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Abstract—Deep Learning (DL) has marked the beginning of a 
new era in computer science, particularly in Machine Learning 
(ML). Nowadays, there are many fields where DL is applied 
such as speech recognition, automatic navigation systems, 
image processing, etc [1]. In this paper, a Convolutional Neural 
Network (CNN), more precisely a CNN built on top of 
DenseNet169, is proven to be helpful in predicting object 
distance in computer-generated holographic images. The 
problem is addressed as a classification problem where 
101 classes of images were generated, each class corresponding 
to a different distance value from the object at a micrometer 
scale. Experiments show that the proposed network is efficient 
in this context, being able to classify with a 100% accuracy 
level if trained properly. 
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I.  INTRODUCTION 

Digital holography (DH) is an emerging field in imaging 
applications [2,3]. In fact, it is exploited in 3D image 
processing, surface contour measurements, microscopy [4], 
and even in microrobotics [5]. A major challenge in 
microrobotics and/or photonics is to be able to determine 
metrics in the context of complex imaging devices. Among 
those metrics, it is interesting to investigate how the 3D 
position measurements of micro-objects can be determined. 
With earlier hologram image reconstruction, the overall 
experimental setup needed to be determined ahead of time 
including object's depth position [6], otherwise many 
diffraction calculations were needed to be applied for various 
depth settings. According to [7] and [8], such techniques 
consumed a lot of time as they necessitate many diffraction 
calculations and signal processing, and thus heavy 
computations were required in this scope. Nowadays, Deep 
Learning (DL) reshaped the world of computer science and it 
is used in many application areas including DH. Particularly, 
DL helped in coping the time consumption and heavy 
computation concerns of the older techniques to determine 
depth position: instead of applying many diffraction 
calculations, training a deep neural network is adopted to 
enable it to do the depth predictions itself [6,9]. Such 
predictions can result from treating the considered problem 
as either a classification problem [10,11,12] or a regression 
problem [6,9]. 

In this paper, given the scale of the available dataset, the 
problem of determining the distance of a view captured by a 
holographic camera is addressed by modeling it as a 
classification problem. A major challenge that is tackled in 
this context is to design a deep neural network that is able to 
give accurate predictions, while working with high precision 
distance values, such as on a micrometer scale, with a 
considerable amount of classes to perform the classifications. 
The outcomes proved that the built network is in fact capable 
of performing predictions with an accuracy level of 100% at 
a micrometer scale, using 101 classes for the classifications, 
where each class corresponds to a different distance from the 
object varying with a step of 100 micrometer. 

The proposal is presented thereafter throughout the 
following sections. Section II presents some of the existing 
literature, more specifically on deep learning and its benefits 
for addressing classification problems in digital holography. 
The context of this study is highlighted in the following 
section. Section IV is dedicated to a detailed presentation of 
the proposed deep neural network and the experimental 
results. Finally, the conclusion aims to summarize the 
findings and the potential future works. 

II. RELATED WORKS 

First, we will present DL globally before digging deeper 
into its use in digital holography. A CNN is a well-known 
DL architecture that is widely used for analyzing and 
classifying images by extracting and learning features 
directly from them [13]. Many CNN models are available, 
each having its own particularity and advantages. 
DenseNet [14] (a densely connected network) is one of them, 
which is known for its significant results when compared to 
other models. It even necessitates fewer variables for 
training [15]. According to the authors of this CNN 
model [14], DenseNet networks do not encounter 
optimization issues even upon scaling to hundreds of layers. 
Their main motivation to create this model was to cope the 
vanishing of the input information that occurs at the output 
of the network after it has passed through many layers, as 
well as the vanishing of the gradient in the opposite 
direction. 

In the following, we will discuss some works in the 
literature that tackle DH using DL. Currently, many studies 
in DH focus on reconstructing the target object's amplitude 
and phase once its distance is extracted; a process referred to
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Figure 1. (a) Schematic drawing and (b) picture of the experimental setup, (c) pseudo-periodic pattern (total size 5.6 * 4.2 mm2), (d) computed generated 
digital hologram – images drawn from [16]. 

as “autofocusing”. In particular, identifying the object 
distance is crucial for the object reconstruction [12]. In the 
literature, autofocusing has been explored by exploiting 
advances in DL (also called learning-based approaches). To 
be more specific, two main approaches are investigated to 
tackle the problem: using classification [10,11,12] and using 
regression [6,9]. 

We will focus on the classification approach and its 
adoption in the literature. In this approach, [10] and [11] 
were the first to work on predicting depth in DH in discrete 
values. In [10], the authors demonstrated that autofocusing in 
DH can be achieved using DL. They adopted a CNN that is 
built on top of the AlexNet architecture. They started off 
with a number of holograms that they prepared at a first 
stage by eliminating the “zero-order” and the “twin-term”. 
They used 21 classes for the labeling and data augmentation 
was applied on the prepared holograms to increase the size of 
the dataset. Moreover, the network was trained with 
manually defined depth values. 90% of the data were used to 
train the network and the remaining 10% for the validation. 
Their learning rate was set up to the value of 0.01. As they 
concluded, their network does not scale properly. Moreover, 
they stated that their network “generalizes well” at a 

millimeter scale without mentioning the obtained accuracy 
level to prove it. 

In [12] the authors used a CNN to predict the object 
distance by training their network with hologram-specific 
labels that correspond to the actual distances. They used an 
uniform technical setup to capture 1000 holograms, ending 
up with 5 distance labels. Their experimental results proved 
that the network is able to predict the distance without any 
knowledge of the technical setup and with less time 
consumption than the traditional methods. This proves that 
they coped the issues that were encountered in the work [10]. 
However, although they provided estimates at a millimeter 
scale (axial range of about 3 mm, which is appropriate for 
imaging systems), they only worked on 5 classes, which may 
not be enough to generalize their findings. 

In this paper, DenseNet [14] is used to build a CNN 
model that achieves depth prediction in the DH context. The 
difference between DenseNet and a conventional CNN is the 
use of additional connections between shallow layers and 
deeper ones. Indeed, in DenseNet each layer receives as 
inputs the feature maps from its preceding layers and sends 
its own maps to the deeper layers. Thus, each layer receives 
all the knowledge gathered by all the previous layers. In our 
case, DenseNet classifies in 101 classes and at a micrometer 



scale, which is far more accurate than most of the existing 
works in literature, where efforts were channeled to work on 
a millimeter scale. It uses a dataset of 10,100 images that are 
augmented and split using the 70-30% rule, without using 
the training images in the testing. The model is pre-trained 
using Imagenet. Experimental results presented thereafter 
prove that the DenseNet network is able to predict depth with 
100% accuracy. 

III.  DIGITAL HOLOGRAPHY 
FOR MEASUREMENTS IN M ICROROBOTICS 

First the context of this study is presented. The goal is to 
explore the capabilities provided by digital holography (DH) 

coupled with digital photogrammetry to perform sub‐pixel 
sample positioning measurements in microrobotics and in 
photonics. The determination of metrics in the context of 
complex imaging devices used in microrobotics and/or 
photonics represents a large challenge. At the end, the goal is 
to be able to perform micro-scale 3D position measurements 
of micro-objects. In this paper, a simpler goal is to be able to 
determine the distance of a sight (without object) taken by a 
holographic camera in order to simplify the problem. 
Because with deep learning, a large set of data is required 
and because physicists often build model of reality to better 
understand it, our physicist colleagues made a model of the 
holography camera. 

As an illustration, Fig. 1 depicts images from a vision 
method based on digital holography developed by our 
physicist colleagues [16]. This method allows the 
simultaneous measurement of the in-plane position and 
orientation of a moving target object with sub-pixel 
resolution. Fig. 1 (a) and (b) show the experimental setup, 
where CMOS denotes the image sensor, BS the beam 
splitter, M the mirror, and PPP the pseudo-periodic pattern 
wavefront reflected from SLM/target device. Fig. 1 (c) and 
(d) presents, respectively, the image of the PPP obtained 
experimentally for a particular in-plane position and the 
corresponding hologram generated numerically on a 
computer. On the upper part of Fig 1 (d) is a zoom on a small 
part of the generated hologram showing the modulated fringe 
carrier that result from the tilt of the mirror M. Consequently, 
using a similar numerical model provided by our colleagues, 
we can generate as many images as required.  

In order to understand the difficulty of the problem we 
are facing, in the following some images of sight are given 
(see Fig. 2). Distance of the sight may vary from 1 cm to 
2 cm with steps of size 100 µm. So there are 100 different 
steps corresponding to 100 classes. It can be seen that sights 
can rotate freely and that there are sometimes holes in sights 
in order to let physicists code some information of objects 
directly visible with the DH. It should also be noticed that 
only a Region Of Interest (ROI) is presented and analyzed by 
the CNN in the following. In practice, a crop operation is 
performed on an image. In Fig. 2 it can be seen that images 
corresponding to neighboring depths are very similar. For a 
human, being able to recognize the distance is not possible. 

IV.  THE PROPOSED DEEP NETWORK AND 
EXPERIMENTAL RESULTS 

To tackle the classification problem, a good CNN 
network is needed. Therefore DenseNet was selected given 
that it has, according to its authors, significant results when 
compared to other models. Besides, many architecture 
variations of this model exist. At first, DenseNet-121 was 
adopted. However, the obtained results were not as accurate 
as expected and thus we decided to replace it with  
DenseNet-169. This latter DenseNet flavor effectively 
allowed having better results in the current context. Indeed, 
thanks to DenseNet-169 a free-error classification could be 
obtained, whereas the lighter DenseNet-121 always failed on 
a few dozens of images. In fact, DenseNet-169 is one of the 
DenseNet architectures [14] that are available through Keras 
library - a Python library that allows development of DL 
models sequentially1 . Note that the computations are 
performed on a NVIDIA Tesla V100 GPU that has 32 GB of 
RAM using TensorFlow among the available backend 
implementations of Keras [13]. 

Without prior training, the network performed well, 
however it necessitated 1000 epochs to be adequately 
trained. In order to reduce this number and thus the 
computation time to complete the training, we decided to 
investigate the benefit of transfer learning. For this reason 
the ImageNet dataset was included to take advantage of the 
pre-trained weights to reduce the number of epochs required, 
and consequently the computation time needed to complete 
the training. Transfer learning, which consists to apply a pre-
trained model to a new task by providing a starting point for 
the training, is widely used in deep learning. 

As ImageNet is a multi-class classification problem with 
1000 classes, we had to adapt the classification layer of the 
adopted DenseNet network to reduce this number to 
101 classes. Therefore, the output of the network's 
convolutional part is flattened and the 1000D fully-
connected output layer replaced by a 101D one. To prevent 
overfitting dropout is added after flattening using a dropout 
rate of 50%. Like in the original DenseNet network, the 
activation function adopted in the classification layer is the 
softmax function. 

At an early stage of this work an auto-encoder was used 
in order to be able to support various input image sizes. 
Indeed, we observed that the input images could have 
various sizes. Thus the idea was to add an auto-encoder, 
before the DenseNet network, to resize images in a uniform 
size while keeping as much information as possible. In this 
way, the auto-encoder was supposed to find the best match 
between an original input image and its version that would 
be fed into the classifier. However, when we used the images 
provided by the auto-encoder the classifier could only reach 
an accuracy level of 97%, and this preprocessing was also 
time consuming. As a result, we abandoned the auto-encoder 
and simply replaced it with a crop to get uniform image sizes 
of 224 * 224 pixels, which is the size required by the 
selected DensetNet architecture. 

                                                           
1 https://keras.io/api/applications/densenet/ 
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Figure 2. (a)-(c) Images of sight at distance 1.44 cm, (d)-(f) images of sight at distance 1.45 cm, (g)-(i) images of sight at distance 1.46 cm. 

During the experiments, we observed that the DenseNet 
network was clearly overtraining after 500 epochs, which is 
why the “early stopping” technique was considered to 
prevent this. It consists in stopping the training once the 
model performance is no longer improving. To study this 
problem more precisely, 20 independent training runs were 
analyzed to check when overtraining occurs. On average, 
this was found to happen after 150 training epochs. 

The adopted loss function is categorical cross-entropy, a 
loss function suited for problems with single label 
categorization. It applies a comparison between the per-class 
predictions' distribution in the output layer with the true 
distribution [17]. Furthermore, the Stochastic Gradient 
Descent (SGD) optimization was adopted with a learning 
rate of 1e-4 and a mini-batch size of 32. SGD is a well-

known technique in DL that is used for weights optimization 
by minimizing the loss function [18]. 

Now we will give more details on the dataset and more 
particularly how the images were obtained. As previously 
explained in Section III, an holographic image generator was 
used to generate 101 classes of images. Moreover, image 
augmentation, which aims to increase the data volume by 
creating transformed versions of the original images [19], 
was applied during the training. It allowed us to obtain a 
larger data volume using the nearest-neighbor fill resizing 
technique while preprocessing and flipping horizontally and 
vertically the training images. Each class represents a 
different distance value from the target object. The distance 
values start with 0 with an increase of 100 micrometer for 
each class. Practically, it means that each class consists of 
100 holographic images and thus that the dataset is 



composed of 10,100 images. The dataset was split as per the 
70-30 rule; 70% of the images were used for training, and the 
remaining 30% for the testing. 

Multiple tests were conducted on the network to measure 
the accuracy and loss levels of the results while adapting 
what is needed to improve as much as possible the results. 
After fine-tuning, the network achieved an accuracy level of 
100% when trained properly, at micrometer scale for the 
101 classes, without needing to re-use the training images in 
the testing. Thus, among the different flavors of DenseNet 
investigated in [14], which have number of layers going 
from 121 up to 264 for ImageNet, the DenseNet with 169 
layers is the shallowest one able to successfully classify any 
image. It means that the network with 121 layers is not able 
to provide enough discriminative feature maps before the 
classification layer. 

V. CONCLUSION 

In this paper, we have proposed a solution to determine 
the distance of a sight that is captured by a holographic 
camera. It benefits from deep learning techniques and 
consists in a CNN that is built on top of DensetNet. Finding 
this distance is indeed modeled as a classification problem 
where an input image must be classified within one class 
among 101. Training has benefited from transfer learning to 
reduce the number of epochs needed to complete it. The 
experimental results showed that the proposed network can 
predict at a micrometer scale with an accuracy level of 100% 
if trained properly, thus proving that DL techniques are more 
and more promising in the DH context. There are several 
possible avenues for future work that we would like to 
explore. First, further increasing the number of classes can 
be investigated. Second, the problem could be solved using 
regression instead of classification, which shall result in 
having continuous values of depth instead of discrete ones. 
Third, the impact on the results of changing the 
environmental setup such as luminosity may be evaluated, as 
well as predicting the distance of more than one recorded 
object having different distances. 
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