red (blue) line represents the displacement transmission

coefficient TP1/U0 (TP2/U0) under the incidence of a source P1 (P2) wave.

The eigenmodes at the selected points M1 and M2 just below the anti-crossing

of the P1 and the P2 waves are plotted in Fig. 3(c) and are obtained according

to Eqs. (25)-(26). For comparison, the eigenmodes calculated by FEM are

also plotted in Fig.3(c) with black dash lines. They match almost exactly

with the transfer matrix results. As a note, the transfer matrix method is

faster than 1D FEM and is in principle much more precise, since its derivation
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Figure 3: Complex band structure for one-dimensional FSPPC with the open-pore inter-

face. Panel (a) consists of two parts: the left and right parts show the relation of reduced

frequency with the real and imaginary parts of the wave number, respectively. The black

dots represent the complex band structure calculated by FEM. The color scale from blue

to red represents the relative energy ratio from 0 to 1. The transmission curves for 50-unit

cells structure are plotted in panel (b). The red (blue) line represents the displacement

transmission coefficient TP1/U0 (TP2/U0) under the incidence of the P1 (P2) wave. The

gray regions represent the complete band gaps for both P1 and P2 waves in panel (a),

while the light gray region shows the Bragg band gap for P1 wave. Panel (c) shows the

normalized displacement distribution red ux for and blue for wx at the marked points in

panel (a) at 429 m/s. The relative energy ratio is 0.7719 at point M1 and 0.2436 at point

M2. The black dashed lines are the results obtained by FEM.

does not rely on any approximation. Its main disadvantage is that it is

specialized to one-dimensional structures.

3.2. Partial-open pore interface

In this section, we focus on wave propagation in 1D FSP phononic crystal

with partial-open pore interfaces by varying the pore blockage coefficient h.

In this case, the displacement and stress at the interface remain continuous,

but the pressure is discontinuous according to Eq. (1). The numerical results
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Figure 4: Complex band structure for the 1D FSPPC with the partial-open pore interface.

The left and right parts in panel (a) stand for the relation of the reduced frequency with

the real and imaginary parts of the wave number, respectively. The color scale is the same

as that in Fig. 3. The black dots represent the complex band structure calculated by

FEM. The inset represents a larger view of the imaginary part of the wave number. The

calculated transmissions of a finite structure with 50 unit cells are plotted in panel (b).

The red (blue) line represents the displacement transmission coefficient TP1/U0 (TP2/U0)

under the incidence of the P1 (P2) wave. Panel (c) shows the normalized displacement

distribution at the marked points in panel (a). The relative energy ratio at marked points

is 0.7719 (M3), 0.2416(M4), 0.7725(M5), 0.2106 (M6), 0.986 (M7) and 0.0957 (M8).
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are summarized in Fig. 4.

When the value of the pore blockage coefficient is rather small (h=105

Pa · s/m), the main change compared to the open pore condition is the ap-

pearance of a small imaginary part of the Bloch wavenumber, even at low

frequencies. The real part of the complex band structure concurrently shows

very limited changes. The degenerated evanescent bands in the avoided-

crossing start to separate gradually. The imaginary part of the QP2 wave

increases slightly at all frequencies and thus turns into an evanescent wave.

This change reflects in the decrease of the transmission coefficient TP2/U0

under P2 wave incidence, whereas TP1/U0 is almost unchanged. Looking at

the relative energy ratio just below the anti-crossing, the modal distribution

at point M3 (M4, respectively) is almost identical to that at point M1 (M2,

resp.) for the open pore case.

Increasing the pore blockage coefficent (h=106 Pa · s/m), the real band

structure is further stretched around the anti-crossing as a system of two

complex bands is forming, separating more neatly the QP1 and the QP2

waves. The imaginary part of the Bloch wavenumber for the QP2 wave in-

creases notably. The Bragg gaps for the QP2 wave almost disappear, leaving

only a reduced damping at the lower folding points on the first Brillouin

zone boundary. The QP1 wave acquires an imaginary component of the

Bloch wavenumber around the frequencies of the anti-crossing, owing to the

coupling between the QP1 and QP2 waves in this range. The transmission

TP2/U0 for the QP2 wave is strongly reduced at all frequencies. Meanwhile,

the transmission coefficient TP1/U0 for the QP1 wave is strengthened inside

the first Bragg band gap but is not significantly changed otherwise. Looking
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at the relative energy ratio just below the anti-crossing, the modal distribu-

tion at point M5 is again almost identical to that at point M1 for the open

pore case, but the modal distribution at point M6 differs from that at point

M2 along the unit cell.

When the pore blockage coefficent is further increased (h=109 Pa · s/m),

the real part of the dispersion relation for the QP2 wave locates mostly

around the high symmetry points of the Brillouin zone. Its imaginary part is

actually very large at all frequencies. Meanwhile, the imaginary part of the

dispersion of the QP1 wave is not affected, except inside the first Bragg gap

where the attenuation is enhanced. As whole, the QP1 and QP2 waves be-

come almost completely decoupled. Looking at the relative energy ratio just

below the anti-crossing, the modal distribution at point M7 (QP1 branch) is

almost purely in the solid skeleton, whereas the modal distribution at point

M8 (QP2 branch) is dominantly in the pore fluid and is strongly attenuated

by the partial-open pore interface boundary condition.

Before ending this section, we would like to mention that since there is

no connection between two porous media for the sealed pore interface, it is

equivalently modeled by adding an impermeable membrane at the interface.

This could be implemented by setting both h=∞ and ẇn=0 in Eq. (1).

In this case, however, the pressure would not be specified and the pressure

drop would remain uncertain. The complex band structure hence can not

be solved for. Anyway, we can anticipate the infinite limit by removing the

QP2 wave in the complex band structure and keeping only the QP1 bands.

In the limit, the FSP phononic crystal behaves as an elastic phononic crystal

for the QP1 wave only and a periodic lossy structure for the QP2 wave.
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Figure 5: Influence of the porosity parameter φ on the complex band structure for the 1D

FSPPC with the partial-open pore interface (h=105 Pa · s/m). Panel (a) shows the reduced

frequency as a function of the real and of the imaginary parts of the reduced wavenumber.

The color scale is the same as that in Fig.3. Transmission spectra are plotted in panel (b).

The red (blue) line represents the displacement transmission coefficient TP1/U0 (TP2/U0)

under the incidence of the P1 (P2) wave. The relative energy ratio at marked points is

0.8824 (N1), 0.0984 (N2), 0.8147 (N3), 0.1827 (N4), 0.800 (N5) and 0.2126 (N6).

22



3.3. Influence of porosity

In this section, we focus on the influence of porosity on wave propagation

through the FSP PCs with partial-open pore interfaces, for h=105 Pa · s/m.

The complex band structures and the transmission spectra are shown in

Fig. 5 for selected values of the porosity. For comparison purposes, the

band structure of the single-phase elastic PC is also plotted with dotted

lines (φ=0), for which case there is only one longitudinal wave. When a

small porosity (φ=0.04) is introduced, the phase velocity of the QP1 wave

decreases. The QP2 wave branches cross four times the QP1 wave branches

in the considered frequency range, inducing four avoided crossings.

When the porosity increases, the phase velocity of the QP2 wave increases.

Concurrently, the phase velocity of the QP1 wave decreases, but only slightly.

As a result of the change in the slope of the branches, the number of avoided-

crossings decreases. There are only two of them when φ=0.1 and only one

when φ=0.4.

For the first anti-crossing, the frequency at which the QP1 and QP2

should intercept is given by the following relation [2]:

kp1(ω) = 2π/a− kp2(ω). (36)

The following avoided-crossings are obtained by equating similar combina-

tions of ±kp1 and ±kp1=2 with exactly a reciprocal lattice spacing. kp1 and

kp2 are the wavenumbers of the P1 and P2 phonons, respectively, when they

are unfolded into the extended Brillouin zone. As such, Eq. (36) describes a

phonon-phonon scattering similar to an Umklapp scattering. It is worth not-

ing that the second band gap is a bit complex, like a ’wavenumber’ bandgap.
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In the pass band of QP2 wave, the imaginary wave number increases mono-

tonically with porosity, leading to an overall small transmission (TP2/U0). It

is also observed that the attenuation in the lowest avoided-crossing is more

pronounced, as well as the Bragg gap for the QP1 wave. These gaps also get

wider with an increase in porosity, as verified with the transmission curves

(Fig. 5(c)).

Furthermore, we have also considered the influence of the fluid viscosity

on wave propagation in the FSPCs with partial-open pore interfaces. The

results are similar to those for open pore interfaces [26] and are gathered in

Appendix E.

4. Conclusions

In this paper, we have investigated wave propagation in 1D fluid-saturated

porous phononic crystals with partial-open pore interfaces. Complex band

structures and modal distributions were calculated by a transfer matrix

method. Transmission spectra were calculated by a stiffness matrix method.

Both transmission and transfer matrix methods were devised specifically for

fluid-saturated porous media. The results for the open-pore interface agree

exactly with previous finite element results [26]. The pore blockage coeffi-

cient, the fluid viscosity and the porosity all strongly influence wave prop-

agation, and especially the existence of avoided-crossings between the fast

and the slow longitudinal waves of fluid-saturated porous media. The value

of the pore blockage is found to influence significantly both the dispersion of

poroelastic waves but also the partition of wave energy between solid skeleton

and pore fluid. The effects of porosity and viscosity in the case of the partial-
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open pore interface condition are similar to what was previously obtained in

the fully open pore case. The present work could be extended to 2D and 3D

cases, with the added consideration of shear waves. It would also be interest-

ing to consider porous/fluid or porous/solid interfaces. The related problems

are of great significance for the practical application of fluid-saturated porous

phononic crystals and metamaterials.

It is worth noting that Biot’s theory conforms to the actual interpreta-

tion of elastic wave propagation when describing the macroscopic mechanical

behavior of liquid-saturated porous media. However, it cannot fully reveal

the actual phases within the porous medium and the interactions between

those phases when the micro-mechanical behaviour is of interest. In this

case, models containing different constitutents and taking into account their

physical boundaries are required [48].
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Appendix A. Transfer matrices

The transfer matrices in Eq. (17)-(19) are

Pj
L=


1 1 1 1

f j1 f j2 f j3 f j4

gj1 gj2 gj3 gj4

nj1 nj2 nj3 nj4

 ,

Pj
R=


exp(iqj1x

(j)) exp(iqj2x
(j)) exp(iqj3x

(j)) exp(iqj4x
(j))

f j1exp(iqj1x
(j)) f j2exp(iqj2x

(j)) f j3exp(iqj3x
(j)) f j4exp(iqj4x

(j))

gj1exp(iqj1x
(j)) gj2exp(iqj2x

(j)) gj3exp(iqj3x
(j)) gj4exp(iqj4x

(j))

nj1exp(iqj1x
(j)) nj2exp(iqj2x

(j)) nj3exp(iqj3x
(j)) nj4exp(iqj4x

(j))

 ,

(A.1)

Y=


0 0 0 0

0 0 0 0

0 0 0 0

f 2
1 f 2

2 f 2
3 f 2

4

 ,

Z=


0 0 0 0

0 0 0 0

0 0 0 0

f 2
1 exp(iq21a2) f 2

2 exp(iq22a2) f 2
3 exp(iq23a2) f 2

4 exp(iq24a2)

 .
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Appendix B. Modal distribution

The coefficients used to calculate the modal distribution are

D= (T− exp(ikxa)I)
(
P 2
R + iωhZ

)−1
P1
L,

E=(P2
L − iωhY)

−1
P1
R,

Q1=−
(D34D43 −D33D44)(D44D21 −D24D41) + (D44D23 −D24D43)(D31D44 −D34D41)

(D34D43 −D33D44)(D44D22 −D24D42) + (D44D23 −D24D43)(D32D44 −D34D42)
,

R1=
(D31D44 −D34D41) + (D32D44 −D34D42)Q1

D34D43 −D33D44

,

S1=−
D41 +Q1D42 +R1D43

D44

,

S1=−
D41 +Q1D42 +R1D43

D44

, (B.1)

O2=E11 + E12Q1 + E13R1 + E14S1,

Q2=E21 + E22Q1 + E23R1 + E24S1,

R2=E31 + E32Q1 + E33R1 + E34S1,

S2=E41 + E42Q1 + E43R1 + E44S1.

Appendix C. Stiffness matrices

The matrices in Eq. (28) are expressed as

E1
u1

=


1 1 1 1

f 1
2 f 1

4 f 1
1 f 1

3

exp(iq12a1) exp(iq14a1) exp(iq11a1) exp(iq13a1)

f 1
2 exp(iq12a1) f 1

4 exp(iq14a1) f 1
1 exp(iq11a1) f 1

3 exp(iq13a1)

 ,
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E1
σ1

=


g12 g14 g11 g13

n1
2 n1

4 n1
1 n1

3

g12exp(iq12a1) g14exp(iq14a1) g11exp(iq11a1) g13exp(iq13a1)

n1
2exp(iq12a1) n1

4exp(iq14a1) n1
1exp(iq11a1) n1

3exp(iq13a1)

 ,

E1
u2

=


1 1 1 1

f 2
2 f 2

4 f 2
1 f 2

3

exp(iq22a2) exp(iq24a2) exp(iq21a2) exp(iq23a2)

f 2
2 exp(iq22a2) f 2

4 exp(iq24a2) f 2
1 exp(iq21a2) f 2

3 exp(iq23a2)

 , (C.1)

E1
σ2

=


g22 g24 g21 g23

n2
2 − iωhf 2

2 n2
4 − iωhf 2

4 n2
1 − iωhf 2

1 n2
3 − iωhf 2

3

g22exp(iq22a2) g24exp(iq24a2) g21exp(iq21a2) g23exp(iq23a2)

n2
2exp(iq23a2) n2

4exp(iq24a2) n2
1exp(iq21a2) n2

3exp(iq23a2)

 ,

E2
σ1

=


g12 g14 g11 g13

n1
2 − iωhf 1

2 n1
4 − iωhf 1

4 n1
1 − iωhf 1

1 n1
3 − iωhf 1

3

g12exp(iq12a1) g14exp(iq14a1) g11exp(iq11a1) g13exp(iq13a1)

n1
2exp(iq12a1) n1

4exp(iq14a1) n1
1exp(iq11a1) n1

3exp(iq13a1)

 .
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Appendix D. Matrices elements

The elements of matrices M, NP2 and NP1 are

M(1, 1)=(KN(1, 1) +KN(1, 2)f 1
2 − g12)exp(iq12x0),

M(1, 2)=(KN(1, 1) +KN(1, 2)f 1
4 − g14)exp(iq14x0),

M(1, 3)=(KN(1, 3) +KN(1, 4)f 2
1 )exp(iq21xs),

M(1, 4)=(KN(1, 3) +KN(1, 4)f 2
3 )exp(iq23xs),

M(2, 1)=(KN(2, 1) +KN(2, 2)f 1
2 − n1

2)exp(iq12x0),

M(2, 2)=(KN(2, 1) +KN(2, 2)f 1
4 − n1

4)exp(iq14x0),

M(2, 3)=(KN(2, 3) +KN(2, 4)f 2
1 )exp(iq21xs),

M(2, 4)=(KN(2, 3) +KN(2, 4)f 2
3 )exp(iq23xs), (D.1)

M(3, 1)=(KN(3, 1) +KN(3, 2)f 1
2 )exp(iq12x0),

M(3, 2)=(KN(3, 1) +KN(3, 2)f 1
4 )exp(iq14x0),

M(3, 3)=(KN(3, 3) +KN(3, 4)f 2
1 − g12)exp(iq21xs),

M(3, 4)=(KN(3, 3) +KN(3, 4)f 2
3 − g14)exp(iq23xs),

M(4, 1)=(KN(4, 1) +KN(4, 2)f 1
2 )exp(iq12x0),

M(4, 2)=(KN(4, 1) +KN(4, 2)f 1
4 )exp(iq14x0),

M(4, 3)=(KN(4, 3) +KN(4, 4)f 2
1 − n1

2)exp(iq21xs),

M(4, 4)=(KN(4, 3) +KN(4, 4)f 2
3 − n1

4)exp(iq23xs),
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NP2(1, 1)=− (KN(1, 1) +KN(1, 2)f 1
1 − g11)exp(iq11x0),

NP2(2, 1)=− (KN(2, 1) +KN(2, 2)f 1
1 − n1

1)exp(iq11x0),

NP2(3, 1)=− (KN(3, 1) +KN(3, 2)f 1
1 )exp(iq11x0),

NP2(4, 1)=− (KN(4, 1) +KN(4, 2)f 1
1 )exp(iq11x0), (D.2)

NP1(1, 1)=− (KN(1, 1) +KN(1, 2)f 1
3 − g13)exp(iq13x0),

NP1(2, 1)=− (KN(2, 1) +KN(2, 2)f 1
3 − n1

3)exp(iq13x0),

NP1(3, 1)=− (KN(3, 1) +KN(3, 2)f 1
3 )exp(iq13x0),

NP1(4, 1)=− (KN(4, 1) +KN(4, 2)f 1
3 )exp(iq13x0).

Appendix E. Fluid viscosity

The effect of the fluid viscosity coefficient (η) on the complex band struc-

ture for the 1D FSPPC with the partial-open pore interface is shown in Fig.

E.6.
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Figure E.6: Influence of the fluid viscosity η (Pa · s) on the complex band structure for the

1D FSPPC with partial-open pore interfaces (h=105 Pa · s/m). The dashed lines represent

the results for lossless case (η = 0). All parameters except viscosity are the same as in

Fig. 3.
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