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Abstract 
 
At first sight, the use of an everywhere positive Wigner function as a probability density 

to perform stochastic simulations in quantum optics seems equivalent to the introduction of 
local hidden variables, thus preventing any violation of Bell inequalities. However, because of 
the difference between symmetrically and normally ordered operators, some trajectories in 
stochastic simulations can imply negative intensities, despite a positive mean.  Hence, Bell 
inequalities do not apply. Here, we retrieve for a weakly squeezed Gaussian state the 
maximum violation on polarization states allowed by quantum mechanics, for the Clauser-
Horn-Shimony-Holt (CHSH), as well as for the Clauser-Horn Bell inequalities. For the case of 
the Clauser-Horn Bell inequality, the influence of the quantum efficiency of the detectors is 
studied, and for both inequalities, the influence of the degree of squeezing is assessed, as well 
as the uncertainty range versus the number of trajectories used in the simulations.  
 
1) Introduction 

As reported by Drummond et al. [1], in 1982 Richard Feynman answered in the 
negative [2] to the question “Can quantum systems be probabilistically simulated by a classical 
computer?”  Following [1] and others, we propose in this paper a more positive answer. 
However, we first would like to remark that there are simple systems that justify Feynman 
assertion. Consider for example two entangled images formed by spontaneous parametric 
down conversion (SPDC) measured with two cameras able to count photons [3]. Let the 
number of photons incident on each pixel of the cameras be smaller than, say, 5, and the 
number of relevant pixels on each camera be 512 × 512. In the Schrödinger point of view, 
the Hilbert space that describes such a system has 52×512 ×512 dimensions, each 
corresponding to a different pair of images with its own probability. It is clearly impossible to 
simulate, by using a generator of random numbers corresponding to these probabilities, the 
successive pairs of images obtained by repeating the experiment. On the other hand, all 
statistical features of the images, like means, variances, pixel correlations and so on, can easily 
be obtained in the Heisenberg point of view, since quantum quadratures propagate like 
classical optical fields. To calculate the statistical features of the spatial repartition of SPDC, 
two methods were proposed in [4], using either Green’s functions to characterize the pixel to 
pixel input-output relations, or stochastic simulations based on the Wigner phase-space 
representation. 

Bell inequalities involve correlations between remote systems, and the demonstration 
of their violation can be performed using the characteristic function, i.e. the Fourier transform 
of the Wigner function [5]. Besides, Bell argued [6] that the Wigner function of a pair of 
position-momentum entangled particles, in the sense of Einstein-Podolsky-Rosen [7], can be 
seen as a probability distribution for position and momentum of a pair of classical particles, 
preventing any non-locality. Though, as mentioned explicitly in [6], the argument did not apply 
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to dichotomic variables like spin or polarization, the discussion that followed in the 
subsequent literature mentioned important elements concerning the possibility of using the 
Wigner function as a probability density for stochastic simulations. Notably, Ref. [8] stated 
that the Wigner representation of quantum observables cannot be in general interpreted as 
phase-space distribution of possible experimental outcomes. For spatial variables, a relation 
between the Wigner function and the parity operator was used in [8] to show violation of Bell 
inequalities, as experimentally demonstrated in spatial parity space using SPDC [9]. Note that 
SPDC, or squeezed vacuum, does possess a positive-definite Wigner function [10], which leads 
to Bell inequalities only for variables having a definite value assigned by the local hidden 
variables [11] .  

Actually, before these works in the spatial domain, SPDC was proved by Kwiatt et al to 
allow a violation of the Bell inequalities in the original scheme using polarizers [12]. The 
experiment used polarization entanglement between the pairs of photons coming from the 
two intersections of the two cones corresponding to type-II SPDC, each cone with a 
polarization orthogonal to the other: see Figure 2. At the point of detection, the polarizing 
beam-splitters can be viewed as parity operators. This experiment was analyzed in the Wigner 
representation by Casado et al [13], who remarked that the detected intensity is not positive-
definite for each realization of the underlying random process, even if the mean intensity, 
corresponding in simulations to an average of a large number of realizations, is positive. This 
remark led them to propose a modification of the quantum  formalism that is compatible with 
experiment only if the detectors admit some basic dark rate, or in other words, if they are 
directly sensitive to vacuum fluctuations. No experimental evidence has justified this 
proposition, beyond the evident problems of energy conservation. Brambilla et al. used also 
stochastic simulations based on the Wigner formalism to describe the spatial properties of 
SPDC [14]. 

A positive phase-space Wigner function offers a /straightforward/clear scheme for 
stochastic simulations that should, for polarization entangled SPDC, violate Bell inequalities 
since, in the words of Cahill and Glauber [15], the Wigner function may be used to write the 
ensemble averages of all bounded operators as convergent integrals. We will see in this paper 
that this is indeed the case. Curiously, such violation seems have not been demonstrated 
before, though Werner et al presented [16] a thorough comparison of the advantages and 
drawbacks of the positive-P and Wigner representations. For our present purpose, we retain 
that the symmetrically ordered operators corresponding to the electric field in the Wigner 
representation (i.e. the quantum quadratures) propagate classically and the results are exact 
inasmuch as the pump field is intense and undepleted. These features were exploited in [17] 
to simulate a spatially multimode Hong-Ou-Mandel experiment, and in [18] to characterize 
SPDC issued from crystals with complex structures. As also stated in [16], the Wigner 
representation requires only half the number of variables as does the positive-P method, and 
requires independent Gaussian noise sources only at the input. Nevertheless, this is the 
positive-P method that was chosen to show that quantum simulations can be used to 
demonstrate violation of Bell inequalities [19]. As regards the Wigner formalism, it implies for 
each trajectory four complex numbers, corresponding to the two orthogonal polarizations of 
the field at the two remote locations. It has been demonstrated in [20-21] that four complex 
numbers defined in a similar way obey the Bell inequalities in the Glauber-Sundarshan 
representation. A misconception would consist in believing that this demonstration extends 
to the Wigner representation. Indeed, it is well-known [15, 20] that squeezed vacuum does 
not possess a regular Glauber-Sundarshan representation, though its Wigner function is 
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positive-definite. On the other hand, the demonstration of Bell inequalities involves positive 
intensities. Hence Bell inequalities can be violated for a squeezed vacuum either because its 
Glauber-Sundarshan representation is not regular, or because the real number giving the 
intensity associated with a particular trajectory in the Wigner representation may be negative, 
as we will develop in this paper. Of course, it means that a trajectory of the stochastic 
simulation does not correspond to a possible experimental outcome [8] (looking for such a 
correspondence leads to doubtful physics [13]). Only averages computed over a great number 
of trajectories correspond to physical quantities. Nevertheless, the results for each trajectory 
are obtained by simulating classical propagation, ensuring that all details of the actual 
experiment can be easily taken into account [4, 12, 18]. 

The remainder of the paper is organized as follows. In section 2, we give the theoretical 
framework. Section 3 deals with numerical results and we conclude in section 4. 

 
2) Theoretical framework  

 
It has been shown by Cahill and Glauber, [15] Eq. 4.23, that the expectation value of a 

symmetrically ordered product of creation and annihilation operators  𝑎† and 𝑎, can be always 
expressed as an integral in the entire complex plane C over a c-number 𝛼, weighted by the 
Wigner function 𝑊(𝛼):  

< (𝑎†)𝑛𝑎𝑚 >𝑆=
1

𝜋
∫ 𝑊(

𝐶
𝛼) (𝛼∗)𝑛𝛼𝑚𝑑2𝛼      (1) 

 
The subscript S, or symmetrically ordered, means that all orders are present with an equal 
weight in the expectation. For example, we have, for n=m=2:  
 

< (𝑎†)2𝑎2 >𝑆= 〈
𝑎†𝑎†𝑎𝑎+𝑎†𝑎𝑎†𝑎+𝑎†𝑎𝑎𝑎†+𝑎𝑎†𝑎†𝑎+𝑎𝑎†𝑎𝑎†+𝑎𝑎𝑎†𝑎†

6
〉     (2) 

 

Some useful relations hold between the operator number of photons  𝑁 = 𝑎†𝑎 , and the 
symmetrically ordered operators:  
 

𝑁 = (𝑎†𝑎)𝑆 −
1

2
,           𝑁2 = ((𝑎†)2𝑎2)𝑆 − 𝑁 −

1

2
      (3) 

 
Eqs. 3 are derived by using the commutation relation of the annihilation operator 

 [𝑎, 𝑎†] = 1.  
 
We deduce the mean and the variance: 
 

< 𝑁 >= 〈(𝑎†𝑎)𝑆〉 −
1

2
,  𝑉(𝑁) =< 𝑁2 > −< 𝑁 >2=< (𝑎†)2𝑎2 >𝑆− 〈(𝑎†𝑎)𝑆〉2 −

1

4
      (4)   

 
Since these relations are based only of the commutation properties of the annihilation 
operator in a mode, they are general, whatever the wave function involved in the means.  
If two different modes are implied, the corresponding annihilation operators commute, and 
we obtain for the covariance of the numbers of photons in two modes 1 and 2: 
 

𝐶𝑜𝑣(𝑁1, 𝑁2) =< 𝑁1𝑁2 > −〈𝑁1〉〈𝑁2〉 =< 𝑎1
†𝑎1𝑎2

†𝑎2 >𝑆− 〈(𝑎1
†𝑎1)

𝑆
〉 〈(𝑎2

†𝑎2)
𝑆

〉  (5)
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Eq. (1, 4, 5) suggests a scheme of numerical simulation for states whose Wigner function is 
positive definite, and remains as such under propagation. To calculate the integral on the right 
side of Eq. 1, the simplest solution is to randomly sample the complex plane by using a 
probability density proportional to the Wigner function. The real part of the obtained c-

number corresponds to the position quadrature, quadrature 𝑋1 =
𝑎†+𝑎

2
 in optics, and the 

imaginary part to the momentum quadrature, quadrature 𝑋2 = 𝑖
𝑎†−𝑎

2
 in optics. It can be 

easily verified that 𝑋1
2 + 𝑋2

2 = (𝑎†𝑎)𝑆. Eq.1 ensures that the quantum mean of 𝑋1
2 + 𝑋2

2 is 
equal to the average of the squared moduli of the numerous randomly-drawn complex 
numbers. Clearly, the equality does not hold for an individual draw: if acting on the vacuum,  

𝑋1 and 𝑋2 have a negative covariance, since their commutator is equal to  
𝑖

2
 , while the real 

and imaginary parts of the c-numbers are independent. Indeed, the Wigner function of the 
vacuum is Gaussian and depends on the squared modulus, (see [15] Eq. 4.38): 
 
𝑊0(𝛼) = 2 exp (−2|𝛼|2)         (6). 
 
We have now all the elements to introduce a complete numerical scheme to model the SPDC 
in realistic conditions corresponding to the different experimental set-up described in 
[4,12,18]. 
 

- Divide the input plane of the crystal in sufficiently small pixels to ensure that the 
sampling theorem is fulfilled at the crystal output. Indeed, phase-matching acts in the 
spatial domain as a low-pass amplifier, ensuring a spatial cutoff-frequency that defines 
the conditions of sampling. The sampling spatial frequency must be greater than twice 
the highest spatial frequency for which phase matching allows a non-negligible gain. 
As an example, we see on fig. 2 that the rings due to phase matching are entirely 
retrieved. 

- Draw at random for each pixel two c-numbers, whose real and imaginary parts are 
independently selected from a Gaussian distribution of zero mean and variance ¼, in 
accordance with Eq. 6. Each c-number correspond to a polarized field along one of the 
two neutral axes of the crystal, horizontal (H) or vertical (V). We can prove easily from 
Eqs. (1, 4, 5), that such a draw ensures  < 𝑁 >= 0,     𝑉(𝑁) = 0,   Cov(N1,N2)=0 (two 
pixels 1 and 2), as expected  for the input vacuum. 

- Propagate the field in the crystal using the usual split-step algorithm, where the 
classical coupled equations of parametric amplification are solved in the direct domain, 
and diffraction is taken into account by propagating the plane wave spectrum in the 
spatial Fourier domain [4]. It can be proved that quantum quadratures propagate like 
classical waves in the undepleted pump approximation [16].  

- Repeat the entire procedure many times. Each iteration is called a trajectory. 
- Calculate at the output all the statistical features of interest on the detected photon-

numbers by applying first Eq. 1, to pass from averages of squared moduli of c-numbers 
to means of symmetrically operators, then Eqs 3 to 5 to apply “quantum corrections” 
in order to retrieve photon numbers from symmetrically ordered operators. 
Note that these quantum corrections can be applied either to each trajectory (Eq.3) or 
to the means (Eqs 4 and 5). 
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Fig.1: Experimental set-up. : non linear crystal. WP: polarizing beam-splitters. D: single-photon 
detectors. 
 

 
Fig2: Non corrected mean intensity in the Fourier plane (average of 20,000 trajectories). 
 
The proposed experimental set-up is similar to that of [12]: see Fig.1. An U.V. pump beam is 
incident on a BBO crystal in conditions of type II phase-matching. A horizontally polarized 
signal and a vertically polarized idler beam are created by SPDC and four detectors record the 
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photons coming from the cone intersections, in chosen polarization directions. We see on Fig. 
2 the mean intensity obtained in the far-field, or Fourier domain, by averaging 30 000 
trajectories. We keep for the following only two pixels, numbered 1 and 2, corresponding 
respectively to the left and right best intersection of the cones, exactly symmetrical with 
respect to the direction of the pump beam. The Bell biphoton state corresponding to these 
two pixels can be written as: 
 

|𝜓+ >= (|𝐻1, 𝑉2 > +|𝑉1, 𝐻2 >)/√2       (7) 
 
The other Bell states can be obtained by using wave-plates [12] but, for sake of conciseness, 
we consider only |𝜓+ > in this paper. 
 
Two polarizing beam-splitters separate the beams 1 and 2, with their first neutral axes forming 
respectively an angle 𝜃1 and 𝜃2 with the horizontal direction.  The four output field amplitudes 
can be written as: 
 

(
𝐴𝑖

+

𝐴𝑖
−) = (

𝑐𝑜𝑠(𝜃𝑖) 𝑠𝑖𝑛(𝜃𝑖)
−𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖)

) (
𝐴𝑖

𝐻

𝐴𝑖
𝑉 )        (8) 

 
where + and – designate the two output ports of the polarizing beam-splitter and i=1 or 2 
refers to the left or right pixel. 
 

After calculating the intensities 𝐼𝑖
𝑗
(𝜃𝑖) = |𝐴𝑖

𝑗
|

2
 (expressed in number of photons), we apply 

the quantum corrections of Eq.3 to obtain the normalized correlation: 
 

𝐸(𝜃1, 𝜃2) =
((𝐼1

+(𝜃1)−1/2)−(𝐼1
−(𝜃1)−1/2))((𝐼2

+(𝜃2)−1/2)−(𝐼2
−(𝜃2)−1/2))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

((𝐼1
+(𝜃1)−1/2)+(𝐼1

−(𝜃1)−1/2))((𝐼2
+(𝜃2)−1/2)+(𝐼2

−(𝜃2)−1/2))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     (9) 

 
The bars describe the average over a large number of trajectories n, n typically in the range 
105-106, as discussed in the next section.  Clearly, the quantum corrections vanish in the 
numerator of Eq. (9). On the other hand, these quantum corrections do hold in the 
denominator. If we assume that the corrected intensities, i.e. the photon numbers, are 
positive for each trajectory, we can derive [20] the CHSH form of Bell inequalities [22]: 
whatever the angles 𝜃1, 𝜃1

′ , 𝜃2, 𝜃2
′ , we have 

 
|𝐵| ≤ 2, 𝑤ℎ𝑒𝑟𝑒 𝐵 = 𝐸(𝜃1, 𝜃2) − 𝐸(𝜃1, 𝜃2

′ ) + 𝐸(𝜃1
′ , 𝜃2

′ ) + 𝐸(𝜃1
′ , 𝜃2)                        (10) 

 
However, for some trajectories, the photon numbers are negative because of the quantum 
corrections, although the average is (and must be) positive.  Hence, the CHSH Bell inequality 
can be violated in our numerical experiment. 
The experiment corresponding to the CHSH equality involves only measurements of 
coincidences and is therefore subject to the so called “fair sampling loophole”. To avoid this 
loophole, Clauser and Horne proposed [23] an inequality involving the probability of detection 
of a single photon. For our purpose, this inequality can be written as: 
 



7 
 

  𝐶 ≤ 1, 𝑤ℎ𝑒𝑟𝑒 𝐶 =  
𝐼1

+(𝜃1)𝐼1
+(𝜃2)−𝐼1

+(𝜃1)𝐼1
+(𝜃2

′ )+𝐼1
+(𝜃1

′ )𝐼1
+(𝜃2

′ )+𝐼1
+(𝜃1

′ )𝐼1
+(𝜃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐼1
+(𝜃1

′ )+𝐼1
+(𝜃2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    (11) 

 
Since the denominator involves probabilities of detection of single photons, proportional to 
the detector quantum efficiency, while the numerator involves probabilities of coincidences 
proportional to the square of the efficiency, this inequality can be violated only for a high 
detector quantum efficiency, in fact greater than 83% [24] for a maximally entangled state. 
Once more, we will see that the negative “corrected intensities” allow this inequality to be 
numerically violated.  
 
3) Results 
 

All results will be given for 𝜃1 = −
𝜋

8
,  𝜃1

′ =
𝜋

8
, 𝜃2 =

𝜋

2
, 𝜃2

′ = −
𝜋

4
, ensuring for the Bell state 

|𝜓+ > the quantum theoretical values 𝐵 = 2√2 = 2.83, C=
1+√2  

2
=1.21, i.e. the maximum 

violation of the Bell inequalities allowed by quantum mechanics. See for example [20] for the 
quantum calculation. 
 
Fig. 3 shows, for a mean output intensity of 0.02  photon/pixel (sum of signal and idler), the 
evolution of B and C for a number of trajectories n between 1000 and 14002 =1.96 106.. For 
the 128x128 pixels considered in this image, this simulation corresponds to 7 hours of 
computation time on a professional PC.  A simple estimation of the confidence interval for the 
intensities is as follows. The probability density of the non-corrected intensity for a mode, i.e. 
after the polarizing beam-splitter, is given by a decreasing exponential, with, for a trajectory, 
a standard deviation equal to the mean (the statistics is that of a speckle of unity contrast 
[25]). The standard deviation of the total mean intensity 𝜎𝐼̅ is inversely proportional to the 
square root of the number of trajectories, giving  for n=1.96 106 and a mean non-corrected 

intensity of the signal or the idler 𝐼�̅�𝑁𝐶 = 0.51, 𝜎𝐼̅ =
0.51×√2

1400
= 5.2 10−4 . We use here the fact 

that the signal and the idler intensities have independent statistics when adding on either the 
pixel 1 or 2 and each obey thermal statistics (standard deviation equal to the mean, see 
below). On the other hand, the true intensity is the corrected one, giving a relative standard 

deviation of  
5.2 10−4

2 10−2 = 2.6%. Though the exact computation of the uncertainty range for B is 

difficult, we can admit that this value is also close to the relative standard deviation of B. We 
see here the principal drawback of the method: the useful information lies in the corrected 
values, while the fluctuations scale with the non-corrected ones, leading to the necessity of a 
great number of trajectories for the small gain that allows a weak squeezed state to reproduce 
at best the quantum behavior of a biphoton state.  
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Fig.3: An example of the evolution of B and C versus the number of trajectories. Colored areas: 
uncertainty ranges (95% of confidence) centered on the theoretical biphoton values. 

 
The finally estimated B=2.68 is 5.3% below the quantum theoretical value for a 

biphoton state, B=2.83, i.e. outside the  ±5.2% uncertainty range at 95% confidence. Actually, 
even for a low mean intensity of 0.02, the probability of a double pair in a single experiment 
cannot be entirely neglected. It leads to a modification of the coincidence rate that lowers the 
measured value of B. The theoretical value of B that takes into account this effect can be 
determined as follows. Let be 𝐺 = 𝑠𝑖𝑛ℎ2(𝑔 𝐿) the total gain, in photons per mode, for a 
crystal of length L. 𝑔 is the gain per unit length, depending on the pump intensity and the 
nonlinear crystal coefficient, at perfect phase matching. The statistics of the signal (idler) 
beam is thermal, ensuring for its mean and variance [25]: 

 
〈𝑁𝑆〉 = 〈𝑁𝐼〉 = 𝐺,     𝑉(𝑁𝑆) =  𝑉(𝑁𝐼) = 𝐺 + 𝐺2           (12)   
 
Only pairs are emitted, resulting in a signal-idler covariance equal to the variance: 
 
𝐶𝑜𝑣(𝑁𝑆, 𝑁𝐼) = 𝐺 + 𝐺2         (13) 
 
At the intersection of the cones, the signal and idler intensities are added and not correlated, 
ensuring: 
〈𝑁1〉 = 〈𝑁2〉 = 2𝐺,     𝑉(𝑁1) = 𝑉(𝑁2) = 2 (𝐺 + 𝐺2)       (14) 
 
There is perfect correlation between the signal (idler) in 1 and the idler (signal) in 2, which 
allows us to write the covariance between the two pixels as: 
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𝐶𝑜𝑣(𝑁1, 𝑁2) = 2𝐶𝑜𝑣(𝑁𝑆, 𝑁𝐼) = 2 (𝐺 + 𝐺2)      (15) 
 
 We now find easily all terms necessary to compute the theoretical value of 𝐸(𝜃1, 𝜃2): 
 

〈𝑁1𝑁2〉 = 2𝐺 + 6𝐺2  
〈(𝑁1

+(𝜃1) − 𝑁1
−(𝜃1))(𝑁2

+(𝜃2) − 𝑁2
−(𝜃2))〉 = 2 (𝐺 + 𝐺2)(𝑠𝑖𝑛2(𝜃1 + 𝜃2) − 𝑐𝑜𝑠2(𝜃1 + 𝜃2))

 (16) 
Giving, for the angles corresponding to a maximum violation: 

𝐵 = 2√2 (
1+𝐺

1+3𝐺
)        (17) 

For G=0.01 used in Fig. 2, the theoretical value of B is 2.77, i.e. well inside the 
±5.2% uncertainty range around the “experimental” value 2.68.  
 

   
Figure 4: Numerical and analytical (eq.17) values of B versus the intensity G in a mode. Colored 
area: uncertainty range. 
 
 
Figure 4 shows the comparison between the values of B issued from the numerical simulation 
(105 trajectories for all points but the first, 1.96 x 106 trajectories for this point) and the values 
calculated with Eq. 16, with a good agreement. It is also interesting to note that the relative 
number of negative values of 𝑁1𝑁2 goes from 47% for G=0.01 to 22% for G=0.46. The quantum 
limit B=2 is attained for 31% of negative values. 
It should be noted that 𝐶 increases with G. We see immediately from the mean in Eq. 14 and 
the correlations in Eq. 16 that, for angles corresponding to a maximum violation and unity 
quantum efficiency, we have: 
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𝐶 = 1.21 
2 (𝐺+𝐺2)

2𝐺
= 1.21 (1 + 𝐺)   (18) 

 
Figure 5:  B and C versus the quantum efficiency, for an intensity per mode of 0.01. The colored 

uncertainty range is centered on the maximum value (
1+√2  

2
= 1.21) multiplied by the 

quantum efficiency. 
 
Finally we see in Fig.5 the influence of the quantum efficiency, equivalent to a beam splitter 
before each detector, with quantum vacuum noise entering the free input port. As foreseen, 
B is independent of the quantum efficiency, while C surpasses the quantum limit 1 only for a 
high quantum efficiency, since C is simply proportional to the quantum efficiency 𝜂:  
 

C =
1+√2  

2
η           (19) 

 
 

proving non-locality for a minimum quantum efficiency [24] 𝜂 =
2

1+√2
= 0.83 

  
 
4) Conclusion 
 
We have shown in this paper that stochastic simulations based on the positive Wigner function 
of Gaussian states can be used to demonstrate violation of Bell inequalities. The method is 
simpler than the positive P representation [16], requiring for each trajectory four complex 
numbers instead of eight. The minimum of trajectories to attain a good precision becomes 
very important if the mean number of photons per mode is very low, i.e. in the regime where 
the probability of a second pair in the mode is weak, meaning that the simulation corresponds 
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to a genuine biphoton. Nevertheless, strong violation (B=2.6) can be obtained with a mean 
number of photons per mode of 0.05 and 105 trajectories, i.e. 20 minutes on a professional 
PC, and an uncertainty of about ±4%.  
These results allow the degree of nonlocality to be assessed for realistic experimental 
conditions, with a classical propagation simulation that can integrate all experimental details, 
for example a non-ideal  pump shape as in [4], or a periodically poled crystal as in [18]. 
Of course, Bell inequalities are well known for polarization entanglement and, once validated 
in this case, our method could be employed to less explored situations. We envisage extending 
our method to high-dimensional systems [26, 27], where the reduced number of variables, 
compared to the positive-P, could be very interesting. 
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