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Abstract—Deep Learning (DL) has marked the beginning of a
new era in computer science, particularly in Machie Learning
(ML). Nowadays, there are many fields where DL is pplied
such as speech recognition, automatic navigation sgms,
image processing, etc [1]. In this paper, a Convadiwnal Neural
Network (CNN), more precisely a CNN built on top of
DenseNetl69, is proven to be helpful in predictingobject
distance in computer-generated holographic imagesThe
problem is addressed as a classification problem wehe
101 classes of images were generated, each classesponding
to a different distance value from the object at anicrometer
scale. Experiments show that the proposed networls iefficient
in this context, being able to classify with a 100%accuracy
level if trained properly.
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l. INTRODUCTION

Digital holography (DH) is an emerging field in igiag
applications [2,3]. In fact, it is exploited in 3Dmage
processing, surface contour measurements, micrggéhp
and even
microrobotics and/or photonics is to be able toedunine
metrics in the context of complex imaging devicésiong
those metrics, it is interesting to investigate hthe 3D
position measurements of micro-objects can be whated.
With earlier hologram image reconstruction, the raite
experimental setup needed to be determined ahesichef
including object's depth position [6], otherwise nma
diffraction calculations were needed to be appigd/arious
depth settings. According to [7] and [8], such téghes
consumed a lot of time as they necessitate marfiaction

in microrobotics [5]. A major challenge in
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In this paper, given the scale of the availablesktt the
problem of determining the distance of a view cegadlby a
holographic camera is addressed by modeling it as a
classification problem. A major challenge thataskied in
this context is to design a deep neural networkithable to
give accurate predictions, while working with higfecision
distance values, such as on a micrometer scaldy avit
considerable amount of classes to perform theifitzgons.
The outcomes proved that the built network is ot tapable
of performing predictions with an accuracy levell60% at
a micrometer scale, using 101 classes for theifitzg®ns,
where each class corresponds to a different distiiom the
object varying with a step of 100 micrometer.

The proposal is presented thereafter throughout the
following sections. Section Il presents some of ¢hesting
literature, more specifically on deep learning @&adenefits
for addressing classification problems in digitaldgraphy.
The context of this study is highlighted in theldaling
section. Section IV is dedicated to a detailed gmesion of
the proposed deep neural network and the experahent
results. Finally, the conclusion aims to summarthe
findings and the potential future works.

Il.  RELATED WORKS

First, we will present DL globally before diggingeper
into its use in digital holography. A CNN is a wktown
DL architecture that is widely used for analyzingda
classifying images by extracting and learning fesgtu
directly from them [13]. Many CNN models are avhitg
each having its own particularity and advantages.
DenseNet [14] (a densely connected network) isabrieem,
which is known for its significant results when quened to
other models. It even necessitates fewer varialites

calculations and signal processing, and thus heavﬁfaining [15]. According to the authors of this CNN

computations were required in this scope. NowadBgsp
Learning (DL) reshaped the world of computer saéeaied it

computation concerns of the older techniques terdenhe
depth position: instead of applying many diffrantio
calculations, training a deep neural network ispheid to
enable it to do the depth predictions itself [6,9uch
predictions can result from treating the considgyezblem
as either a classification problem [10,11,12] aegression
problem [6,9].

model [14], DenseNet networks do not encounter
optimization issues even upon scaling to hundrédayers.
Their main motivation to create this model was éope the

V¥sanishing of the input information that occurs fa butput

of the network after it has passed through mangrigyas
well as the vanishing of the gradient in the opigosi
direction.

In the following, we will discuss some works in the
literature that tackle DH using DL. Currently, mastyidies
in DH focus on reconstructing the target objectplitude
and phase once its distance is extracted; a proefssed to
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Figure 1. (a) Schematic drawing and (b) pictur¢hef experimental setup, (c) pseudo-periodic pattetal size 5.6 * 4.2 mfy, (d) computed generated

digital hologram — images drawn from [16].

as ‘“autofocusing”. In particular, identifying thebject
distance is crucial for the object reconstructib®][ In the
literature, autofocusing has been explored by ébipip
advances in DL (also called learning-based appesciio
be more specific, two main approaches are invdstigto
tackle the problem: using classification [10,11,48H using
regression [6,9].

We will focus on the classification approach ansl it
adoption in the literature. In this approach, [Ed{d [11]
were the first to work on predicting depth in DHdiscrete
values. In [10], the authors demonstrated thatfactising in
DH can be achieved using DL. They adopted a CNNitha
built on top of the AlexNet architecture. They #tdr off
with a number of holograms that they prepared &itsh
stage by eliminating the “zero-order” and the “tsémm”.
They used 21 classes for the labeling and data ewigrion
was applied on the prepared holograms to incréessize of
the dataset. Moreover,
manually defined depth values. 90% of the data wsea to
train the network and the remaining 10% for thadadion.
Their learning rate was set up to the value of 0AX they
concluded, their network does not scale properlgrédver,
they stated that their network “generalizes well’ a

millimeter scale without mentioning the obtainecwacy
level to prove it.

In [12] the authors used a CNN to predict the dabjec
distance by training their network with hologranesific
labels that correspond to the actual distancesy Tbked an
uniform technical setup to capture 1000 holograemgling
up with 5 distance labels. Their experimental tssptoved
that the network is able to predict the distanctheuit any
knowledge of the technical setup and with less time
consumption than the traditional methods. This psothat
they coped the issues that were encountered wdhie[10].
However, although they provided estimates at aimmeélier
scale (axial range of about 3 mm, which is appatprior
imaging systems), they only worked on 5 classegiwimay
not be enough to generalize their findings.

In this paper, DenseNet [14] is used to build a CNN
model that achieves depth prediction in the DH extniThe

the network was trained withdifference between DenseNet and a conventional GNhke

use of additional connections between shallow Eyserd
deeper ones. Indeed, in DenseNet each layer recaise
inputs the feature maps from its preceding layes sends
its own maps to the deeper layers. Thus, each lageives
all the knowledge gathered by all the previous gy our
case, DenseNet classifies in 101 classes and arameter



scale, which is far more accurate than most ofetkisting
works in literature, where efforts were channeleavork on

a millimeter scale. It uses a dataset of 10,10@Qesndhat are

augmented and split using the 70-30% rule, withasihg
the training images in the testing. The model &s-tpained
using Imagenet. Experimental results presentededafier
prove that the DenseNet network is able to pretigth with
100% accuracy.

I1l. DIGITAL HOLOGRAPHY
FORMEASUREMENTS INMICROROBOTICS

First the context of this study is presented. Toal ¢s to
explore the capabilities provided by digital holaginy (DH)
coupled with digital photogrammetry to perform spikel

sample positioning measurements in microrobotiod &n
photonics. The determination of metrics in the eghtof

IV. THEPROPOSEDDEEPNETWORK AND
EXPERIMENTAL RESULTS

To tackle the classification problem, a good CNN
network is needed. Therefore DenseNet was selaite
that it has, according to its authors, significeegults when
compared to other models. Besides, many archigctur
variations of this model exist. At first, DenseN&1 was
adopted. However, the obtained results were naicaesrate
as expected and thus we decided to replace it with
DenseNet-169. This latter DenseNet flavor effedyive
allowed having better results in the current contixdeed,
thanks to DenseNet-169 a free-error classificationld be
obtained, whereas the lighter DenseNet-121 alwaijedf on
a few dozens of images. In fact, DenseNet-169 éajrthe
DenseNet architectures [14] that are availableuiinoKeras
library - a Python library that allows developmeait DL

photonics represents a large challenge. At thetbedjoal is
to be able to perform micro-scale 3D position mezments
of micro-objects. In this paper, a simpler goabibe able to
determine the distance of a sight (without objeaen by a

performed on a NVIDIA Tesla V100 GPU that has 32 @B
RAM using TensorFlow among the available backend
implementations of Keras [13].

Without prior training, the network performed well,

holographic camera in order to simplify the problem however it necessitated 1000 epochs to be adeguatel

Because with deep learning, a large set of datagsired
and because physicists often build model of reatithetter
understand it, our physicist colleagues made a hufdine
holography camera.

As an illustration, Fig. 1 depicts images from aia

trained. In order to reduce this number and thus th
computation time to complete the training, we dedido
investigate the benefit of transfer learning. Hus treason
the ImageNet dataset was included to take advamtfite
pre-trained weights to reduce the number of epoetpsired,

method based on digital holography developed by ougnd consequently the computation time needed tcpleten

physicist colleagues [16]. This method allows

thethe training. Transfer learning, which consistaply a pre-

simultaneous measurement of the in-plane positind a trained model to a new task by providing a starpomnt for
orientation of a moving target object with sub-pixe the training, is widely used in deep learning.

resolution. Fig. 1 (a) and (b) show the experimleatup,

As ImageNet is a multi-class classification problesth

where CMOS denotes the image sensor, BS the beaky00 classes, we had to adapt the classificatiger laf the

splitter, M the mirror, and PPP the pseudo-perigsdittern
wavefront reflected from SLM/target device. Figc)l and
(d) presents, respectively, the image of the PPRircd
experimentally for a particular in-plane positiondathe
corresponding hologram generated numerically on
computer. On the upper part of Fig 1 (d) is a zaona small
part of the generated hologram showing the modilfaiege
carrier that result from the tilt of the mirror I@onsequently,
using a similar numerical model provided by oudeajues,
we can generate as many images as required.

In order to understand the difficulty of the prahlave
are facing, in the following some images of sigtd given
(see Fig. 2). Distance of the sight may vary frormnil to
2 cm with steps of size 100 um. So there are 1féérelt
steps corresponding to 100 classes. It can bethagesights
can rotate freely and that there are sometimes hiolsights
in order to let physicists code some informationobjects
directly visible with the DH. It should also be mad that
only a Region Of Interest (ROI) is presented aralyaed by
the CNN in the following. In practice, a crop of&ra is
performed on an image. In Fig. 2 it can be seenithages
corresponding to neighboring depths are very simitar a
human, being able to recognize the distance iposgible.

adopted DenseNet network to reduce this number to
101 classes. Therefore, the output of the network's
convolutional part is flattened and the 1000D fully
connected output layer replaced by a 101D one.réuept
gverfitting dropout is added after flattening usagiropout
rate of 50%. Like in the original DenseNet netwothe
activation function adopted in the classificatiaydr is the
softmax function.

At an early stage of this work an auto-encoder wsesd
in order to be able to support various input imagees.
Indeed, we observed that the input images coulde hav
various sizes. Thus the idea was to add an autodenc
before the DenseNet network, to resize imagesuniform
size while keeping as much information as possilolehis
way, the auto-encoder was supposed to find therhagth
between an original input image and its versiort thauld
be fed into the classifier. However, when we u$edimages
provided by the auto-encoder the classifier coully oeach
an accuracy level of 97%, and this preprocessing a&lso
time consuming. As a result, we abandoned the emtoder
and simply replaced it with a crop to get unifonmaige sizes
of 224 * 224 pixels, which is the size required kye
selected DensetNet architecture.

! hitps://keras.io/api/applications/densenet/
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Figure 2. (a)-(c) Images of sight at distance T4 (d)-(f) images of sight at distance 1.45 cnj({(gimages of sight at distance 1.46 cm.

During the experiments, we observed that the DeeseNknown technique in DL that is used for weights jiation
network was clearly overtraining after 500 epoakisich is by minimizing the loss function [18].
why the *“early stopping” technique was considered t  Now we will give more details on the dataset andemo
prevent this. It consists in stopping the trainimgce the particularly how the images were obtained. As presiy
model performance is no longer improving. To stulig ~ explained in Section I, aholographic image generator was
problem more precisely, 20 independent trainingsrwere  used to generate 101 classes of images. Moreaveagei
analyzed to check when overtraining occurs. Oname&r augmentation, which aims to increase the data vellbm
this was found to happen after 150 training epochs. creating transformed versions of the original insd®],

The adopted loss function is categorical crossepgtra  was applied during the training. It allowed us totain a
loss function suited for problems with single labellarger data volume using the nearest-neighborrdgizing
categorization. It applies a comparison betweerp#teclass technique while preprocessing and flipping horiatigtand
predictions' distribution in the output layer withe true vertically the training images. Each class represea
distribution [17]. Furthermore, the Stochastic Geatl different distance value from the target objecte Tistance
Descent (SGD) optimization was adopted with a liegrn values start with O with an increase of 100 micreméor
rate of 1le-4 and a mini-batch size of 32. SGD iwedl-  each class. Practically, it means that each classisis of

100 holographic images and thus that the dataset is



composed of 10,100 images. The dataset was sppierathe
70-30 rule; 70% of the images were used for trginamd the
remaining 30% for the testing.

Multiple tests were conducted on the network to snea
the accuracy and loss levels of the results whilapting
what is needed to improve as much as possibleethgts.
After fine-tuning, the network achieved an accurbssel of
100% when trained properly, at micrometer scale thar
101 classes, without needing to re-use the traimrages in
the testing. Thus, among the different flavors @nhBeNet
investigated in [14], which have number of layexsng
from 121 up to 264 for ImageNet, the DenseNet Wid®
layers is the shallowest one able to successfldlgsify any
image. It means that the network with 121 layensasable
to provide enough discriminative feature maps hefihe
classification layer.

V. CONCLUSION

In this paper, we have proposed a solution to deter
the distance of a sight that is captured by a halagc
camera. It benefits from deep learning techniqued
consists in a CNN that is built on top of DensetNétding
this distance is indeed modeled as a classificgtimlem
where an input image must be classified within ctess
among 101. Training has benefited from transfemieg to
reduce the number of epochs needed to complefEhd.
experimental results showed that the proposed mktoan
predict at a micrometer scale with an accuracyl lef/&00%
if trained properly, thus proving that DL techniguere more
and more promising in the DH context. There areessdv
possible avenues for future work that we would like
explore. First, further increasing the number @fssks can
be investigated. Second, the problem could be dalsging
regression instead of classification, which shauit in
having continuous values of depth instead of discomes.
Third, the impact on the
environmental setup such as luminosity may be evadl) as
well as predicting the distance of more than oreonded
object having different distances.
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