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Abstract

Fourier analysis is a key tool in physics and engineering in the broadest sense, and is particularly

used in the field of optics to design and study the properties of advanced imaging systems. Fourier

optics as a distinct topic is usually taught in final-year undergraduate or first-year postgraduate

studies, and a wide range of teaching approaches have been used to describe and explain its key

concepts. Concerning practical work to accompany classroom lectures, the simplest laboratory ex-

periments are based on studying how the properties of some diffracting aperture (pupil) is related to

the corresponding Fraunhofer diffraction pattern, but this approach usually does not consider in de-

tail the concepts of the optical transfer function and spatial frequencies. We describe here a simple

experimental set-up that fills this particular gap and that illustrates the spatial frequency-domain

response of a simple optical system using incoherent light. The Modulation Transfer Function

is directly measured for several different pupil geometries, and shows very good agreement with

theoretical calculations. This experiment clearly demonstrates spatial transfer function concepts

in Fourier optics, complementing and extending other studies of Fourier transforms in physics that

may consider similar ideas in a time and frequency signal-processing context.

1

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/1

0
.0

0
0
1
3
1
9



I. INTRODUCTION

With the rapidly increasing importance of advanced imaging techniques in physics and

technology, Fourier optics is widely-recognized as essential background for any optics engi-

neer or student in physics. The basic concepts of Fourier optics applied to imaging date

back to the 1940s, first introduced by Duffieux1,2 and then extended by many others.3–5 In

common with broader use of Fourier concepts in physics, the essence of Fourier optics is the

description of light diffracted by an object as a sum of spatial sinusoidal waves at specific

spatial frequencies. This approach both introduces the concept of spatial frequency and

quantifies the imaging properties of an optical systems via an Optical Transfer Function,

describing how each spatial frequency is transmitted by an optical system with modified

amplitude and phase to form an image.

The detailed mathematical formulation and definitions relating to the Optical Transfer

Function are fully described in a number of standard references,4,6 but we restrict our study

here to the modulus of the Optical Transfer Function known as the Modulation Transfer

Function (MTF). It is the MTF that is relevant to understanding imaging using incoherent

light.

In order to focus on the key concepts of Fourier optics, the experimental imaging system

used consists of a single positive lens and a diffracting aperture (pupil) that image a test

pattern (object) from a Spatial Light Modulator (SLM) onto an inexpensive CCD camera.

The use of the SLM enables the use of a range of tests targets which can be easily configured

(e.g., in amplitude and spatial frequency), and Fourier analysis of the recorded images

rapidly gives the intensity of each transmitted frequency and consequently the MTF. The

experimental transfer function leads to cut-off frequencies linked to the size and geometry of

the pupil used, and we use three different pupils in our experiments. Comparison between

experimental results and the theory of Fourier optics provides students with an opportunity

to enhance their understanding of Fourier optics and spatial filtering in a general imaging

context.
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II. CONTEXT AND PEDAGOGICAL ISSUES

Imaging techniques are ubiquitous in industry, research and engineering, and are an

essential part of modern courses in physics and engineering. The resolution of an imaging

system is commonly specified in terms of its MTF, but this function is often confusing

for undergraduate students, often because the observation and measurement of the MTF

is not proposed during laboratory classes. Indeed, common experiments on Fourier optics

limit laboratory work only to basic ideas relating to the Fourier Transform (FT) such as FT

spectrometry,7 Fraunhofer diffraction patterns measured over long distances8,9 or descreening

or spatial filtering in the Fourier plane.10

In contrast, we have designed an experiment using only relatively simple and inexpensive

equipment that directly yields the MTF and associated autocorrelation function, allowing

students to rapidly learn these advanced imaging concepts in parallel with their lecture

material. The experiment provides experience in a number of different areas: geometric op-

tics (thin lens equation, magnification); physical optics (polarization, birefringence, phase);

optical instrumentation (SLM, CCD camera, an optical bench); and numerical processing

(image encoding, Fast Fourier Transform). By combining so many different topics within one

laboratory experiment, this also addresses a current problem encountered by many students

in physics relating to compartmentalization of knowledge and skills.

III. OPTICAL TRANSFER FUNCTION

There are a large number of techniques for measuring the MTF and there is a vast

literature dealing with measuring spatial resolution.11 One indirect method uses wavefront

analyzers to measure the Point Spread Function (PSF) of an optical system, and since the

optical transfer function is the Fourier transform of the PSF, it is possible to obtain the

modulation transfer function in this way. In contrast, a direct method consists of using

test patterns composed of alternative black and white stripes at different spatial frequencies

(e.g., USAF 1951 test target) and to measure the resulting contrast in the image. Amongst

methods described in the literature, some of the proposed techniques are highly specialized12

or outdated13 due to the progress in cameras, SLM and computing technology. More recent

works use the “knife technique”14 or the image of a thin slit to get a large and even spatial
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frequency distribution in order to determine the MTF of a camera.15

Our experiment extends these existing techniques by replacing the fixed resolution target

by a sinusoidal grating with a vertically varying frequency. The grating is displayed on the

screen of a SLM and its image is then formed through a positive lens and pupil, before

being recorded on a CCD camera. The SLM adds significant versatility to our technique

compared to the other methods already proposed. The spatial frequencies and their relative

amplitude are precisely defined, and the imaging of a sinusoidal target displayed on the SLM

screen gives the students a direct view of the spatial frequency filtering characteristics of the

imaging system. And contrary to the methods using test targets, the calculation of the MTF

is straightforward. Moreover, the familiarity gained with using an SLM serves an important

teaching objective: SLMs are a widespread technology in many domains such as data storage,

image and optical signal processing,16 optical tweezers,17,18 and digital holography,19,20 and

their use in undergraduate experiments has already been described.21,22

A. Optical system under study

Before describing the experimental setup in detail, we first review the basic filtering

properties of the generic imaging system shown in Fig. 1.

A transmitting object is illuminated by an on-axis plane wave Σ (coherent or incoherent

depending on the source). The object and image planes are conjugate via the thin lens

whose useful diameter is limited by the pupil. The transverse coordinates of a point in the

object space is r(x, y) and r′(x′, y′) in the image plane. The transverse magnification is

M = A′B′

AB
= OA′

OA
= X′

X
. In addition, the pupil is defined by the function P (x, y): P (x, y) = 1

inside the pupil and P (x, y) = 0 otherwise. Its FT is denoted P̃ (u, v).

This simple optical system can be analyzed either in the direct space (geometric optics

via ray plots) or in the (spatial) frequency space and both spaces are linked by a Fourier

Transform. In the frequency space, the effect of the imaging system is that of a low-pass

filter characterized by its transfer function. We now describe this transfer function under

the particular conditions of incoherent illumination used in our experiments.
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B. Fourier analysis

A spatial frequency light intensity distribution Ĩ(ν) is associated with a spatial intensity

distribution I(r) via a two-dimensional FT by the usual equation :

Ĩ(ν) =
∫ ∫

I(r) e−i2π ν·r dr (1)

with ν the frequency pair (u, v) associated with r(x, y). In addition to the fact that this

is a two dimensional FT, another difficulty of Fourier optics is to know how to express the

filtering function (MTF=|OTF|, see below) in the appropriate frequency space. Indeed, in

an imaging system there are two possible spaces: the object space or the image space, with

the two being linked by the transverse magnification M (see Fig. 2).

Transfer functions can also be expressed in these two frequency spaces and care should

be taken to use the correct variables. In the frequency object space, the transfer functions

will be defined via the variable ν = r/λX while in the frequency image space they will be a

function of the variable ν′ = r′/λX ′. Working in the frequency space rather than the direct

space is useful because the filtering effects of the imaging system translates into a simple

product between its transfer function and the object spatial frequency spectrum (Fig. 2).

C. Transfer function for incoherent illumination

In the case of incoherent illumination, the filtering effect is carried out on the distribution

of the intensity of the object and the filtering function depends on the lens pupil geometry.

The intensity distribution of the object is Iobj(r) and that of the image Iima(r
′). For

incoherent light, these two distributions are linked by a relationship of the type:5

Iima(r
′) ∝

∫ ∫

Iobj(r) |P̃ (r′/λX ′ − r/λX)|2 dr (2)

The filtering function is then given by |P̃ |2 (i.e., the squared modulus of the FT of the

pupil function) and is called the incoherent Point Spread Function (PSF). Expression (2) is

a convolution and it appears in a simpler way in the frequency domain:

Ĩima(ν) ∝ Ĩobj(M ν)× ITF(ν) (3)
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where ITF stands for Intensity Transfer Function. It is the FT of the PSF and can be

expressed as follows:

ITF(ν) = M

∫ ∫

P (r)P ∗(r+ λX ′ ν) dr (4)

The ITF is the autocorrelation of the pupil function P (r). Its measurement makes it

possible to know how an optical system filters the spatial frequencies present in an image.

Often we are satisfied with the Modulation Transfer Function (MTF) which is a standardized

function and is expressed as:

MTF(ν) =

∣

∣

∣

∣

ITF(ν)

ITF(0)

∣

∣

∣

∣

= |OTF(ν)| (5)

The MTF corresponds to the modulus of the Optical Transfer Function (OTF).

IV. EXPERIMENTS IN THE INCOHERENT CASE

A. Description of the experimental set-up

The experimental set-up is shown in Fig. 3. The light source is a powerful (up to 700 mW)

red LED (λ ≈ 625 nm with a Full Width at Half Maximum FWHM ≈ 18 nm). The set-up

also includes a 0.5 cm diameter diaphragm limiting the size of the LED emission area (for

spatial coherence) and a positive lens L1 (actually a 25 mm diameter collimator with a

focal length of 160 mm), whose focal point is located on the diaphragm. All these elements

provide a wide and parallel beam of incoherent light. This beam is directed by means of a

plane mirror towards a first polarizer (P1) in order to have a linear polarization. A beam-

splitter cube (BC) then reflects 50% of the light back to a low-cost Spatial Light Modulator

from Cambridge Correlators (twisted nematic LCoS SLM, model number SDE1024). The

resolution of the screen is 768×1024 with a 9 × 9 µm pixel size, and a VGA interface can

be connected to a laptop to use it as a second display such that the display on the SLM

can be controlled via software (we used MATLAB R©). The SLM can delay the incident light

according to the voltage applied to each pixel with a maximum phase retardation about

0.8π at 633 nm. This delay leads to an elliptical polarization of the light reflected back

through the BC and a second polarizer P2. The ellipticity and the axes orientation of the

elliptical polarization depending on the voltage applied to each pixel, polarizer P2 ensures

the intensity modulation of the light reflected by each pixel and impinging on the rest of the

system.
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Finally, the lens L2 (focal length f ′ = 100 mm, 1” diameter) forms the image of the SLM

(in the object plane) on a CCD sensor (in the image plane). An additional pupil is positioned

close to L2 to form the imaging system under study. The f-number of lens L2 is N ≈ 4 and

the proposed technique can be implemented for fast objectives with N ≈ 1 provided the

aberrations are not too important. However, Fourier optics is limited to paraxial optical

systems, so it is not suitable for large numerical aperture (N ≤ 1). The theory can still

be extended with a vector analysis provided the system is aplanatic, but the analysis is

much more complex and is beyond the simple discover of Fourier optics for undergraduate

students.

The SLM is used to sinusoidally modulate the intensity along one direction (here the

modulation will be horizontal). Sinusoidal gratings have the advantage of having only one

spatial frequency per horizontal line and therefore allow us to measure how a particular

frequency is affected by the pupil-lens system. The SLM has 1024 horizontal pixels along 9.3

mm. Considering the Nyquist-Shannon sampling theorem which states that the maximum

frequency contained in the signal must be smaller than half of the sampling frequency (i.e.,

two pixels per period are needed), the highest frequency of the sinusoidal test pattern that

can be displayed is 55.05 mm−1. On the image side, the camera has 1280 (horizontal) pixels

with a pitch of 5.2 µm so we cannot see spatial frequencies larger than 96.2 mm−1 without

aliasing. As a conclusion, in order to measure the specifications of our imaging system

(lens and pupil), the system must have a frequency cut-off lower than the frequency limit

fixed either by the camera or the SLM depending on the magnification. We also note that

variations in the amplitude of the modulation and also in its phase (i.e., its position in the

image) can occur due to the imaging system. We will focus on the first one to determine

the MTF of L2 and its pupil.

Let’s add we can neglect in our experiments the effects of the phase modulation due to

the SLM and associated with the intensity modulation. Indeed, in our set-up, the spatial

coherence radius in the SLM plane is around 0.61λ/α ≈ 20 µm (with α the maximum

incidence angle of the plane waves coming from the source), i.e., 2 SLM pixels. The spatial

coherence of the incident field can then modify the MTF for spatial frequencies larger than

50 mm−1 in the object plane, or 100 mm−1 in the image plane (for |M | ≈ 0.5). In the

experiments carried out, the frequencies are always below this limit.
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B. Set-up characterization

Two important parameters of the set-up must be defined before any measurement: the

magnification M of the imaging system and the non-linear response of the SLM. Indeed, the

intensity modulation achieved by the SLM does not linearly depend on the grey levels of the

displayed object and this will affect our study if we do not take it into account. Figure 4

shows the grayscale / intensity experimental response of the SLM. The reflected intensity

can be corrected between gray levels 100 and 255 and our sinusoidal grating displayed on

the SLM must have an amplitude modulation between theses two values.

Secondly, we need the magnification M of the imaging system SLM–(L2+pupil)–CCD

before measuring the MTF. It can easily be deduced by displaying on the SLM, e.g., 20

horizontal sinusoidal gratings with frequency varying from 0 to 20 mm−1 and recording the

image on the camera through lens L2 without any pupils (the pixel size must naturally be

taken into account). The images displayed on the SLM screen and recorded by the camera

are shown in Fig. 5.

A FT of the images in Fig. 5 gives the linear relation between frequencies in the object

and image planes ν = Mν
′ to determine the imaging system magnification M (see Fig. 6).

With M = −0.483, the object maximum frequency we will be able to see is around 46 mm−1

which is lower than the maximum frequency the SLM can display. Note that the students

can check the magnification value with a direct measurement of X and X ′ (see Fig. 3).

C. Digital processing of the recorded images

In order to obtain the MTF of the imaging system, two images are needed: the image

(through L2 and the pupil) of a constant background (gray level 255) displayed on the SLM

in order to correct the non-uniformity of pupil-lighting and an image of the target consisting

of horizontal sinusoidal gratings whose frequencies vary vertically (e.g., from 0 to 50 mm−1

with a 0.1 mm−1 step). An example of both pictures is shown in Fig. 7 (a) and (b) with

a 2 mm width vertical slit used as a pupil. The main idea is then to calculate the one-

dimensional Discrete Fourier transform (or DFT) of the target image (b) normalized to the

background image (a). The object spatial frequencies are known (because they are displayed

on the SLM screen) and the image frequencies are defined with respect to the camera pixel
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size.

The DFT corresponding to image (a) and (b) in Fig. 7 is plotted in the adjacent Fig. 7(c).

In the central and upper part of this figure (i.e., for the smallest frequencies), a triangle

clearly appears: it corresponds to the spatial frequencies that are passed through the filter

that is L2 and its pupil. An important noise exists as well inside the filter bandgap and

especially around the null frequency. The signal-to-noise ratio can be greatly enhanced in

the final result by multiplying the logarithm of the horizontal DFT of the normalized image

(image 7(c)) by a binary mask. This mask is null outside two strips defined by the condition

|ν − Mν ′| < w (w = 0.5 mm−1 in our case) and equals to 1 inside. Finally, the sum of

the elements in each column is needed to get the MTF strictly speaking. The results are

outlined in the following subsections.

D. Experimental results

1. Slit:

The first pupil we use for L2 is an a = 2.00± 0.05 mm wide vertical slit. The measured

magnification is M = −0.483 associated with an image-lens plane distance of X ′ = f ′(1 −
M) = 14.83 cm. The target displayed on the SLM is a horizontal sinusoidal grating with

frequency varying from 0 to 50 mm−1 with a 0.1 mm−1 step. The highest frequencies will be

filtered by the camera, but it is not a problem because the optical system cut-off is expected

to be lower than 46/M ≈ 95 mm−1.

The autocorrelation of a rectangular function is a triangular function whose cut-off fre-

quency is linked to the slit width a. As expected, the measured MTF is triangular-shaped

(see solid blue curve in Fig. 8). A non-linear least squares curve fitting with a symmetric

triangle function (red dotted line in Fig. 8) gives a cut-off frequency νc = ±21.83 mm−1 with

a 95% confidence interval [21.50, 22.16] in mm−1 (coefficient of determination R2 = 0.9597).

This cut-off value is associated to a slit width of a = λX ′νc = 2.04 ± 0.03 mm which is in

good agreement with the real width. One can note the large amplitude of the null frequency

corresponding to the ambient noise (camera, stray light, · · · ).
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2. Double slit:

The slit is replaced by a vertical double slit (width a = 1 ± 0.05 mm and space b =

5 ± 0.05 mm) and the measurements are repeated in the same conditions (M = −0.483,

X ′ = 14.83 cm and sinusoidal grating with frequency varying from 0 to 50 mm−1). The

new transfer function is plotted in Fig. 9 (the null frequency has been removed). It consists of

three triangles in accordance with the autocorrelation of two rectangular functions. Because

of the particular shape of the MTF, gratings with a high frequency (between νc2 and νc3)

clearly appear in the recorded image whereas gratings with smaller frequency (between νc1

and νc2) are counter-intuitively blurred. Indeed, the students might mistakenly think that,

if small details are present in the image, then larger details are also visible in a systematic

way. We have here a direct and visual demonstration of the pupil filtering effects and it can

provide an improved understanding for the students.

A non-linear least-squares curve fitting with 3 triangle functions can estimate the values

of the different frequencies ±νc1,±νc2,±νc3 and ±νmax (see Fig. 9). The obtained values for

the symmetrical frequencies +νci and −νci (i = 1, 2) and +νmax and −νmax are equal to the

nearest one-thousandth of mm−1. We fix for the fitting νc3 = 2νmax − νc2 = (a + b)/λX ′

and the numerical results are summarized in Table I. From these values we can deduce the

geometrical parameters of the pupil a = 1.07 ± 0.02 mm and b = 5.00 ± 0.01 mm, which

closely correspond to the theoretical dimensions.

Moreover, the relative amplitude of the small and large triangles are supposed to be in

the ratio 2:1 if the filtering is solely due to the double slit. However, the heights of the small

triangles are 0.35 in Fig. 9 instead of 0.5. This reduction in amplitude is actually due to

the MTF of the imaging lens L2 (see green dotted line in Fig. 9). The lens has a 1 inch

diameter and its MTF is a Chinese hat (chat) function23 with a cut-off around 270 mm−1

(cf. Eq. (6)). This frequency is well beyond the cut-off due to the double slit. However, at

νmax = ±53 mm−1 (peak of the small triangles), the attenuation due to the lens MTF can

be theoretically estimated at 0.68 which gives a theoretical height of 0.68×0.5=0.35 for the

small triangles, which exactly corresponds to the measurements. In conclusion the smaller-

than-expected height of the lateral triangles is clearly due to the filtering of the imaging

lens.

10

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/1

0
.0

0
0
1
3
1
9



3. Circular pupil:

The last example we show is a pupil of diameter D. We first focus on the MTF of a

circular aperture (i.e., its autocorrelation). Its mathematical expression is given by:5

chat(u, v) =
2

π



arccos

(

λνX ′

D

)

− λνX ′

D

√

1−
(

λνX ′

D

)2



 (6)

with ν = |ν| =
√
u2 + v2, u and v being the frequencies associated to x and y. This

chat function only depends on the modulus of its argument and consequently has rotational

symmetry. Its graphical representation shown in Fig. 10 resembles a Chinese hat (hence its

name) and its cut-off frequency is νc =
D

λX′
: any frequency beyond νc will not be transmitted

between the object and the image.

Measurements with the circular aperture have been performed with aD = 3 mm diameter

pupil and M still equal to −0.483. The experimental MTF is plotted in Fig. 11 (solid blue

line) and it looks like the Chinese hat in Fig. 10. The cut-off frequency is not obvious

because of the curvature but it can be estimated with a non-linear least-squares curve fitting

according to Eq. 6 (see dashed red line in Fig. 11). The fitted curve accurately describes the

experimental data with a coefficient of determination R2 = 0.974 and a cut-off frequency

of νc = 32.89 mm−1 with a 95% confidence interval [32.42, 33.35] (in mm−1). These last

values lead to a pupil diameter of D = λX ′νc = 3.09 ± 0.04 mm showing once again good

agreement with the real pupil diameter.

V. CONCLUSION

We have described here an undergraduate experiment to introduce the essential ideas

of Fourier optics. After having tested this experimental work with approximately 40 third

year university students in physics, the key points of learning appear to be a clear under-

standing of the concepts of optical transfer function and spatial frequency, coupled with

experimental knowledge of how to determine spatial frequency from a distance measured

in the image/object plane. As we have shown, the measured MTF shapes are in good

agreement with theory, and this agreement confirms to students the importance of Fourier

analysis in optics and spatial filtering.
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Somewhat unexpectedly, the main difficulties encountered were basic optical alignment

and the programming required for the image processing. A solution to the first problem

is to approximately pre-align the experimental set-up before the laboratory session so that

students can save time to correctly place the imaging lens and the camera. A means to

address the second problem is to give a written homework question ahead of time on the

analysis of the system that requires similar programming in its solution.

This work can be extended to the color response of the optical imaging system15 by

simply replacing the red LED with a green or blue LED. At a higher level for post-graduate

students, aberrations or defective focusing can be also taken into account. For example

spherical aberrations or astigmatism disrupt the wavefront after the pupil and reduce the

quality of the images leading to a distorted (and degraded) MTF of the optical system

solely limited by diffraction.24–26 Thus, aberrations may lead to a dramatic drop of the MTF

amplitude close to zero and consequently to a large contrast decrease in the images (whereas

the theoretical cut-off frequencies remain unchanged).

Overall, this laboratory work is invaluable for students in that it combines physical con-

cepts, advanced instrumentation and numerical processing, and it highlights the use of

complex analysis in a practical application in physics.
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FIG. 1. Image formation scheme with a positive thin lens. With the sign convention used, the

image distance X ′ is positive (the image is real) and the object distance X is negative. The inverted

image corresponds to a negative transverse magnification.

FIG. 2. Fourier filtering principle.

FIG. 3. Scheme of the experimental set-up to measure the pupil filtering effects with incoherent

illumination (see text for details).

FIG. 4. Measured intensity response of the SLM versus the gray level displayed. The non-linearity

can be corrected between 100 and 255.

FIG. 5. Images used to calculate the magnification (M < 0). Left: sinusoidal gratings displayed

on the SLM screen with a frequency varying from 0 to 20 mm−1 (with compensated intensity

non-linearity). Right: corresponding Region Of Interest (ROI) recorded on the camera (1280 ×

1024 pixels and 5.2 µm pixel pitch).

FIG. 6. Spatial frequency in the image versus the corresponding frequency in the object. The slope

of the line is 1/|M |.

FIG. 7. Preliminary results with a 2 mm vertical slit. (a): Background image; (b): Image of the

target; (c): Logarithm of the horizontal DFT of the normalized image (ratio between images (b)

and (a).

FIG. 8. Solid blue line: normalized experimental MTF with an a = 2 mm slit (M = −0.483).

Dashed red line: fitted curve.

FIG. 9. Solid blue line: experimental MTF with two slits a = 1 mm wide and b = 5 mm apart.

Dashed red line: fitted curve. Dotted green line: theoretical MTF of imaging lens L2 (chat function

defined by Eq. (6) with a 1” diameter).

FIG. 10. (a): 2D theoretical MTF chat of a circular pupil with diameter D. (b): cross-section

along u direction. Its frequency cut-off is νc =
D

λX′ .
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FIG. 11. Experimental MTF (solid blue line) with a D = 3 mm diameter circular pupil and

corresponding fitted curve with theoretical MTF from Eq. 6 (red dashed line).
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