
PROLISEAN: A New Security Protocol for Programmable Matter

EDY HOURANY and BACHIR HABIB, Holy Spirit University of Kaslik

CAMILLE FOUNTAINE, École Spéciale Militaire de Saint-Cyr Coëtquidan

ABDALLAH MAKHOUL, BENOIT PIRANDA, and JULIEN BOURGEOIS, Univ. Bourgogne Franche-

Comté, FEMTO-ST Institute, CNRS

The vision for programmable matter is to create a material which can be reprogrammed to have different shapes and to change its

physical properties on demand. They are autonomous systems composed of a huge number of independent connected elements called

particles. The connections to one another form the overall shape of the system. These particles are capable of interacting with each

other, and take decisions based on their environment. Beyond sensing, processing and communication capabilities, programmable

matter includes actuation and motion capabilities. It could be deployed in different domains and will constitute an intelligent component

of the IoT. A lot of applications can derive from this technology, such as medical or industrial applications. However, just like any

other technology, security is a huge concern. Given its distributed architecture and its processing limitations, programmable matter

cannot handle the traditional security protocols and encryption algorithms. This paper proposes a new security protocol optimized and

dedicated for IoT programmable matter. This protocol is based on light weight cryptography and uses the same encryption protocol as

a hashing function while keeping the distributed architecture in mind. The analysis and simulation results show the efficiency of the

proposed method and that a supercomputer will need about 5.93 × 10
25

years to decrypt the message.

CCS Concepts: • Security and privacy; • Computer systems organization → Distributed architectures;

Additional Key Words and Phrases: Modular Robots, Programmable Matter, IOT, Amoebots, Security Algorithms, Security Protocol,

Lightweight Cryptography, Distributed Computing

ACM Reference Format:
Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois. 2020. PROLISEAN: A New

Security Protocol for Programmable Matter. 1, 1 (January 2020), 29 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Recent technological advances resulted in an increasing level of interest in programmable matter. Programmable

matter is a vast domain of research at the border between robotics and computer sciences, mixing large ensembles of

micro-robots and distributed programming. The idea is to find a way to make a matter that can change its physical

properties at will, whether its shape, density or conductivity [2]. The potential of such a technology is tremendous. The

most common idea is to use a countless number of robots working together within a structure called modular robot.

A typical modular robot is expected to consist of a large number of robots called modules or particles which can be

Authors’ addresses: Edy Hourany, edyhourany@gmail.com; Bachir Habib, bachirhabib@usek.edu.lb, Holy Spirit University of Kaslik, P.O. Box 446, Kaslik,

Jounieh - Lebanon; Camille Fountaine, cam.fontaine49@gmail.com, École Spéciale Militaire de Saint-Cyr Coëtquidan, P.O. Box 56380, Guer, France;

Abdallah Makhoul, abdallah.makhoul@univ-fcomte.fr; Benoit Piranda, benoit.piranda@univ-fcomte.fr; Julien Bourgeois, julien.bourgeois@univ-fcomte.fr,

Univ. Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS, 1 cours Leprince-Ringuet, Montbéliard, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456


2 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

reprogrammed to have different shapes and to change its physical properties on demand. Usually, these particles have

limited power, storage, communication, and processing capabilities. Modular robots have many fields of application,

including Space shuttles, medical appliances, and search and rescue, etc. [1]. They play an important role in saving

human lives by dismantling into smaller configuration and search for survivals; or changing shapes into forming bridges

or stairs for people to reach safer areas. In the near future, this new concept will play an indispensable role in everyday

life and will encompass almost all areas. Mobile telephony, smart homes, vehicles, medicine, and embedded systems

are the top concerns of researchers. These modules use different types of sensors and actuators to extract and analyze

information. Billions of objects will be connected. Through this connection, this material will become an intelligent

system composed of other systems.

Modular robots can be used in unattended even hostile environments, thus leaving them vulnerable to passive and

active attacks. For instance, crashing a space shuttle if a module was hacked and start sending falsified coordinates,

or a nano robot that is injected in the human body and starts killing healthy cells. Therefore, the security in such

scenarios is a necessity especially in the context of modular robots where modules have resource-constraint, and

are susceptible to physical capture. To the best of our knowledge, security in modular robots is not yet tackled by

researchers. Many challenges are encountered when discussing such matter. This kind of robots have no central control

and have limited memory and processing resources. Under such circumstances, traditional security protocols cannot be

applied. Therefore, lightweight security protocols must be proposed and studied. Such protocols were proposed in the

context of wireless sensor networks [5, 15, 29], ad-hoc networks [23] and Internet of Things (IoT) [30, 33]. Although,

modular robots are considered to be an application of IoT, they have some specific characteristics. For instance, they

can not have a unique identifier or IP addresses. Moreover, they are not always connected to the internet and don’t

have a central control. Therefore, existing security protocols for IoT can not be applied for programmable matter.

The main contribution of this paper is to study and propose the first security protocol that can overcome the

challenges mentioned above while keeping the system secure. It is based on the creation of a hashing function using

the encryption algorithm and a block code already embedded in the nanobot to reduce the memory and processing

usage. This protocol will be composed of two main parts: authentication and encryption. In the authentication part,

the algorithm will be checking whether the connected module is authentic. In other words, check if this module is an

eligible module and that it has the right to connect to the system. Once all modules are authentic, the second step will be

encrypting the communication among the modules, thus making it hard for a third party that might be listening to the

communication to understand the behaviors and the decisions of the system. The efficiency of the proposed protocol

was proven via an analysis study and validated experimentally via simulations realized by VisibleSim[25], a simulator

dedicated to modular robots. The obtained simulation results show the effectiveness of the proposed approach which

ensures the security of a modular robot system.

The remainder of this paper is organized as follows. Section 2 of this paper describes the background behind this

study by reviewing modular robotics and light weight cryptography. Section 3 is the main section of this paper. It will

be discussing the proposed protocol with four different versions. And a full risk study through EBIOS method for all

the versions proposed. Section 4 will be analysing the proposed protocol based on the CIA criteria while taking into

consideration the hardware and logical limitations. Section 5 will be analyzing the HIGHT encryption algorithm by

trying nine different attacks. And finally Section 6 is dedicated to the conclusion and future work.

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 3

2 BACKGROUND DESCRIPTION

2.1 Modular robotics and programmable matter

The term of programmable matter appeared a quarter century ago and was defined as a matter that is able to modify

its physical properties like shape, color or density autonomously or controlled by a user. The most common solution

known is to use a huge number of small robots comparable to the cells that compose our body. This comparison gave its

name to this solution: Amoebots [13, 21, 32]. Modular robotics are robots designed with parts that can be reconfigured

to accept different functions[6]. They are autonomous systems with variable morphology. These systems are composed

of independent connected elements called modules or particles, whose connections to one another form the overall

shape of the system [2]. Classifying modular robotic systems is quite a hard task because of the number of projects

already existing and the diversity of their task, shape, size or control system. Some modules are controlled by external

computers. Others are led by a control module or they are completely autonomous. Nevertheless, all modules are equally

equipped physically and logically. Depending on the purpose of its creator, modular robotic systems can assemble its

own structure, operate some changes in order to repair defective parts or to modify the shape of the structure. This

is the main advantage of this technology, while classical robots are only able to fit with one application or objective,

modular robots could possibly operate a wide range of missions [1]. Despite these advantages, this development suffers

from a major security problem. To the best of our knowledge, no security protocols were used in programmable matter.

Given the limitation in modular robotics regarding the bandwidth, the multiple modules, its distributed architecture, its

memory limitation, and the lack of physical protection, the traditional key management approach is not reliable in the

way of its distribution between the objects.

To reach such objective, a lot of challenges are faced. Such as the connections between the particles, the data transfer

among the modules, the communications inside the structure or the ability to localize its own position in the space.

Today, manufacturing amoebots is impossible but the technologies of micro-fabrication and cellar engineering have

made such advances that the probability of discovering how to build it rises every day. That is why research centers

over the world are looking for theoretical models to face the maximum of issues concerning programmable matter

[12]. This work is based on the general definition of amoebot model provided in the second part of the document [12]

that state programmable matter as a uniform set of simple computational units. In the general amoebot model, all the

particles are connected to at least another one and needs to connect with several particles to be able to move inside the

structure. None of the particles is free to flow inside the structure.

In order to proceed in developing a new protocol, first the characteristics of the modules, in agreement with what is

more likely to be built in the next decade in term of microscopic modular robots, are defined as follows:

Definition 1 (Anonymity). Because of the size of the modules, also known as particles, and the quantity that makes

the structure, each nanobot is anonymous.

Definition 2 (Identical modules). All the modules have the same design, the same hardware and the same algorithms.

Definition 3 (Fixed memory). The standard memory of 16KB, prevents the usage of heavy algorithms thus creating

new algorithms to solve traditional problems.

Definition 4 (Fixed connection of a module with its neighbors). A Blinky Block module always have at least

one neighbor in the structure and maximum of 4 neighbors in 2D and 6 in 3D.

Manuscript submitted to ACM



4 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

Definition 5 (Joint internal clock). Every module sets its internal clock exactly at the same instruction. One of the

main consequences concerns the creation of random numbers. In fact, as random numbers are created with an algorithm

that uses the internal clock as a seed, all the modules will give the same random number at the same time. Since all modules

are identical, even when changing the seed, the randomness collision will always exist.

Definition 6 (Peer to peer communication by contact). A Blinky Block can only communicate with its neighbors,

it is not able to contact another module except the one connected to its port.

2.2 Lightweight cryptography

In the wake of the massive arrival of small connected devices on the market with small capabilities but sensitive

information to communicate, IoT became an easy target for cyber-attacks. Therefore, various algorithms and protocols

have been developed over the past years to secure those communications. Regarding the low capacities of the devices

compared to a laptop or a smartphone and the need of authentication, the use of cryptography appeared as a good

solution. Since security algorithms -in this particular case – have to use less memory and have a low complexity to

reduce their power consumption, a new kind of ciphers merged: the lightweight cryptography.

Fig. 1. Results of ECRYPT II ordered by code size and RAM use

Sharing the key is the major issue of this type since its acknowledgment by a malicious party compromises the

system. Symmetric key algorithms allow confidentiality of data but can not guarantee authentication, this has to be

done before the communication begins [7, 16, 19, 31]. Asymmetric cipher needs two keys: a private and a public one.

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 5

Each device has to know all the public keys of the network, this becomes a structural issue for nano-modular robots

which theoretically includes billions of nano-modules. Therefore, this paper will be focusing on symmetric algorithms

[8]. Figure 1 shows the results of different reports on lightweight cryptography algorithms and among all, the report

of the European Network of Excellence in Cryptology [14] that bench-marked 11 different algorithms. This research

focused on this type of encryption since all the algorithms were tested on a very low resources processor the ATtiny45

by the corporation ATMEL (Advanced Technology for Memory and Logic). It is an 8-bit processor made by ATMEL,

with a limited number of instructions, a 256 Bytes internal SRAM, and 4 KB of flash memory. 19 hash-functions designed

to be lightweight protocols are compared. Those are interesting in this study since there is no need for a key to use

hashed data even if the decryption is too complicated for the nano-modular robots. The diagram in Figure 1, sorts all

the applications by code size and RAM usage (in bytes) to restrain the list to the one that could fit in the nano-robots

without impacting their memory capacity.

In this paper we proposed a new security protocol for programmable matter based on modular robots with low

energy and computation resources. Similar studies were proposed for different technologies such as RFID, wireless

sensor networks (WSN) and Internet of things (IoT). For instance, in [3], the authors describe a counter measure to

prevent DoS/DDoS attack. The authors suggested the addition of an extra filter to determine a possible DoS attack and

inform the routers to shut it down. In [11], the authors suggested first an installation of firewalls and updating software

regularly from reliable resources. On another note, the paper recommended the usage of SSL certificate and efficient

encryption algorithms. Using event detection techniques in wireless sensor networks, the authors in [18] developed an

algorithm to detect malicious data injections. Malicious code injection attack is one where an attacker can determine

the configuration of a system and create falsified measures allowing himself to bypass the security protocol.

Although the proposed techniques ensure good results in preventing several attacks, they can not be applied directly

in the context of programmable matter. Hence, programmable matter have specific characteristics making them different

from existing technologies. For instance, the communication between modules are done just between adjacent modules,

the topology is very dynamic as the modular robot usually changes its shape, there is no base station to control the

network, etc. Based on the study published in [20], we proposed in Table 1 a comparison between different technologies

where lightweight cryptography protocols have been used (e.g. Radio-frequency identification (RFID), wireless sensor

networsk (WSN), Internet of Things (IoT)) while adding the programmable matter (PM).

Mobility Support DB required Power requirement Popular Encryption Algorithms Possible Security Techniques

RFID

Yes: modules are in form of

tags and are attached to objects

Yes

Usually passive

but sometimes

Battery-powered

DES, AES,

SecureRF,

DESL

Optimistic trivial RFID

authentication protocol

(O-TRAP)

WSN

they are usually placed

in fixed areas

Yes Battery-powered

DES, 3DES, DES-X, blowFish,

TEA, XTEA, AES, HIGHT

Route optimization algorithm,

active trust,Q-s composite,

TinySec, SPINS, LSec,

LISA, LISP

IoT Modules can be mobile or fixed Yes Battery-powered ECC, Diffie-Hellman, COSE

REST, HTTP, JWT, CWT,

WebSockets, TLS, DTLS

PM Modules can be mobile or fixed No Battery-powered HIGHT PROLISEAN

Table 1. Comparison among different technologies.

Manuscript submitted to ACM



6 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

3 PROLISEAN: OUR PROPOSED PROTOCOL

3.1 Risk study through EBIOS method

To begin with, it was necessary to identify potential threats to programmable matter based on modular robots. In this

section, the elements will be summarized using the EBIOS method as shown in Figure 2. This method, created in 1995

and updated in 2010, is a memento for studying security risks for designing and engineering projects in information

technology. The risk study of this method must be preceded by 3 steps: context study, study of threat scenarios and

study of feared events.

General
Context

Risk
assessment

Security
measures

Threat
scenarios 

Dreaded
events

Fig. 2. EBIOS Process

3.1.1 Dreaded events. The main dreaded events can be summarized as follows:

• Loss of spatial landmarks: the spatial location by the entire structure is an important element in coordinating the

individual actions of nanobots.

• Desynchronization of robots actions: although robots work individually, their action is useless if it is not

coordinated with others.

• Data leak: internal communications within the structure are read by people or algorithms that should not be

allowed to know the intentions of the structure.

• Distribution of messages from the outside: the modules receive instructions from a third party.

3.1.2 Threat scenarios. Robots communicate through physical connectors by contact with their direct neighbours. They

can only send a message to one of their neighbours or to the entire structure through their neighbours. As described

previously, the modules are homogeneous and autonomous.

The threat of remote interference in robot communications can therefore be ruled out. The main threats remaining

are:

• The mixture of two different structures: causing misunderstandings between the modules because they would be

linked with others with different behaviors, as shown in Figure 3. Or worse, if this second structure is controlled

by a malicious person, it could transmit our internal information to its user, interfering with the execution of the

mission.

• A spy in the structure: A hacker builds the same modules as those in our structure but equipped with an antenna

and an interface, as shown in Figure 4. It could then connect, integrate into it and communicate with it to either

take control or destabilize it. For example, it could claim to be the leader of the structure while another leader

has been appointed.

• An intruder: An identical robot is sent to the structure by a malicious user, as shown in Figure 5. Its hardware is

exactly the same, only few lines of its source code are different. Once connected, this intruder spreads malicious

information to the whole structure to destabilize it. It could, for example, claim that it is the actual “leader”

whereas another already exists or transmits wrong coordinates to its neighbours.

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 7

Forbidden

Fig. 3. Connection between two different structures

Fig. 4. External nanobots spying the structure

(0,0) (0,1)

(4,3)(1,0)

(2,0)

(4,4) (4,5) (4,6)

Fig. 5. An intruder transmits wrong coordinates to its neighbours

3.1.3 Risk assessment. Such a risk study is carried out in two parts: the analysis of the combined risk of scenarios and

feared events with or without the security measures already in place. After considering the 3 elements of the threat

scenarios, the risks are defined and classified by category and probability.

• Hacking the structure with no physical help: it has been demonstrated in previous sections that it is currently

impossible to communicate with robots from a computer when the experiment is in progress. In this case, if a

computer manages to get into a robot, it will not be able to take control of the entire structure. The probability is

therefore negligible, and the risk is low. However, in another experimental context, where the structure would

communicate directly with a computer, this risk would become one of the main concerns.

• Mixing two different structures of modules: these are two blocks of programmable matter moving nearby and

composed of similar robots. It is then very likely that they will mix if they come into contact. The nanobots that

compose them would stick together without understanding each other and the work of the two structures would

be interrupted. The gravity of this case is not significant.

Manuscript submitted to ACM



8 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

• Intentionally send a group of modules to insert into the structure: this risk is almost similar to the previous one,

except that if the malicious structure has been programmed to come into contact with another, then its impact

on its initial task will be more serious because it will be more incapacitating.

• Inserting a new module equipped with a communication interface: this risk, although unlikely because it is

technically very complicated, would have critical consequences on the functioning of the programmable matter

because it would allow another user to communicate with it and possibly divert it from its initial task or even

destroy it.

• Inserting an identical module with wrong spatial coordinates in its code: this is more likely to happen than the

previous one because it is easier to implement. However, the consequences would be a little less serious because

the result would be at worst a deformed structure (topology) preventing the system to perform its task or an

outgrowth on the final result.

Table 2 presents all considered risks, classified by category and probability.

Risk assessment

Category

Critical

Inserting a nanobot

equipped with a

communication interface

Significant

Intentionally send a group

of nanobot to insert into

the structure

Inserting an identical

nanobot with wrong spatial

coordinates in its code

Limited

Mixing two different

structures of nanobots

Negligible

Hacking the

structure with no

physical help

Negligible Meaningful High Maximal

Probability

Table 2. EBIOS risk assessment

Despite the low hardware capacities, it is better to create simple rules applied by the modules that would seal the

structure to any exterior threat. Each module works independently in the structure, it neither considers its orientation

nor its place in the structure. Therefore, each module is concerned by securing the itself and the whole system. Moreover,

block ciphers use less capacity than hash functions but needs to share its key to communicate data. Thus, a key is

needed as well as a way to communicate it and a secured mean of authentication. Therefore, the system would be

locked, no intruder could take part of the structure and nothing could interfere into the communications.

Indeed, some systems may need minimum security which does not affect the nanobots capacity, while others need a

major security protocol even if it implies slowing down the robots and consumes more energy.

Thus, the work describes four different versions that can be used separately and based on ISO/CEI 27001 that respects

the main requirements in cybersecurity: Confidentiality – Integrity – Availability.

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 9

3.2 Proposed algorithm: PROLISEAN

PROLISEAN stands for Protocol of Lightweight Security Embedded in an Architecture of Nanobots. It is a protocol for

nano modular robots designed to offer the smallest footprint possible while providing a strong level of security against

hacking.

Four versions of the protocol are proposed in this paper starting with the least to the most secured. The first version

represents a simple authentication process. Protocols are more and more secure as we move to the next versions. In

other words, the version that is less secure requires less processing power than the others. Therefore, the presentation

of four versions was mandatory, leaving the choice to the end-user based on his system.

3.2.1 Version 1: Simple authentication.

Initial concept. When two nanobots connect, none of them knows if the other one belongs to its own structure. In

order to authenticate, each robot will provide its source code to the other to compare it with its own. Since each robot

from the same structure have the same source code, the comparison of the code is an efficient way to authenticate

without adding any unnecessary lines in their program. However, if the Unknown-bot was malicious, this operation

would turn into a data leak. Therefore, hashed source code is shared. Since a hash function gives the same result for the

same data block, a comparison can occur. In this context, collision risk probability must be taken into consideration

while pointing out a light weight hash function.

Analysis. This method allows to authenticate by comparison of the code with a few means and without providing

the code to a malicious robot. Once the authentication is done, the flow of data is not protected but for a low security

level. In fact, only identical robot can authenticate and this might be enough to consider for some systems.

This version has low security dialog that does not guarantee the integrity of the mean of connection. However,

it remains important as it allows to make a difference between the robots that belong or not to the structure. It was

designed to be time efficient for authentication by providing a first level of confidentiality.

3.2.2 Version 2: Authentication and Ciphering.

Phase 1: Authentication. The first phase of this version is extended from the previous. Moreover, the first part of

the source code is hashed and used for authentication comparing and the second part is saved in the robot’s memory

because of its key role in the next phase. The latter will be called “identity-block” in the following parts. Figure 6

presents the first phase of version 2.

Phase 2: Encrypted communications. Once the nanobots are connected, the block cipher algorithm takes over the

hash function to carry the communications out. As the block cipher is a symmetric algorithm it needs a common key

in each nanobot. Therefore, the “identity block” previously created is used as a session key to encrypt the data. In

this study, the robots can be connected to many other robots at the same time and the use of the same key for all the

communications allows to save memory space and the energy that would be necessary to create and use one new key

for each data transfer with a new robot. Figure 7 presents the second phase of this version.

Analysis. Ciphering of the communications provided confidentiality for the protocol, even if the session key is known

by every robot across the structure. The hashing of the code in two parts prevents a leak of credentials during the

authentication.

Manuscript submitted to ACM



10 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

Nanobot 1

Hash Function
0..1

0..1

+ comparison

<< dataFlow >>

Hash Code

Source Code comparison

+ Validation()

Unknow-bot

Comparison

+ Validation()

Hash Function

0..1

0..1

+ comparison

<< dataFlow >>

Hash Code Source Code

+ Validation()

Fig. 6. Functional scheme of the first phase of version 2

Nanobot A

0..1 0..1

+ block-cipher

Identity Block

+ Key: String

Block-Cipher

+ Encryption()
+ Decryption()

0..1

0..1
+ block-cipher

Message

Nanobot B

0..1 0..1

+ block-cipher

Identity Block

+ Key: String

Block-Cipher

+ Encryption()
+ Decryption()

0..1

0..1
+ block-cipher

Message

Fig. 7. Encrypted communications between 2 nanobots

Assuming that the session key is the hashing of the whole code, it would also be the data used to authenticate. A

malicious nanobot could possibly copy this hashed block and authenticate with another robot of the structure and

then decrypt the ciphered data. In this case, even if something copies the first credential to authenticate with another

nanobot, it won’t be able to understand the communications inside the robot swarm.

This protocol uses higher capacity than phase 1 and will not fit to use with very low resources. However, the use of

lightweight algorithms combined with this protocol can provide an efficient solution.

To improve security, the code does not have to be cut into exact parts and the separation between the first part used

for authentication and the second one used for encryption, can be kept secret by the user. As an example, for a 1,000

lines code, line 1 to 384 will be hashed to authenticate and line 385 to 1,000 to encrypt.

3.2.3 Version 3: PROLISEAN protocol.

Context. Hashing the whole code and comparing seem to provide enough security to connect two robots. However,

communicating the same hashed code between thousands of robots that compound the structure is risky. A malicious

robot could get this identity block and give it to another robot of the structure and thus get access.

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 11

For better explanation, the point of view of a single nanobot will be considered, unlike the two previous ones. The

reader will then be able to see a robot belonging to the structure and an unknown robot trying to communicate or

sometimes a more global view of an ensemble of nanobots.

Phase1: Refined authentication phase. There is no need to hash the whole code to provide high security hashed blocks

and few lines are enough. In this context, random numbers cannot be used as all modules have the same seed and will

generate the same random number.

Therefore, the proposed solution is based on using chaotic arithmetic sequence that would define which lines to

hash. The chaotic function chosen in this paper was based on the logistic sequence presented in [24].

𝑈𝑛 = 𝜇𝑈𝑛−1 (1 −𝑈𝑛−1) (1)

where 3.57 < 𝜇 < 4 and𝑈0 ∈]0, 1[
The integer 𝑛 in this solution is the number of authentications the robot had before the current authentication, thus

the robot can save the current𝑈𝑛 and will not have to calculate it for each authentication. This sequence, is known to

be chaotic with those parameters. Which means that it won’t tend to fix values or centroid when 𝑛 → ∞. And as per

[24], 𝜇 should be greater than 3.57 as the chaos will be set at this point. No oscillation is yet visible, in the output of the

function, and slight variations in the initial population lead to radically different results. Moreover, as long as 𝜇 < 4 the

result will be included in [0, 1], it will be multiplied by the size of the code to know which line to hash and send to the

other robot to authenticate. Due to the hardware specifications of the nano-sized robots the variable 𝑛 can not have a

huge size, this issue is resolved by applying a modulo 𝑁 in the iteration count where 𝑁 is determined at the conception

of the modular robot according to its own hardware limitations.

The security is not only provided using a chaotic determination of the lines but also by the choice of the parameters

𝜇,𝑈0, 𝑁 that can be changed before the initialization of the structure by the user itself.

To execute this phase, both nanobots must execute all the actions in the meantime as presented by Figure 8 and the

sequence diagram in Figure 9

Nanobot

0..1 0..1

+ linePickerCode

+ Line: String

lineToHash

<< dataFlow >>
What iteration of Un

LinePicker

+numberOfAuth: Int

Hash Function

Identity Block Comparison

+ Validation()

0..1

0..1

+ identityBlock

Unknow-bot

0..1 0..1
+ linePicker

Code

+ Line: String

lineToHash

LinePicker

+numberOfAuth: Int

Hash Function

<< dataFlow>>
Identity Block

0..1

0..1 + identityBlock

Fig. 8. Phase 1 refined

In order to allow robots to know which one must send the authentication request when they connect, it has been

determined that only the one in motion sends an authentication request to the other. This was set up because a malicious

Manuscript submitted to ACM



12 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

robot could just stick to another robot, wait for the identity block to be sent to it and then send it back to the same robot

resulting to the hack of the authentication phase. Thus, it is necessary that the robot stationary at the time of contact is

silent and waits to receive the authentication request from the one that just connected to it, to counter this flaw.

In case both robots were in motion at the time of contact, both robots would send a request. If one of them was

malicious then it would perform the same scenario as before, waiting for the identity block to be sent and send it back

instantly. The procedure to counter this second loophole is as follows:

• When sending an authentication request to one of its ports, if the nanobot also receives a request then the

connection via that port will be processed last.

• If connections have been made with other neighbours, then forget the disputed port.

• If no other connection, send back an authentication request.

:Nanobot

Calculation of U(n)

Determination of lines

Hashing the selected lines

Comparison of ID-Blocks

:UnknownBot

Calculation of U(n)

Determination of lines

Hashing the selected lines

Authentication proposal

Value of "n"

Identity block

Authentication success/failure 

Fig. 9. Sequence diagram of the authentication phase in V3

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 13

If the robot is malicious, it will have to send a request again, get back to the initial authentication case and will be a

refused authentication. Figure 10 illustrates the procedure to be adopted in the above-mentioned case. The blue robot,

which knows the protocol, will first make connections with its other motionless neighbours and then, acknowledging

that it is connected, waits for the red robot to send a second request. Finally, if the red robot belongs to the structure

and is not connected to any other nanobot then it can make its connection with it like in Figure 10a, and if it does not

belong to it then it will be blocked according to the classic authentication phase, Figure 10b.

All these conditions had to be set up to prevent a nanobot from being separated from the structure due to security

rules. This is the case in the following illustration, if they both made the authentication request then any robot could

connect. However, if communications were cut off after a double request then the robot with no connection would be

isolated from the others.

Phase 2: Ciphered communication with multiple keys. The second phase considers that the encryption key is unique

per couple of nanobots. In this configuration, each couple of nanobots confirmed that the identity block was the same

for both and therefore it is used as a session key to encrypt data between both. A robot will have to save up to four or

six session keys at the time and delete it to save memory space once the communication is over.

One of the conditions for using symmetric encryption is that the public key is known only by a small controlled

number of entities. Ideally, if only the two entities in communication have this key, it is called a session key. In this case

it is created by the two nanobots, compared and used, as one would use a session key in a traditional way of such an

algorithm.

In this scenario, it is highly unlikely that three nanobots would have the same encryption key to perform two

communications; i.e 𝐼𝐷𝐴−𝐵 = 𝐼𝐷𝐵−𝐶 ; In order to avoid any unpleasant surprises, it is recommended in this protocol to

delete the encryption keys when the communication is over and to set a sufficiently large 𝑛, where 𝑛 is the number of

authentications the robot had before the current authentication. Indeed, one of the situations where this could happen

would be a communication in 𝐴 and 𝐵 that would last long enough for 𝐵 to make 𝑁 other communications when a 𝐶

robot requests authentication and produces the same key.

Figure 11 presents the functional scheme of this phase.

Analysis. This stage of the protocol is heavier than the previous versions but safe. The way it uses the chaotic

sequence, the logistic sequence, offers three configurable parameters. Once combined with the use of a hash function

and a block cipher, the parameters offer a very strong security system. Moreover, if the unknown-bots were trying

to penetrate the structure, the only data they will receive is the value of 𝑛 that is permanently changing with the

authentications on the other hubs of the nanobots and the refusal of the authentication. Thus, no data leaks from the

structure to this intruder. Like the others, it was designed to be light for low resources swarm of robots by the use of a

simple arithmetic sequence and its own lines of code as keys. Figure 12, summarizes every possible interaction a robot

and its neighbours could have by following this protocol.

Since the nanobots will have to handle up to six communications at the same time with multiple authentications

and disconnections if the structure is in movement, the protocol may cause latency or consumes more time than if

there were no security at all. However, this will not be such an issue since the miniaturisation of technologies is going

deeper every year and nano scaled processors will soon be able to run this protocol. One can also notice that if all those

protocols and algorithms are embedded during the conception of the nano-modular robots, the rest of the code can be

modified to fit with this way of communicating and reduce the latency.

Manuscript submitted to ACM



14 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

(a) When a friendly robot and a malicious robot are in movement at the same time, the friendly robot finished authentication with
the modules that are were not in movement. Then tries to authenticate the malicious robot, since the malicious robots does not know
the protocol it will not be authenticated.

(b) When two friendly robot are in movement at the same time, each module finishes the authentication with the modules that were
not in movement then authenticates the moving module.

Fig. 10. Conflict resolution in three steps against a malicious robot (a) and with a friendly robot (b). Blue modules represent a friendly
robot in movement. Red modules represent malicious modules. The desired new place of a module is depicted by dotted module and a
dashed arrow. When messages are authenticated, they are represented by thick blue arrows or thick red arrows if otherwise. The blue
Shields represent a secured interface.

3.2.4 Version 4: Improved PROLISEAN protocol.

Context. In the previous version, the fixed module is the one that is asking the moving particle for authentication.

The problem occurs when two moving modules get connected at the same time. Then they will both be waiting for the

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 15

Nanobot A

0..1

0..1

+Block-Cipher 

Message

0..1
0..1+ block-Cipher 

ID Block A-B

+ Key: String

Block-Cipher

+ Encryption()
+ Decryption()

Nanobot C

0..1

0..1
+Block-Cipher 

Message

0..1
0..1+ block-Cipher 

ID Block B-C

+ Key: String

Block-Cipher

+ Encryption()
+ Decryption()

Nanobot B

Message

0..1
0..1+ blockCipher

ID Block A-B

+ Key: String

0..1 0..1
+ messageBlock-Cipher

+ Encryption()
+ Decryption()

0..1
0..1+ blockCipher

ID Block A-B

+ Key: String

<< Data Flow >>
Ciphered Data

<< Data Flow >>
Ciphered Data

Gate
A-B

Gate
B-C

Fig. 11. Functional scheme of the ciphered communications during the second phase

other module to authenticate, and this will lead to an infinite wait time. Thus, a logical disconnection between the two

subjects. This section of the paper will be proposing a different approach based on the leader election process. At the

end of the leader election, the leader is a root of a spanning tree. Using the depth first approach, the leader can send an

identification message that will give different ID’s for each module. The identification generated will be referred to as

𝐼𝐷 [4].

Authentication phase. At the time of connection, both modules will exchange the following information: the 𝐼𝐷 given

by the leader, their clock and a hashed part of their code. Module A will be receiving 𝐼𝐷𝐵 ,𝐶𝐿𝑂𝐶𝐾𝐵 and 𝐻𝐵 (𝐶𝑜𝑑𝑒𝐵). On
the other hand, module B will be receiving 𝐼𝐷𝐴 ,𝐶𝐿𝑂𝐶𝐾𝐴 and 𝐻𝐴 (𝐶𝑜𝑑𝑒𝐴). When module A receives 𝐼𝐷𝐵 and𝐶𝐿𝑂𝐶𝐾𝐵 ,

it will know what part of the code was hashed. Using its hashing function, it will hash the designated part of the code

and will obtain 𝐻𝐴 (𝐶𝑜𝑑𝑒𝐵),then compare it with the received 𝐻𝐵 (𝐶𝑜𝑑𝑒𝐵). If both hashing results are the same, then

the modules are authentic and they will trigger the next phase of the protocol that is the encryption.

Two main conditions might occur in such a scenario. The first one is when the end user wants to intentionally merge

two different structures to become one system, and the other case is when an intruder tries to connect to the swarm.

When the first case occurs, there is a high risk that both modules can have the same 𝐼𝐷 , this is when the 𝐶𝐿𝑂𝐶𝐾 value

is taken into consideration. This value, with the 𝐼𝐷 , will be used to define what line of code is used to retrieve the

hashed value.

Manuscript submitted to ACM



16 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

N
an

ob
ot

 E

0.
.1

0.
.1

+B
lo

ck
-C

ip
he

r 

M
es

sa
ge

0.
.1

0.
.1

+ 
bl

oc
k-

C
ip

he
r 

ID
 B

lo
ck

 A
-B

+ 
Ke

y:
 S

tri
ng

B
lo

ck
-C

ip
he

r

+ 
En

cr
yp

tio
n(

)
+ 

D
ec

ry
pt

io
n(

)

N
an

ob
ot

 D 0.
.1

0.
.1

+B
lo

ck
-C

ip
he

r 

M
es

sa
ge

0.
.1

0.
.1

+ 
bl

oc
k-

C
ip

he
r 

ID
 B

lo
ck

 A
-B

+ 
Ke

y:
 S

tri
ng

B
lo

ck
-C

ip
he

r

+ 
En

cr
yp

tio
n(

)
+ 

D
ec

ry
pt

io
n(

)

N
an

ob
ot

 A

+ 
bl

oc
k-

C
ip

he
r 

0.
.1

0.
.1

ID
 B

lo
ck

 A
-E

+ 
Ke

y:
 S

tri
ng

ID
 B

lo
ck

 A
-D

+ 
Ke

y:
 S

tri
ng

0.
.1

0.
.1

+ 
co

m
pa

ris
on

ID
 B

lo
ck

 A
-B

+ 
Ke

y:
 S

tri
ng

ID
 B

lo
ck

 A
-C

+ 
Ke

y:
 S

tri
ng

+ 
m

es
sa

ge

0.
.1

B
lo

ck
-C

ip
he

r

+ 
En

cr
yp

tio
n(

)
+ 

D
ec

ry
pt

io
n(

)

+ 
bl

oc
k-

C
ip

he
r 

0.
.1

0.
.1

H
as

h 
Fu

nc
tio

n

M
es

sa
ge

C
od

e

+ 
Li

ne
s:

 S
tri

ng

0.
.1

ha
sh

Fu
nc

tio
n

0.
.1 0.

.1
Li

ne
Pi

ck
er

+n
um

be
rO

fA
ut

h:
 In

t

+ 
U

n(
)

0.
.10.

.1

id
-B

lo
ck

-A
-B

C
om

pa
ris

on

+ 
Va

lid
at

io
n(

)

N
an

ob
ot

 B

H
as

h 
Fu

nc
tio

n

0.
.10.

.1

+ 
ha

sh
Fu

nc
tio

n

0.
.1

0.
.1

+ 
co

de
Li

ne
Pi

ck
er

+n
um

be
rO

fA
ut

h:
 In

t

C
od

e

N
an

ob
ot

 B

ID
 B

lo
ck

 A
-C

+ 
Ke

y:
 S

tri
ng

da
ta

Fl
ow

da
ta

Fl
ow

<<
 d

at
aF

lo
w

 >
>

ID
 B

lo
ck

 B
-A

<<
 d

at
aF

lo
w

 >
>

W
ha

t i
te

ra
tio

n 
of

 U
n

O
pe

ni
ng

G
at

e 
A-

B

G
at

e 
A-

C
G

at
e 

B-
C

G
at

e
A-

B

Fig. 12. Neighbours interactions following the version three of the protocol

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 17

Nanobot

0..1

0..1

+ linePicker

Code

+ Line: String
lineToHash

LinePicker

<<
Da

ta
 F

low
>>Hash Function

0..1

0..1

+ identification
ID 0..1

0..1

+ linePicker

<<
Da

ta
 F

low
>>

Comparison

+ Validation()

0..1

0..1

+ internalClock
Clock

Nanobot

Code

+ Line: String

0..1

0..1
+ linePicker

0..1

0..1

+ linePicker

LinePicker

ID

Comparison

+ Validation()
Clock

lineToHash

Hash Function

0..1

0..1

+ identification

0..1

0..1

+ internalClock

Fig. 13. Phase 1 of version 4

If an intruder module connects and tries to reply back with the same hashed value and the same 𝐼𝐷 and𝐶𝐿𝑂𝐶𝐾 , the

other module will definitely reject the reply. This is related to the fact that modules of the same system cannot have

the same 𝐼𝐷 due to the depth first method used by the leader to provide identifications for the modules. Furthermore,

modules from different systems can not have the same 𝐶𝐿𝑂𝐶𝐾 . Figure 13 shows in depth the modules, the classes and

the function used to achieve phase 1 of version 4.

To execute this phase properly, both nanobots must execute all the actions in the meantime as presented by the

sequence diagram in Figure 15.

As described in [26], before a module accomplishes its movement, its current neighbour will be sending the new

neighbour a message informing it that there is a new module in movement that is coming to connect. A different

approach of the authentication can then be introduced when particles are moving. The diagram of Figure 14 shows and

explains how authentication happens when a modules is in movement.

Encrypted Communication. The encryption method used in version three can be used here since it is safe and secure.

Analysis. The use of both chaotic function and identifications generated by the leader helps making the system even

more secure. Such approach requires more computational power than the previously described versions. The person

creating the system is the only one who is aware of the computational power and its modules. Therefore, the end user

is left with the decision of what version to choose.

3.3 Analysis

3.3.1 Limits of the method. The goal is to create an authentication method that has the least possible impact on the

functioning of the whole system. It was necessary to find a method using the minimum of resources. Most of the

limitations of the proposed protocol come from the environment in which the experiment takes place. Nothing has yet

clearly defined what motivates robots to move in a certain way. This knowledge might be useful to design a lighter

protocol.

Manuscript submitted to ACM



18 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

A

B C

A

B C

A

B C

A

B C

1 2

3 4

A A

Fig. 14. Authentication approach when modules are moving and connecting to new neighbours: 1) When A decides to move and
connect to C, it will inform B about its movement and sends its ID with the message; 2) B, by its turn, will inform C that A is coming
to connect to it and forwards A’s ID as well; 3) Whenever A accomplish its movement, it will input its ID into the chaotic function and
sends the result obtained to C; 4) C will input the obtained ID from B, process it in the chaotic function and compares the results.
If both results are matching, then the connection authenticated; The new position of module A is depicted by the dotted module.
The dashed arrow represents the movement that will be made by A. Yellow arrows means a normal communication and message
exchange. Red arrow means that the module is asking for authentication and green arrow depicts the approval of the authentication

From a more conceptual point of view, energy supply is not yet defined either. Some researchers would like to be able

to supply energy via the static electricity that surrounds the material. However, others are looking to create nanoscopic

batteries. This would make it possible to define the individual energy consumption of each robot and know whether

the application of such a protocol does consume too much energy at the macroscopic level. Not to mention the fact that

the only thing known about the hardware capabilities of the modules is that they are very limited. In order to be able to

properly dimension this protocol, it will be necessary to know the memory card size, the CPU speed, the transmission

rate between robots, and many other metrics.

3.3.2 Security assessment according to CIA criteria. ISO/CEI 27001 is a norm that defines security standards for IT field.

Among all its content, 6 criteria can be found to assess and classify security algorithms and protocols. This upcoming

section focuses on the following four: Confidentiality, Integrity, Authentication and Availability. Each one will be

defined and discuss through the 4 versions of PROLISEAN. The remaining criteria are:

• Traceability, which is inexistent in this protocol because of the low hardware capacities.

• Attributability, where each entity in this protocol is responsible of one action. In this protocol, it is the case in

each version. Thus, it does not allow an assessment.

Integrity. The use of the hashing technique based on considering some lines of code provides integrity to the system.

Moreover, the use of chaotic hashing function will prevent adversary robot to use the same hash code. If the hashed result

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 19

compared at the receiver side is not the same, the robot will know that the message was modified during transmission.

This provides integrity of messages, and the robot will ask for the message to be resent.

Confidentiality. Version 1 provides a first level of confidentiality by filtering the connections to the swarm of robots.

Moreover, Version 2 enhances the confidentiality by using ciphered communications that can be only decrypted by the

key-owners. Then, in the third version, a potential intruder is only able to read data from the robot that have been

hacked. In the last version, it is quite impossible for an intruder to communicate with a module.

Authentication. Authentication was the main point during the development of PROLISEAN. It is the ability to

guarantee the identity of the users, here it is done by comparing the source codes – or some lines – of the robots since

it is supposed to be the same across the structure.

As shown previously, versions 1 and 2 are very light over this fact and allow a very fast authentication. But the result

is a low degree of security in the authentication phase. The second version presents higher security level since the

:Nanobot A

Calculate HA(codeB)

Compare HA(codeB) 
with HB(codeB)

:UnknownBot B

Authentication proposal

IDA, clockA, HA(codeA)

IDB, clockB, HB(codeB)
Calculate HB(codeA)

Compare HB(codeA)
 with HA(codeA)

Authentication success/failure

Fig. 15. Sequence diagram of the authentication phase in V4

Manuscript submitted to ACM



20 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

Fig. 16. Self-assessment of the 4 proposed protocols through CEI criteria

part of the code used to authenticate can vary according to the initial parameters. The third version is heavy. However,

regarding authentication, the identity block to show is built for each connection.

And finally, the forth version presents the highest level of security. The usage of identifications generated by the

depth first algorithm and its combination with the clock makes authentication more efficient.

Availability. Availability is the guarantee that all the services and resources remains available. The point here is

that the more secure the version is, the more latency can be expected. And the assessment is inverted compared to the

previous points. Moreover, in the third version, some connections may not happen between two friendly robots in the

case of double authentication request. However, version four fixes this issue with the usage of the identifications.

Graph 16 summarizes the CIA criteria for the different versions of the proposed protocol.

4 ALGORITHM ANALYSIS AND PROPOSED SOLUTIONS

4.1 The block cipher

4.1.1 An efficient block cipher. Lightweight cryptography is a cryptographic algorithm or protocol tailored for imple-

mentation in constrained environments including RFID tags, sensors, contact less smart cards, health-care devices and

so on. Lightweight properties are described based on target platforms. In hardware implementations, chip size and/or

energy consumption are the important measures to evaluate the lightweight properties. In software implementations,

the smaller code and/or RAM size are preferable for the lightweight applications [7].

Considering the previous results, the focus is on the 5 lightest algorithms:

• TEA

• KTAN

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 21

• SEA

• HIGHT

• NOEK

Ideally, this latter must have the lowest RAM, energy and memory consumption but also be fast to encrypt and

decrypt. One thing that is noticed during this part of the study is that the lower the size is, the higher the energy

consumption will be. Indeed, an algorithm with few lines of code written in memory will repeat its functions more to

encrypt with a high security level than a big algorithm with all features in its code. So, the most efficient one should be

chosen.

Collision risk. There is a probability that from two different data blocks the same hash result is obtained, this is called

the risk of collision, it is expressed by hash functions designers as a probability. According to modern cyber security

standards, this probability is very low but not zero. For example, for SHA3 it is estimated that a collision can occur at

most every 2

𝑛
2 hashes, with 𝑛 the output size of the blocks in bits.

Here, all the versions of this protocol rely on the result of a hash function for the authentication between two

nanobots. There is, therefore, a risk that a communication may be authorized while the two parties do not belong to the

same structure and consequently a risk of intrusion in the event of an attack by someone malicious. Moreover, this

probability is not applied to a single robot but to all the robots in the structure and since their theoretical size is in the

order of nano meter, even a structure with a volume of 1 cm
3
could contain thousands of billions of nanobots. This risk

is therefore not to be underestimated.

However, several points prove the use of a hash function for authentication remains a possible solution:

• With a hashing block size of 128 bits the risk is 1 in 18 billions and with 256-bit blocks it is 1 in 3.4 × 10
38

for a

collision to happen.

• The only version of this protocol that relies on the hash function has been created to prevent two distinct

structures from associating. And occasionally, to prevent deliberate intrusion by a malicious entity but not

controlled by an external user who may understand the authentication mechanism. Thus, for the objective that

was set, the hash function fulfils, at least in theory, its role. If, during a collision between two structures, a tiny

fraction of the robots, in the order of 1 out of billions mix together, the structures will be able to continue to

perform their initial tasks without difficulty.

• The protocols use block encryption. So the session key is only known by nanobots belonging to the same

structure. Even if an intruder manages to connect, it will be impossible for him to interpret the communications

because it must have the encryption key. In some models, it will also be necessary for this malicious nanobot to

be able to connect to at least one second robot in the structure to intercept the data flow through it. Otherwise,

it will be considered as one end and will only receive part of the information. Which drastically reduces the

probability of interception of the data.

Memory use. This study focused on symmetric encryption to use the minimum number of keys possible. Using an

asymmetric encryption appeared to be a more secured solution but it included the use of a directory containing millions

of public keys. A solution to this issue could have been to create groups of robots with a common public key. The bigger

the groups, the lower the security. That is why the lines of the robot’s code are used as session key in the stages 2,3 and

4. Especially in the stage 3 and 4 in which keys are created in a chaotic way that allows both robots to communicate

with a unique session key that is delete at the end of the communication.

Manuscript submitted to ACM



22 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

Fig. 17. Crossed analysis of ECRYPT II figures

Using the code of the robot in the encryption process also allow to save memory space. Indeed, there is no need to

add lines of code such as registers for the encryption keys. Hash function provide blocks with a maximum size of 256

bits that is saved in the robots memory, multiplied by 6 communication ports it gives 1,536 bits of keys or 192 Bytes.

The diagram in Figure 17 is based on the figures of ECRYPT II (European Network of Excellence in Cryptology

II) [14] and compares the cycle count for encryption and decryption of the 5 algorithms and the energy consumption

for encryption. All those experimental figures were obtained by encrypting a maximum sized block of data for each

algorithm.

• KTAN and SEA: The result was quite predictable regarding the size of both implementations. The number of

cycles is twice higher than HIGHT or NOEK based implementations. For example, the AES based lightweight

algorithm tested in ECRYPT II uses 18 time less cycles with the biggest code size of this report.

• TEA: As the energy consumption seems to be proportional with the number of cycles, the energy needed to

decrypt the TEA-based algorithm will be one of the highest among the others.

• HIGHT and NOEK: Both seem to be a good compromise regarding all the parameters previously introduced.

Since HIGHT algorithm has less complexity, therefore, this algorithm will be the focus of this paper.

4.1.2 HIGHT lightweight encryption algorithm. HIGHT for High Security and light weight is a block cipher designed

for low resources devices with 64-bit block length and 128-bit key length for 8-bit processors. It was created to secure

RFID tags that are used in contactless credit cards. Those devices are very interesting in this study since it presents the

same requirement as nano-modular robots which are low hardware resources and low energy consumption.

It uses a Feistel-like 32-round iterative structure 18 that can either be hardware implemented or software implemented

[17]. According to the authors, this algorithm is more efficient in hardware implemented version since Feistel structure

uses XOR logical gates and additions. HIGHT mostly uses mod 2
8
additions, XORs and circular shifts of bits. It is also

faster than AES-128 once embedded in a 8-bit processor and lighter in the same time by the use of only one 128-bit

register in the key schedule algorithm for both encryption and decryption since it contains the 2 master keys values

necessary for those operations.

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 23

WK3,WK2,WK1,WK0Initial Transform

Round1

Round32

Final Transform

Key Schedule 

Master Key

Master Key
CipherText

PlainText

SK3,SK2,SK1,SK0

SK127,SK126,SK125,SK124

WK7,WK6,WK5,WK4

Fig. 18. Encryption process of HIGHT [31]

This algorithm has proven through different studies [14, 17] its high resistance against all kind of known attacks to

be considered as resistant as classic symmetric block ciphers. To go into more detail, the initial transformation prepares

the data to be processed in the rounds by concatenating the𝑊𝐾3,2,1,0 whitening keys and the data to be encrypted in

the form of a matrix whose coefficients are bit lists. Then the method called Round is applied 32 times to this matrix.

A Round consists of 5 operations on the rows and columns of the matrix comparable in some way to the precise and

known mixing of a Rubik’s cube. These 5 operations include the following:

• An exchange of the coefficients of this matrix.

• Two XOR operations between the coefficients and the Subkeys 𝑆𝐾0,...,128.

• Two bits additions modulo 2
8

Once the 32 laps have been completed, the resulting matrix is finally transformed by the Final Transform function,

which undoes the last two operations of the 32
𝑛𝑑

lap and then concatenates the entire matrix into a bit string that can

be interpreted by the computers as a character string.

4.2 The Hash function

Considering Figure 1 the focus will be on the SPONGENT hash function family which are lightweight hash functions

based on the sponge functions model. A sponge function is often used in hashing but not only, this term defines

functions able to take as a parameter any size of data and provide a fixed size block in return.

It is advantageous to use such function in this study since the source code of the robot should be hashed which size

is variable. Then use it later as a 128-bit key for one of the symmetric block cipher.

Manuscript submitted to ACM



24 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

Those Hash functions are based on the working principle of another lightweight block cipher called PRESENT. The

latter is tested in ECRYPT II report [14] but the results of the use of this algorithm to cipher communications was not

efficient for the use of this study. Nevertheless, SPONGENT hash functions that are using its design principles and are

the lightest presented in [14] in term of memory size and also RAM capacity use that is the reason why this report is

focusing on it.

According to the creators [10], those hash functions were engineered from the very beginning to be embedded in

small sensors networks such as RFID. It uses a smart management of the data generated during the hashing process by

stocking the least bits possible during the hashing and serializing the implementation to the point that the logic part of

the function is much smaller that the state part.

The function, like HIGHT, also uses logical gate to optimize the ratio size/RAM use and even if we could implement

it to artificially use those gates. It would ruin the creators efforts to make it light.

The SPONGENT version would be more likely to be used is the 128-bit one since the 2 previously introduced block

ciphers needs a 128 bits key to work. This version needs 1060 logical gates to work in its original design [10]. In this case,

logical gates should also be used to make optimal use of this function. According to the various documents previously

mentioned [7, 10, 14, 19], it would seem, so far, very complicated to make a hash function with a small size and a small

processor footprint without using it.

hi-1

mi
f1

hi

hi-1

mi

f2

hi

hi-1

mi f3

hi

hi-1

mi

hi

hi-1

mi
f6

hi

hi-1

mi

hi

f4

f5

Fig. 19. Six different ways to turn a block cipher to a hash function [9]. M is the block of data to hash that has been divided into the
parts noted mi ; hi is the result of a hash turn, h0 is a constant arbitrarily chosen and the central block is the encryption algorithm.
The latter is used i times based on one of the models

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 25

HEIGH
Yes

No

Hash? %

Fig. 20. Using the HEIGH algorithm for encryption and hashing simultaneously

4.3 Proposed Hashing function

To improve the the protocol, the encryption algorithm will be using both hashing function and encryption such as

suggested by Preneel, Govaerts and Vandewall in [27]. The challenge was to find a way to use a block cipher that would

be secured enough, designed to be embedded in low capacity devices and be able to run as a hash function within the

addition of a few lines of code.

It is the final stage to create a safe, hardly breakable and lightweight system to secure nano-modular robots structures.

All the security of the structure will fit into a small algorithm able to encrypt, decrypt and hash on demand and with

high security standards.

This method was very interesting in the past. The first hash functions were created by modifying DES for instance,

and then, with the increase of the threat in cybersecurity those functions could not handle the high security requirement.

Finally, with the arrival of AES standard the interest for it pop-up back in the scientist landscape to the point that

now, a lot of work about this topic is available. For now, only heavy algorithms have been turned into hash function

successfully in terms of security standards respect and it would be a great challenge to create such versatile algorithm.

There are 64 ways to turn a block cipher into a hash function, Figure 19 introduces 6 examples, among them few can

handle the international security standards. For a simple reason, ciphers are created to encrypt and decrypt but not

hash functions. That is why, encryption keys are considered weak in the hashing standards.

Nevertheless, the idea is relatively simple in the design because it is necessary to find a way to use the encryption

algorithm that makes it almost indecipherable but not due to chance. Indeed, for the same block of data, a hash function

must return the same block.

As previously mentioned, this solution appears to be the most convincing among all because of the simplicity to

implement, the resistance against known attacks and the low memory space required. Furthermore, [19, 28] are dealing

with a Noekeon based hash function with the addition of a few code lines. It might be interesting to integrate block

encryption and hash function from Noekeon. Indeed, according to [19], the Noekeon-based hash function is heavier than

SPONGENT during its operation and also in the memory space. As most of the code lines of the latter would already be

written in the source code of the robots with the block cipher, then it results that by using the NOEKEON-based hash

function this only adds a few more lines in the code. The diagram in Figure 20 shows how an encryption algorithm can

be used for hashing as well, thus reducing the memory and processing usage.

5 SIMULATION AND DIFFERENTIAL CRYPTANALYSIS

5.1 Simulations

A simulation was done on VisibleSim in order to implement and evaluate the protocol. VisibleSim is a modular robotic

and programmable matter simulator based on C++. It enables developers to run event-based simulations. An event is a

Manuscript submitted to ACM



26 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

Method 𝑃 (𝐸𝑘 (𝑚) = 𝑐)
Total

Rounds
Total

Plain Text
Total

Encryption
decrypt time
64b in year

decrypt time
32b in year

decrypt time
16b in year

decrypt time
8b in seconds

Differential 2
−58

11+ 2
248

NA 7.17 ∗ 1049 1.55 ∗ 1031 3.37 ∗ 1012 20

Linear 2
−54

10 2
228

NA 6.83 ∗ 1043 4.74 ∗ 1026 3.29 ∗ 1009 0.7

Impossible Diff. NA 8 2
93.6

2
109.2

5.71 ∗ 1032 2.33 ∗ 1018 9.51 ∗ 103 0.001

Saturation NA 16 2
168

2
51

5.93 ∗ 1025 1.35 ∗ 1013 3.06 2.19 ∗ 10−5
Boomerang NA 13 2

248
NA 7.17 ∗ 1049 1.55 ∗ 1031 3.37 ∗ 1012 20

Table 3. Cryptanalysis results for the HIGHT algorithm

task executed by the module simulating one of its actuators. In this scenario, a task is a message send or received. Table

4 shows all type of messages that are being exchanged in the system.

Message Type Message Description

AUTH_REQUEST_MSG This message is sent by a module that is requesting authentication to connect

AUTH_GRANTED_MSG Once this message is sent, it means that the module is authenticated to connect

AUTH_REJECTED_MSG Once this message is sent, it means that the module is not authenticated to connect and the connection will be blocked

Table 4. Different message type

In this simulation, three modules are placed. One of the modules is the main robot in the initial system. The other two

are placed in a way that one is authentic and the other one is not. Figure 21 shows in details the messages exchanged

among the modules in order to approve or reject the connected robot. Furthermore, table 5 shows and explains the real

values during the simulation. The columns Value1 and Value2 represents the values of the variables with index 1 and 2

respectively. Moreover, Figure 22 presents the structures simulated on VisibleSim.

c1 i1 h1 c2 i2 h2

Request authentication

2
Request authentication

1

c1 i1 => chaos1

chaos1 => linePicker1

linePicker1 => h'1

h1 == h'1

true
1

c2 i2 => chaos2

chaos2 => linePicker2

linePicker2 => h'2

h2 == h'2

false
2

Fig. 21. Simulation graph. The initial module is colored in yellow. The bots that are trying to authenticate are in white and numbered 1
and 2. After the authentication phase, module 1 is authenticated, therefore, it is now colored in yellow. Module 2 in rejected, therefore
it is colored in red.

Manuscript submitted to ACM



PROLISEAN: A New Security Protocol for Programmable Matter 27

Variable Definition Value1 Value2

c Clock 1598048073 1598048068

i Iteration 17 20

h Hashed value 6652819590941555539 17788932521966903233

chaos

Is the value generated by the

chaotic function based on c and i

47 46

linePicker Is the line picked based on the value of chaos year joke

h’ The hashed result by the authenticating bot 6652819590941555539 13758745852358344340

Table 5. Variables used in the simulation and their values

(a) This is the initial state of the system. (b) The first bot in the system is colored in yellow

(c) This is the initial state of the system. (d) Three spanning trees. The green and blue trees are identical.

Fig. 22. Comparison of two cases, a) and b) has the same blue and green trees but b) has yellow modules in addition. In the case b),
yellow tree will dramatically change the results. The yellow tree will be loosing against the blue tree, and it will be then merged into
one tree. So in this case having two identical trees is not considered as a collision.

Manuscript submitted to ACM



28 Edy Hourany, Bachir Habib, Camille Fountaine, Abdallah Makhoul, Benoit Piranda, and Julien Bourgeois

5.2 Differential cryptanalysis

In [17], the authors provided the security analysis and statistical randomness tests of HIGHT against multiple types of

attacks. Table 3 summarizes the analysis results. Those tests were made on an 8-bit key lengths to be able to reverse the

encryption in a timely manner. Whereas the key length used in this scenario is a 64 bits key.

As previously discussed those testings were made on an 8-bit key lengths to be able to reverse the encryption in a

timely manner. Whereas the key length used in this scenario is a 64 bits key. The fastest decryption process was the

linear cryptanalysis. The number of plain texts needed to reverse the encryption on an 8 bit key was 2
57
. When using

the 64 bit key, the number of plain texts needed will be (257)4 = 2
228

. As long as the modules are changing their key at

least every 227 times they send a message, the encryption will remain safe. In this scenario, it is suggested to change

the key used every 2 or 3 times the module sends a message.

The fastest supercomputer [22], called Summit, can make 200 ∗ 1015 calculations per seconds. Using this value and

the differential cryptanalysis method, the values in Table 3 are calculated. It is then obvious that 16bit key length for

HIGHT encryption is more than enough to secure the encryption and make it impossible to decrypt it in a timely

manner.

6 CONCLUSION

This paper presents the design and implementation of the first security protocol for programmable matters based on

nano modular robots. It describes a solution that avoids intrusion, whether physically by a foreign nanobot or logically

by an external hardware. The protocol is derived in four versions in order to adapt to the capacity of the matter and to

the needs of a potential user. It describes and uses optimal lightweight cryptography and hashing algorithms from the

perspective of space/time complexity and energy consumption. Moreover, a chaotic arithmetic sequence was applied to

the source code of the robots, at each hashing time slot, to avoid Trojan attacks. Finally, the protocol is implemented on

VisibleSim and evaluated. Results show that 16 bit key length for HIGHT encryption is enough to secure the system.

In our future work, we will study the complexity of the whole system. In this context, new techniques based on

clustering the system must be developed. The leader election phase can be extended by introducing sub-leaders on

different levels to have better communication complexity for large scale systems. This aspect presents many challenges

from key distribution between the levels and the sub-leaders, to the security policy that must be applied in case of

leaders breach. Finally, a real implementation must be considered that considers the leader election, the security protocol

and the shape formation all together.

REFERENCES
[1] Hossein Ahmadzadeh and Ellips Masehian. 2015. Modular robotic systems: Methods and algorithms for abstraction, planning, control, and

synchronization. Artificial Intelligence 223 (2015), 27–64.
[2] Hossein Ahmadzadeh, Ellips Masehian, and Masoud Asadpour. 2016. Modular Robotic Systems: Characteristics and Applications. J. Intell. Robotics

Syst. 81, 3-4 (March 2016), 317–357. https://doi.org/10.1007/s10846-015-0237-8

[3] Ahmet Arış, Sema F Oktuğ, and Sıddıka Berna Örs Yalçın. 2015. Internet-of-things security: Denial of service attacks. In 2015 23nd Signal Processing
and Communications Applications Conference (SIU). IEEE, 903–906.

[4] Joseph Assaker, Abdallah Makhoul, Julien Bourgeois1, and Jacques Demerjian. 2020. A Unique Identifier Assignment Method for Distributed

Modular Robots. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020. IEEE.
[5] Jacques M Bahi, Christophe Guyeux, and Abdallah Makhoul. 2010. Secure data aggregation in wireless sensor networks: homomorphism versus

watermarking approach. In International Conference on Ad Hoc Networks. Springer, 344–358.
[6] Jad Bassil, Mohamad Moussa, Abdallah Makhoul, Benoît Piranda, and Julien Bourgeois. 2020. Linear Distributed Clustering Algorithm for Modular

Robots BasedProgrammable Matter. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020. IEEE.

Manuscript submitted to ACM

https://doi.org/10.1007/s10846-015-0237-8


PROLISEAN: A New Security Protocol for Programmable Matter 29

[7] Isha Bhardwaj, Ajay Kumar, and Manu Bansal. 2017. A review on lightweight cryptography algorithms for data security and authentication in IoTs.

In 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). IEEE, 504–509.
[8] Alex Biryukov and Léo Paul Perrin. 2017. State of the art in lightweight symmetric cryptography.

[9] John Black, Phillip Rogaway, and Thomas Shrimpton. 2002. Black-box analysis of the block-cipher-based hash-function constructions from PGV. In

Annual International Cryptology Conference. Springer, 320–335.
[10] Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz, Kerem Varıcı, and Ingrid Verbauwhede. 2011. SPONGENT: A lightweight hash

function. In International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 312–325.
[11] Zoran Cekerevac, Zdenek Dvorak, Ludmila Prigoda, and Petar Cekerevac. 2017. Internet of things and the man-in-the-middle attacks–security and

economic risks. MEST Journal 5, 2 (2017), 15–25.
[12] Zahra Derakhshandeh. 2017. Algorithmic Foundations of Self-Organizing Programmable Matter. Ph.D. Dissertation. Arizona State University.
[13] Zahra Derakhshandeh, Robert Gmyr, AndréaWRicha, Christian Scheideler, and Thim Strothmann. 2016. Universal shape formation for programmable

matter. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures. ACM, 289–299.

[14] ECRYPT Francois-Xavier Standaert, II and D SYM. 2010. ECRYPT II, Final Lightweight Cryptography Status Report. (2010).

[15] Christophe Guyeux, Abdallah Makhoul, and Jacques M. Bahi. 2014. A Security Framework for Wireless Sensor Networks: Theory and Practice. In

2014 IEEE 23rd International WETICE Conference, WETICE 2014, Parma, Italy, 23-25 June, 2014, Sumitra Reddy (Ed.). 269–274.

[16] Neil Hanley and Maire ONeill. 2012. Hardware comparison of the ISO/IEC 29192-2 block ciphers. In 2012 IEEE Computer Society Annual Symposium
on VLSI. IEEE, 57–62.

[17] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong,

et al. 2006. HIGHT: A new block cipher suitable for low-resource device. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 46–59.

[18] Vittorio P Illiano and Emil C Lupu. 2015. Detecting malicious data injections in event detection wireless sensor networks. IEEE Transactions on
Network and service management 12, 3 (2015), 496–510.

[19] Masanobu Katagi, Shiho Moriai, et al. 2008. Lightweight cryptography for the internet of things. Sony Corporation (2008), 7–10.

[20] Vinod Kumar, Rakesh Kumar Jha, and Sanjeev Jain. 2020. NB-IoT Security: A Survey. Wireless Personal Communications 113, 4 (2020), 2661–2708.
https://doi.org/10.1007/s11277-020-07346-7

[21] Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko Yamauchi. 2017. Brief Announcement: Shape Formation by

Programmable Particles. In 31st International Symposium on Distributed Computing (DISC 2017) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 91), Andréa W. Richa (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 48:1–48:3. https://doi.org/10.4230/

LIPIcs.DISC.2017.48

[22] Morgan L McCorkle. 2018 (accessed November 3, 2020). ORNL Launches Summit Supercomputer. https://www.ornl.gov/news/ornl-launches-summit-

supercomputer.

[23] Sunday Oyinlola Ogundoyin. 2020. An autonomous lightweight conditional privacy-preserving authentication scheme with provable security for

vehicular ad-hoc networks. International Journal of Computers and Applications 42, 2 (2020), 196–211.
[24] Daniel Perrin. 2008. La suite logistique et le chaos. Rapport technique, Dép. Math. d’Orsay., Univ. de Paris-Sud, France 22 (2008).
[25] Benoit Piranda, S Fekete, A Richa, K Römer, and C Scheideler. 2016. Visiblesim: Your simulator for programmable matter. In Algorithmic Foundations

of Programmable Matter (Dagstuhl Seminar 16271). https://projects.femto-st.fr/projet-visiblesim/en.

[26] Benoît Piranda, Guillaume J. Laurent, Julien Bourgeois, Cédric Clévy, Sebastian Möbes, and Nadine Le Fort-Piat. 2013. A new concept of planar self-

reconfigurable modular robot for conveying microparts. Mechatronics 23, 7 (Oct. 2013), 906–915. https://doi.org/10.1016/j.mechatronics.2013.08.009

[27] Bart Preneel, René Govaerts, and Joos Vandewalle. 1993. Hash functions based on block ciphers: A synthetic approach. In Annual International
Cryptology Conference. Springer, 368–378.

[28] Phillip Rogaway and John Steinberger. 2008. Constructing cryptographic hash functions from fixed-key blockciphers. In Annual International
Cryptology Conference. Springer, 433–450.

[29] Iván Santos-González, Alexandra Rivero-García, Mike Burmester, Jorge Munilla, and Pino Caballero-Gil. 2020. Secure lightweight password

authenticated key exchange for heterogeneous wireless sensor networks. Information Systems 88 (2020), 101423.
[30] Victor Kathan Sarker, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Westerlund. 2020. Lightweight Security Algorithms for Resource-constrained

IoT-based Sensor Nodes. In ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 1–7.
[31] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. 2007. The 128-bit blockcipher CLEFIA. In International workshop on fast

software encryption. Springer, 181–195.
[32] Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. 2019. A survey of autonomous self-reconfiguration methods for robot-based programmable

matter. Robotics and Autonomous Systems 120 (2019), 103242.
[33] Mohammad Wazid, Ashok Kumar Das, Vivekananda Bhat, and Athanasios V Vasilakos. 2020. LAM-CIoT: Lightweight authentication mechanism in

cloud-based IoT environment. Journal of Network and Computer Applications 150 (2020), 102496.

Manuscript submitted to ACM

https://doi.org/10.1007/s11277-020-07346-7
https://doi.org/10.4230/LIPIcs.DISC.2017.48
https://doi.org/10.4230/LIPIcs.DISC.2017.48
https://www.ornl.gov/news/ornl-launches-summit-supercomputer
https://www.ornl.gov/news/ornl-launches-summit-supercomputer
https://doi.org/10.1016/j.mechatronics.2013.08.009

	Abstract
	1 Introduction
	2 Background Description
	2.1 Modular robotics and programmable matter
	2.2 Lightweight cryptography

	3 PROLISEAN: our proposed protocol
	3.1 Risk study through EBIOS method
	3.2 Proposed algorithm: PROLISEAN
	3.3 Analysis

	4 Algorithm analysis and proposed solutions
	4.1 The block cipher
	4.2 The Hash function
	4.3 Proposed Hashing function

	5 Simulation and differential cryptanalysis
	5.1 Simulations
	5.2 Differential cryptanalysis

	6 Conclusion
	References

